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Abstract: MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. Altogether, 
understanding integrative and co-operative activities in gene regulation is conjugated with identification of 
miRNA families. In current applications, the identification of such groups of miRNAs is only investigated 
by the projections of their expression patterns and so along with their functional relations. Considering the 
fact that the miRNA regulation is mediated through its mature sequence by the recognition of the target 
mRNA sequences in the RISC (RNA-induced silencing complex) binding regions, we argue here that 
relevant miRNA groups can be obtained by de novo clustering them solely based on their sequence 
information, by a sequence clustering approach. In this way, a new study can be guided by a set of 
previously annotated miRNA groups without any preliminary experimentation or literature evidence. In this 
report, we presents the results of a computational study that considers only mature miRNA sequences to 
obtain relevant miRNA clusters using various machine learning methods employed with different sequence 
representation schemes. Both statistical and biological evaluations encourages the use this approach in silico 
assessment of functional miRNA groups. 

1 INTRODUCTION 

MiRNAs are small, 20-22 nucleotides in length, non-
coding RNA products of the corresponding MIR, 
miRNA transcribing, genes. They regulate encoding 
machinery involving in cleavage or translational 
events by precise sequence complementation to the 
target RNA sequence (Bartel 2004; Lagos-Quintana 
et al. 2001). Due to its crucial function in the cell 
identification, miRNA sequences has a great 
importance since the earliest breakthrough 
accumulated. The let-7 is one of the early identified 
miRNA. The role of the miRNA is very important in 
function; controlling differentiation in C. elegans.  
The let-7 family members generally involve in the 
same processes such as controlling developmental 
timing (Abbott et al. 2005). Recently, it is found out 
that the sequence of the let-7 family members are 
also well conserved. Moreover, some of the MIR 
genes found to be polycistronic transcribed into 
miRNAs and located into the same chromosomal 
positions; they are called as miRNA clusters. In 
some of the miRNA clusters a recognizable 

sequence similarity is also known (Altuvia et al. 
2005). miRNAs targeted into a specific mRNA 
region are greeted through biogenesis which is 
commonly specific into the organism. At the end of 
its biogenesis RNA-induced silencing complex 
(RISC) is formed, and by RISC binding regions the 
miRNA sequence is used as template to complement 
the target mRNA sequence. The consequence is 
either miRNA cleavage by degradation or 
translational repression by blocking the mRNA 
being translated. Conversely, there would be a 
positive result like sponsoring transcription or 
translation and stabilization of transcription (Asgari 
2011). In the complementation there are some key 
regions important for target determination. Second to 
eight nucleotides of the pre-miRNA sequence called 
as seed region are known as key nucleotides (Bartel 
2013). miRNA binding sites in target mRNA region 
is generally in 3 ‘UTR region, occasionally in 5 
‘UTR region of the gene in animals. The percentage 
of the complementarities changes by, and depends 
on type of the organisms (Pratt and MacRae 2009).  

Through the evolutionary time, as the cell getting 
change, miRNA to target relation diverse. From this 
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context, studies to observe sequence fingerprints in 
miRNA families has been started (Hertel et al. 2012; 
Shi et al. 2012) . The investigations on let-7 family 
bring the consideration up that there are some 
conserved patterns alongside with base composition 
similarities between miRNA sequences (Hertel et al. 
2012; Newman et al. 2008).  Furthermore, it is found 
that there is evolutionary importance of the 
mismatches between miRNA and its target as well. 
The mismatches are tolerating the easier release 
from the RISC complexes when perfectly located 
into its target  (Bartel and Bartel 2003). All these 
findings in the end support that there is a great 
concurrence between the miRNA and target 
sequence even evolutionary favoring the 
mismatches. Hence, what is the level of these 
similarity between existing miRNA groups? 

It is well known  that a number of miRNA 
element may role in multiple functions, like 
proliferation, cell death and differentiation, 
immunity and fat metabolism by various pattern of 
expression (He and Hannon 2004). Therefore, the 
network including miRNA and its targets is highly 
complex housing several genes. The analysis of 
these relation may be compromised through 
advanced tools like miRWalk2.0 (Dweep and Gretz 
2015). The latest studies have shown that miRNAs 
usually operate in a co-operative manner to perform 
their activities (Antonov et al. 2009). This suggests 
that some miRNAs can form context-specific 
modules, i.e., cluster of entities, while regulating 
gene expression. Since the elucidation of gene 
regulatory networks comprising all actors is one of 
the ultimate goals of systems biology, which 
miRNAs are functionally similar in a certain context 
is high-potential knowledge for the researchers and 
clinicians working in this domain (Ölçer and Oğul 
2013).  

