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Abstract: We present a new quantitative method of estimation of fluorescent molecule numbers from time-lapse, 
single-cell, fluorescence microscopy data. Its main aim is to eradicate backward propagation of noise, which 
is present in previous methods. The method is first validated using Monte Carlo simulations. These tests 
show that when the time-lapse data are corrupted with negative noise, the method obtains significantly more 
precise results than current techniques. The applicability of the method is demonstrated on novel time-lapse, 
single-cell measurements of fluorescently tagged ribonucleic acid (RNA) molecules. Interestingly, we find 
that the intervals inferred by the new method have the same mean but reduced variability when compared to 
the previously existing method, which, in accordance to human observers, is a more accurate estimation.

1 INTRODUCTION 

Gene expression is a complex, multi-step process 
(McClure, 1985; Lutz and Bujard, 1997; DeHaseth 
et al., 1998; Yarchuk et al., 1992; Wen et al., 2008; 
Zhang et al., 2014). In addition, the underlying steps 
of this process are stochastic in nature, generating a 
variability in RNA and protein numbers that mostly 
explains the phenotypic diversity of monoclonal cell 
populations (McAdams and Arkin, 1997; Elowitz et 
al., 2002; Rao et al., 2002; Raser and O’Shea, 2005). 
To study this process, specialised techniques in 
molecular biology (Golding and Cox, 2004; Yu et 
al., 2006), microscopy (Rutter et al., 1998; 
Chowdhury et al., 2012), image analysis 
(Chowdhury et al. 2013; Häkkinen et al., 2013), 
computational biology (Zhu et al., 2007) and signal 
processing (Häkkinen and Ribeiro, 2014) were 
developed. 

Methods of signal processing should consider the 
characteristics of the underlying processes. For 
example, in the RNA tracking technique based on 
MS2-GFP tagging, the MS2-GFP proteins 
(composed of the bacteriophage MS2 coat protein 
fused to the GFPmut3 protein (Golding et al., 2005)) 
bind to multiple MS2 binding sites of the target 
RNA soon after its production, and once formed, 
those RNA-MS2-GFP complexes remain in a cell 

for the duration of the experiment (Golding and Cox, 
2004; Muthukrishnan et al., 2012). Thus, in this 
case, when estimating the numbers of target RNAs, 
any signal reduction can be classified as noise.  

Since complexes can co-localize, the number of 
target RNAs in each cell is estimated from the total 
fluorescence of the complexes at a given moment 
(Golding and Cox, 2004; Kandhavelu et al., 2012; 
Häkkinen and Ribeiro, 2014). However, the signal 
can be disrupted (i.e. subject to nonzero-mean 
noise), which hampers an exact determination of 
fluorescent molecules’ numbers. That is, though the 
number of RNA-MS2-GFP complexes in a cell is 
considered as a monotonic non-decreasing function 
during the experiment (Muthukrishnan et al., 2012), 
the total fluorescence intensity of the tagged RNA 
molecules can decrease, transiently or permanently, 
in the course of an experiment. These decreases are 
usually caused by the RNA complexes moving away 
from the focal plane, or as a result of 
photobleaching. While the latter corrupts the data 
permanently, the former are isolated events in single 
cell time series and usually cause a steep, transient 
decrease in the fluorescence intensity of tagged 
RNA molecules. 

Here, we present a new quantitative method of 
estimation of fluorescent molecule numbers from 
single-cell fluorescent intensity data obtained by 
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time-lapse microscopy. The method aims to 
eliminate backward noise propagation, caused by 
molecules ‘moving out of focus’, which currently is 
one of the main sources of noise in the estimation of 
the numbers of fluorescent molecules from time-
lapse, live cell images. 

2 METHODS 

The technique of RNA detection by MS2-GFP 
tagging allows observing individual RNA molecules 
in live cells, soon after they are transcribed (Golding 
et al., 2005). In order to extract information from the 
images in an automated fashion, it is necessary to 
detect the tagged RNA molecules, which appear as 
bright spots in the image. Then, the intensity of the 
spots is extracted and summed, so as to obtain the 
“total RNA intensity signal” in a cell, at a given 
point in time.  