Recently, as the importance of miRNA directed 
gene regulation become clear, computational 
miRNA prediction tools was an active research area 
(Zhao et al. 2010; Lai et al. 2003). Following the 
advance, many predicted miRNAs sourced to be 
characterized into function. Here in this study, in the 
light of the current miRNA literature we used the 
sequence clustering approach to group mature 
miRNAs in order identification of miRNA families 
acting in the same metabolic events. In 
bioinformatics, the attempt of grouping the 
biological sequences is not novel. USEARCH and 
UBLAST (Edgar 2010)are two algorithms developed 
recently in that concept operating on nucleic acid 
sequences, and there are TribeMCL (Enright et al. 
2002) and OrthoMCL (Li et al. 2003) operating on 

amino acid sequences. Sequential simulation of each 
miRNAs in like the mentioned studies presented by 
numeric kernels constructed  though dynamic 
programming pair-wise sequence alignment 
algorithms; Smith-Waterman (Smith and Waterman 
1981) and Needleman-Wunsch (Needleman and 
Wunsch 1970)  or by calculating their k-mer 
distributions. Unsupervised clustering approaches 
then applied into these sequence simulations by 
using the similarity features. The performance of the 
clusters is statistically analyzed by using Dunn Index 
(Dunn 1973)  calculation and the functionality of the 
pipeline is tested with a well-known human miRNA 
dataset of Tool for Annotations of miRNA (TAM)  
(Lu et al. 2010). The tool also used to test the 
groups, annotate them into functional categories and 
thus calculate the enrichment of the miRNA groups 
with any purposeful similarities. In conclusion, the 
workflow here represents the method to explore 
sequentially similar miRNAs and their relevance in 
groups.  

2 MATERIALS AND METHOD 

2.1 Clustering 

The task is to assign each miRNA into one of 
previously unlabeled classes so that a set of non-
overlapping miRNA groups, which are desired to 
imply a useful relevance, can be obtained. This can 
be achieved through an unsupervised machine 
learning technique called as clustering (Flynn 1999; 
Sisodia 2012). As having a large diversity of 
clustering algorithms in machine learning society, 
we consider here four distinct methods which are 
selected based on their common use in 
bioinformatics studies; k-means (Macqueen 1967), 
CLAG (Dib and Carbone 2012), and SOTA (Dopazo 
et al. 1997) and MCL (Enright et al. 2002), which 
are briefly introduced as follows. 

K-means (Macqueen 1967)  is the classical yet 
the most common in use method of partitional 
clustering. By the technique, the dataset is divided 
into k non-overlapping groups by means of 
minimizing the sum of squares of distances between 
data points and the corresponding cluster centroids. 
The logic of the method depends on the iterations of 
these steps; (1) determination of the centroid 
coordinate, (2) evaluating the distance of each object 
to the centroids and, finally (3) grouping into the 
objects based on minimum distance (Macqueen 
1967). Prior to these steps however, k must be 
specified.  Actually, if the dataset is unknown and 
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analyzer doesn’t know how many grouping will be 
done, optimization of k becomes one of the 
weaknesses of this method. Moreover, if the 
numbers of data are not high enough, initial 
groupings will determine the cluster contents 
significantly. Therefore, with different centroids, 
different classifications are possible and the 
evaluation of validity of these clusters becomes 
substantial (Rawlins et al. 2012).  To overcome 
different partition problem in our analysis, re-run 
results are generated for the same input of cluster. 
After memberships of the clusters defined, each trial 
was compared to each other in order to detect most 
stable groups. Therefore, some extension is made 
through the clusters, and less stable groups divided if 
their membership is not convincing enough for other 
trials or if the member is unstable for an affiliation it 
is eluted from the set as suggested by (Jain 2010).  

CLAG (CLuster Aggregation)(Dib and Carbone 
2012) method is specially established for large non-
uniform biological datasets.   It is an unsupervised 
non-hierarchical method aiming to zoom in only 
compressed regions in the uneven datasets by given 
parameters. The algorithm iterates for suitable 
aggregations on the dense regions. Therefore, the 
algorithm does not group whole data; instead, only 
finds best similarities in the particular correlation 
metrics. One of the benefits of the algorithm is that 
the cluster number is not specified by the user. 
Furthermore, since the algorithm does not samples 
the data with initial centroids, it does not suffer from 
the problems of k-means, like yielding different 
clusters for repeat runs and dealing with dense-
shaped data points.  