This RNA intensity signal from non-degradable 
fluorescent tagged RNA molecules contains noise 
accumulated through each step of signal registration 
(microscope settings, image registration and image 
processing). From observation of the data 
(Muthukrishnan et al., 2012; Kandhavelu et al., 
2012; Häkkinen et al., 2014), we assume that the 
signal behaves as a monotonic non-decreasing 
function corrupted with three types of noise: 

1. Consistent, normally distributed independent 
noise (probability of occurrence ଵ 	= 	1), with zero 
mean and given standard deviation, which is 
introduced by imprecisions of the microscope and 
detector (Chowdhury et al., 2012; Waters, 2009). 

2. Negative noise, which in our measurements 
corresponds to fluorescent molecules moving out of 
focus and remaining there for a certain amount of 
time. Probabilities ଶ	௨௧ of going out of focus and ଶ	 of returning to focus depends, e.g., on the type 
of fluorescent molecule, temperature, etc. 

3. Inconsistent positive noise (low probability of 
occurrence, ଷ < 0.01), caused, for instance, by 
false-positive detection of fluorescent molecules. 
These events are independent from each other, so the 
probability of occurring n times is ଷ, which is 
negligible for ݊ ≥ 3. Note that, the limit value of p3 
is set by empirical observations that these events are 
rare. 

2.1 Previous Computational Methods 

In (Häkkinen and Ribeiro, 2014), a method was 
proposed for estimating RNA numbers and 
production intervals from temporal data of tagged 

RNAs fluorescence intensity in individual cells. This 
method, here denominated as a ‘reference method’, 
has three steps. First, a monotonically increasing 
curve is fitted to the time series, and temporal 
information on related samples is extracted. Second, 
the intensity of a single fluorescent molecule, or a 
‘jump size’, is estimated from the information 
obtained at the first step. In the third and final step, a 
quantized curve is fit to the time series, given the 
parameters, enforcing the quantization to the fit. 
From this, the RNA numbers are extracted. 

The third step in (Häkkinen and Ribeiro, 2014) 
goes as follows. Given the jump size, time series are 
fitted quantitatively, and the fit obtained is an 
estimation of the number of fluorescent molecules. 

For the fits performed throughout the method, 
one can use least squares (LSQ) or least absolute 
deviations (LD) fitting. The LD was found to be 
more robust to signal disruptions. 

In order to exploit the characteristics of the 
empirical data, this method assumes that all 
fluorescent molecules have the same intensity and 
that, once formed, they do not degrade before the 
end of the measurements (experimental evidence for 
this assumption is provided in (Muthukrishnan et al., 
2012)). The first assumption is equivalent to 
assuming that the jump size is a constant. The 
second assumption corresponds to forbidding non-
monotonic behaviour of quantitative estimation of 
the molecules over time. 

This method fits full time series to a curve in one 
step, which aids in eliminating a consistent zero-
mean noise, but also allows a backward propagation 
of any inconsistent disruption of the signal. Hence, 
although this method fully addresses the problems of 
the first and the third types of noise described in the 
Methods section, the problem of the second type of 
noise is addressed only to a limited extent (a 
fluorescent molecule is detectable only if it is in 
focus for at least more than 50% of the time series 
length). 

2.2 Experimental Methods 

2.2.1 Cells, Plasmids, Chemicals and Media 

For live, single cell, time-lapse measurements of the 
RNA production times, the MS2d-GFP tagging 
system was used. Fluorescent RNA-MS2d-GFP 
complexes were observed in Escherichia coli DH5α-
PRO strain (generously provided by Ido Golding, 
University of Illinois, IL). The strain contains a 
single copy plasmid (coding for the RNA with 96 
MS2d binding sites under the control of the 
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promoter Plac) and a high-copy reporter plasmid 
coding for MS2d-GFP under the control of the 
promoter PLtetO-1 (Golding and Cox, 2004). 

For growth media, we used the following 
composition per 100 ml: 1.5 g tryptone, 0.75 g yeast 
extract and 1 g NaCl (pH of 7.0). Media components 
were purchased from LabM (UK), while antibiotics, 
Isopropyl b-D-1-thiogalactopyranoside (IPTG), 
arabinose, and anhydrotetracycline (aTc) are from 
Sigma-Aldrich (USA). 

2.2.2 Cell Growth and Microscopy 

Cells from the DH5α-PRO strain, containing the 
target and the reporter plasmids, were grown 
overnight, diluted into fresh media to an OD600 of 
0.1 (measured with an Ultraspec 10 cell density 
meter), and allowed to grow to an OD600 of ~0.3. For 
the reporter plasmid induction, aTc (100 ng/ml) was 
added 1 h before the start of the measurements. For 
the target plasmid, IPTG (1mM) was added 10 min 
before the start of the measurements. Cells were 
pelleted and resuspended into fresh medium. A few 
µl of the cells were placed between a coverslip and 
an agarose gel pad (2%), containing the respective 
inducers, in a thermal imaging chamber (FCS2, 
Bioptechs), heated to 37 oC. The cells were 
visualized using a Nikon Eclipse (Ti-E, Nikon, 
Japan) inverted microscope with a C2+ confocal 
laser-scanning system using a 100x Apo TIRF 
objective. Images were acquired using the Nikon 
Nis-Elements software. GFP fluorescence was 
measured using a 488 nm argon ion laser (Melles-
Griot) and 514/30 nm emission filter. Phase contrast 
images were acquired with an external phase 
contrast system and a Nikon DS-Fi2 camera. 
Fluorescence images were acquired every 1 min for 
2 hours. Phase-contrast images were acquired every 
5 min. 

2.2.3 Image Analysis 

 

Figure 1. Panel A and B exemplify phase contrast and 
confocal images, correspondingly, of the same cells. Panel 
C shows masks of those cells and their fluorescent spots. 

Cells were detected from phase contrast images as in 
(Gupta et al., 2014). First, the images were 
temporally aligned using cross-correlation. Next, an 

automatic segmentation of the cells was obtained 
with MAMLE (Chowdhury et al., 2013). The results 
were corrected manually. Cell lineages were 
constructed by CellAging (Häkkinen et al., 2013). 
Alignment of the phase contrast images with the 
confocal images was done by manually selecting 5-7 
landmarks in both images, and using thin-plate 
spline interpolation for the registration transform. 
After the registration, the cell masks were adjusted 
to the borders of corresponding cells from the 
confocal images based on the fluorescent intensity. 
Finally, fluorescent spots and their intensities were 
detected from confocal images using a Gaussian 
surface-fitting algorithm from (Häkkinen et al., 
2014). Examples of original images and obtained 
masks are shown in Figure 1. 

3 RESULTS 

3.1 Algorithm 

Our algorithm for the quantitative estimation of 
fluorescent molecules from the data is described in 
Figure 2. 

3.1.1 Initial Parameters 

To obtain the intensity of one fluorescent molecule, ߤ, we combine the first two steps of the ‘reference 
method’ in their original form with visual inspection 
of the time series of fluorescence intensity. Other 
methodologies could be used instead. 

To account for positive noise (type 3 noise), the 
‘trusted interval’, ݓ, is introduced. If an increase in 
intensity persists for ݓ frames, then we assume that 
this increase is not due to noise. Otherwise, the 
assumption that it is positive noise cannot be 
rejected. 

The choice of the value of ݓ is based on the 
standard deviation σ of a consistent noise (type 1). 
The optimum value of ݓ rises with the increase of σ 
(Figure 4). Also, we found by inspection that, to be 
resistant to the type 3 noise, ݓ should not be smaller 
than 5 data points. 

The parameter ݒ is introduced to account for 
deviations in the mean of type 1 noise. The 
exploration of the parameter space of the fit 
(Figure 4) shows that, for a signal without a 
consistent non-zero mean noise, ݒ ≈ 0.25 is an 
optimal value. However, the optimal ݒ increases up 
to 0.4 in the case of fitting a signal with σ = 2. 
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Figure 2: Algorithm used for the quantization of fluorescent molecules. 

3.1.2 Computational Procedure 

The procedure of the algorithm can be represented 
as a set of interval-fitting events. Each interval has 

length ݓ, the values of each fit at each time point are 
a constant proportional to ߤ, the fit is performed 
using least absolute deviations and, the coefficient of 
proportion ܭ of the best fit is an initial estimate of 
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the amount of fluorescent molecules. Given this, 
first, we estimate the amount of fluorescent 
molecules in the first ݓ time points. For each 
following data point ܫ, where ݓ < ݅ ≤ ܰ  the ,ݓ−
fit is performed. If ܭ >  ିଵ, then the estimatedܭ
amount of  fluorescent molecules at time point ݐ  is 
the maximum value of the estimated amount ܫ)݀݊ݑݎ ⁄ߤ ) at ݐ, and the estimated amount ܭିଵ at ݐିଵ. 

Since it is not possible to determine whether any 
increase in the signal at the time points [ܰ − ݓ +1:ܰ] is caused by noise or by the production of 
fluorescent molecules, no estimation is performed on 
this interval. 

Finally, the obtained time series of estimated 
amounts of fluorescent molecules ܭ are checked at 
each time point ݅ (from ܰ to 1). If (ܭାଵ > (ߤ/ܫ)݀݊ݑݎ) ) andܭ > ,ାଵܭ)݊݅݉  is set toܭ ,) are trueܭ  We note that the .((ߤ/ܫ)݀݊ݑݎ
production events at these moments were not 
detected during the fitting procedure because of the 
local disruptions of the signal in subsequent 
moments. 

3.2 Analysis of in Silico Data  

Monte Carlo simulations were performed using a 
model of transcription that assumes that RNA 
molecules are produced in exponentially distributed 
intervals (with mean interval of 15 min 
(Muthukrishnan et al., 2012)). The sampling 
frequency ƒ used is 10 sec-1 and 1 min-1, for 
comparison. 

The obtained time series are then corrupted by 
adding zero-mean independent and normally 
distributed noise. To introduce significant, transient 
disruptions of the signal (i.e. to model RNA-MS2d-
GFP complexes going out of focus), we set the RNA 
signal to zero at random moments, for a randomly 
selected duration. For that, we set the probability 
that an RNA goes out of focus to ଶ	௨௧ = 60 min-1 
and the probability of the zeroed RNA to be fully 
recovered to ଶ	 = 20 min-1. 

In Figure 3 we exemplify the outcome of 
simulating the model for 120 min. 

We use this model’s ground truth data to test the 
accuracy of the RNA numbers estimation by our 
method. To quantify the accuracy, we define it to be 
the proportion of time moments where the RNA 
numbers in a cell were correctly detected (Häkkinen 
and Ribeiro 2014). 

First, the parameter space of the proposed model 
was investigated in order to detect a combination of 
values of ݓ and ݒ that maximize the accuracy. 

 

Figure 3: Simulated data. ƒ = 10sec-1. ߪ	 = 	0.5. pଶ	୭୳୲ =60min-1 and pଶ	୧୬ = 20min-1, ݓ	 = 	ݒ ,8	 = 	0.25. 

 

Figure 4: Mean accuracy along the parameter space of ݓand ݒfor ߪ	 = 	ߪ ,0.5	 = 	1, and ߪ	 = 	2. In panel A, ƒ =10sec-1 and in panel B, ƒ = 1min-1. In both panels, from a-
c: pଶ	୭୳୲ = 0 min-1 and pଶ	୧୬ = 0min-1; from d-f: pଶ	୭୳୲ =60min-1 and pଶ	୧୬ = 20min-1; from g-i: 25% time series 
points were randomly selected and set to zero. In all sub-
panels of panel A and in sub-panels a-c of panel B, each 
accuracy value is a mean of 1000 simulations. In sub 
panels d-f of panel B, each accuracy value is a mean of 
2500 simulations. 
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For that, we performed a set of at least 1000 
simulations for each combination of values of ݒ, in 
the range [0, 0.6], and w, in the range [3, 15] for ߪ	 = 	0.5, 1, 2 for each of the following sets of 
parameter values: a) pଶ	୭୳୲ = 0 min-1, pଶ	୧୬ = 0 min-

1 (ƒ = 10 sec-1 and ƒ = 1 min-1); b) pଶ	୭୳୲ = 60 min-

1, pଶ	୧୬ = 20 min-1 (ƒ = 10 sec-1 and ƒ = 1 min-1); 
and c) 25% time series points randomly selected and 
set to zero (ƒ = 10 sec-1). Results are shown in 
Figure 4. 

From Figure 4, ݓ depends on the variation of ߪ 
of the consistent noise (namely, as it increases 
monotonically with increasing ߪ), whereas ݒ 
depends on the mean consistent noise (which 
becomes negative due to zeroing 25% of the time 
moments). Also, the optimal trusted interval ݓ 
suffered only a slight reduction with a sixfold 
decrease of the sampling frequency, ƒ.  

In addition, we found that for ߪ	 = 	0, 0.5, 1,1.5, 2 and ƒ = 10 sec-1, we obtain ݓ௧ =	5, 7, 13, 13, 13, respectively. Meanwhile, for ƒ = 1 
min-1, we obtain ݓ௧ = 	5, 5, 10, 10, 12, 
respectively. Finally, we found that the optimal ݒ	 ≈	0.25. 

 

Figure 5: Mean accuracy of the counting of fluorescent 
molecules using a given method (Opt, Avg, or Ref) with a 
given noise model (1, 2, or 3) from STD ߪof zero-mean 
noise. Panel A: ƒ = 10sec-1; panel B: ƒ = 1min-1. Opt is 
the proposed method with ݓ =  ௧; Avg is the proposedݓ
method with ݓ	 = 	10(panel A) and ݓ	 = 	8(panel B); Ref 
is the reference method. In case 1, pଶ	୭୳୲ = 0min-1 and pଶ	୧୬ = 0min-1. In case 2, pଶ	୭୳୲ = 60min-1 and pଶ	୧୬ =20min-1. In case 3, 25% of the data points are randomly 
selected and set to zero. Each accuracy value is a mean of 
10000 simulations (using ݒ	 = 	0.2in case 3 and ݒ	 =	0.25otherwise). 

Next, we analysed the simulated data with and 
without going-out-of-focus events using the 
proposed method and the LD version of the 
reference method, and compared their accuracies. 

In particular, we measured the accuracy of our 
method for ߪ	 = 	0, 0.5, 1, 1.5, 2, along with an 
optimal ݓ (‘Opt’ method) as well as with a mean w 
(‘Avg’ method), in order to study the impact of this 
parameter as a function of ߪ. An estimated optimal ݒ 
was chosen separately for data with zero-mean noise 
and for data with negative-mean noise. Also, we 
measured the accuracy of the reference method 
(‘Ref’) on the same data, for comparison. 

From Figure 5, in general, the proposed method 
has higher precision when analysing data with out-
of-focus events (i.e. is more robust to type 2 noise). 
For ߪ = 0.5, its accuracy is improved from 49.1% to 
67.6% for ƒ = 10 sec-1, and from 47.7% to 60.1% 
for ƒ = 1 min-1. However, our method is less robust 
to type 1 noise, which is expected because the data is 
processed piecewise. 

Also from Figure 5, note how the precision is 
lowered for mean ݓ versus optimal ݓ. This 
difference in precision increases with increasing ߪ. 

Finally, we made use of the in silico data to 
assess the timing of the proposed algorithm. For this, 
we measured the time required to analyse 10000 
simulated time series with ƒ = 1 min-1, ߪ	 = ௨௧	ଶ ,1	 = 60 min-1, ଶ	 = 20 min-1, and length of 120 min. For w=4, 8, 16 the duration was 16 s, 12 s, 
and 10 s respectively (processor Intel Core i5-2400, 
3.10GHz), while v does not have a noticeable impact 
on the time length of this process.  

3.3 Analysis of Empirical Data 

We next applied our method to empirical data, 
obtained as described in the methods section. This 
data was processed using our method and the 
reference method, for comparison (Table 1). The 
fluorescent RNA complexes have a non-negligible 
tendency to go out of focus, which makes it possible 
to demonstrate the usefulness of the proposed 
method. 

Table 1: Comparative analysis of the mean and variability 
of the intervals between consecutive RNA production 
events obtained by our method (w = 8, v = 0.25) and the 
reference method. The data was collected from 178 cells. 

Method No. 
intervals 

Mean 
interval 

Interval 
CV2 

Our method 158 1047 1.15 
Ref. method 153 1018 1.43 

 

From the Table 1, the two methods differ in 
performance. Namely, while the two methods infer 
similar mean intervals between transcription events 
(the new method detected 3% more intervals), the 

BIOSIGNALS 2016 - 9th International Conference on Bio-inspired Systems and Signal Processing

22



CV2 of those intervals duration is significantly 
smaller when using the new method (19.6% 
smaller). Inspection of the data by two expert human 
observers indicated that the new method’s detection 
process was the more accurate one (see example 
Figure 6). 

 

Figure 6: Example intensity series and estimated RNA 
numbers with the proposed method (ݓ = ݒ ,8 = 0.25), 
and with the reference method (LD version). 

4 CONCLUSIONS 

Here we proposed a new method for the quantitative 
estimation of fluorescent molecules from temporal 
intensity microscopy data. This method was 
developed to handle transient, nonzero-mean noise 
in the data, i.e. it aims to cope with temporary 
absences of fluorescent molecules from the focal 
plane in time-lapse microscopy measurements. This 
is particularly important in studies requiring a 
consistent tracking of tagged molecules, such as 
studies of, e.g., chemotaxis mechanisms which rely 
on chemoreceptor clusters (Sourjik and Berg, 2004; 
Wadhams and Armitage, 2004; Parkinson et al., 
2005; Kentner and Sourjik, 2006) and protein 
aggregates’ accumulation, which is associated with 
cellular aging processes (Maisonneuve et al., 2008; 
Tyedmers et al., 2010; Winkler et al., 2010; Lindner 
et al., 2008; Gupta et al., 2014; Lloyd-Price et al., 
2012). 

We validated our method by tests on in silico 
data. Next, we applied it to empirical data to show 
that its results can differ from those of the previous 
method. By inspection, we found, as expected, that 
the reason why the results of the two methods differ 
is the enhanced robustness of our method to 
‘negative’, inconsistent noise. Another reason is its 
weaker robustness to consistent, type 1 noise. 

The causes of the two main differences are that, 
in the new method: i) previous values of a tagged 
RNA intensity confine the next ones into boundaries 
defined by the known properties of the signal. The 
main benefit of this is that it restricts backward 
propagation of inconsistent noise, which results in 
more precise results when pଶ	୭୳୲ > 0; ii) the 
stepwise analysis of the signal hampers the removal 

of consistent zero-mean noise. 
We expect our method to be of use to a broad 

range of time-lapse microscopy measurements 
making use of fluorescence molecules in live cells, 
particular when the phenomenon of moving out of 
the focus plane is common for those molecules. 
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