SOTA (Self-Organizing Three Algorithm) 
(Herrero et al. 2001) is a hierarchical clustering 
method unusually using neural network (Self-
Organizing Map- SOM) centered on a distance 
function well fit to the nature of the data. Neural 
network propagates to fit the topology of the set into 
a binary tree. The algorithm aims to integrate 
advantages of both methods hierarchical clustering 
and SOM without suffering from their problems. 
SOTA is a divisive method, clusters form from a 
growing neural network, with respect to 
agglomerative approach of hierarchical algorithms. 
This feature of SOTA has led to stop at any desired 
level of hierarchy until cluster numbers reach to 
equality with data points, and so, arrangement of the 
homogeneity of the clusters is arrived. Prior to the 
analysis, the algorithm evaluates the distances 
between the elements and chooses two main nodes. 
The following divisions calculated up to 
homogeneity of these nodes are absolute not change. 

This makes the centroids of the data fixed; re-runs of 
the data do not change the position of the centroids 
and thus, with respect to k-means algorithm, cluster 
members remains fixed (Dopazo et al. 1997; Herrero 
et al. 2001).SOTA method is proven to cluster large 
gene expression patterns like microarray analysis 
results. The method is efficient to be able to isolate 
the real clusters from the noise of the data (Herrero 
et al. 2003). 

MCL(Markov Clustering Algorithm) (Enright et 
al. 2002) is a graph clustering method developed by 
Stijin Von Dongen at 2000. This algorithm has been 
widely used in bioinformatics to find functional 
relations in protein datasets. Such as OrthoMCL (Li 
et al. 2003)  and TribeMCL (Enright et al. 2002) use 
MCL algorithm applied into all-to-all BLAST results 
of protein sequences. MCL algorithm uses a 
weighted symmetry matrix which shows the pair-
wise distances between the items in the dataset. The 
pair-wise weights are turned into transition 
probabilities with normalizations.  The algorithm 
makes random walks using probability matrix to find 
inter connected elements namely the clusters. In 
general, the algorithm has two steps; normalization 
and inflammation. Normalization step is responsible 
for calculating probabilities of each connection for 
each node in the graph. After each normalization 
step, to overweight current strength connections and 
on the contrary underweight the weak ones the 
square root of the matrix is taken names as 
inflammation. The inflammation value can be 
arranged by the behavior and the structure of the 
dataset. It can be increased to find more strength 
connected clusters and to observe bi-connected 
groupings, and it can also be decreased to find 
naturally big connections or to present well 
separated groups. These two steps, normalization 
and inflammation,  iterate on the graph until the 
convergence is fixed (Enright et al. 2002; Li et al. 
2003). The algorithm is very gainful on classical 
vector based cluster algorithms when the distance 
metric is considered as important between objects. 
The method instantly found the cluster number 
unlike the classical methods. Unlike k-means and 
SOTA cluster number is not provided by the end 
user.  

2.2 Sequence Representation 

In the study, two approaches are used to represent a 
miRNA sequence in a machine learning framework. 
In the first method, a sequence is composed a set of 
elements, each of which denotes similarity of current 
miRNA sequence with any other miRNA sequence 
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in the repository. To quantize this resemblance, a 
distance measure can be scored by pair-wise 
alignment algorithms. To test different 
methodologies, Smith-Waterman algorithm (Smith 
and Waterman 1981) as local and Needleman-
Wunsch algorithm (Needleman and Wunsch 1970) 
as global alignment are both applied. All sequences 
in the list are aligned to each other in a pair-wise 
manner, and their alignment scores are stored into a 
symmetric all-to-all matrix. In the matrix, the nodes 
demonstrate score vectors with respect to edges are 
miRNA sequences (Similarity Matrix). To generate a 
matrix showing distance measures (Distance Matrix) 
, however, the scores for a miRNA sequence aligned 
to other miRNAs is subtracted from the score 
produced from the self-alignment of that miRNA, 
basically that is the maximum score a miRNA 
sequence can produce. When Needleman-Wunsch 
algorithm is applied, negative scores are also 
possible with respect to Smith-Waterman that creates 
only positive scores. Therefore, the similarity and 
dissimilarity (distance) matrices should not be 
thought as real representative graphical distances, 
instead, they are the metric values showing how two 
pairings are alike or distant. Scoring schemes for the 
both algorithms are the same, scores are calculated 
according to Gap=-1, Mismatch=-1, and Match=+1 
values.   

The second method to deduce information from 
sequence is to count k-mers. It aims to produce a 
sequence model defined on distribution of k-mers, 
namely all probable k length substrings. We chose k 
as 3 for a 3-mer representation. On a defined RNA 
alphabet (A, G, U, C), when k equals to 3, there is 
4k, 64 distinct count values. The presence of 3 
length substrings (like AGU, CAA, GAU…) can be 
controlled and their presence indications can be 
stated as 1 or unlikely situation can be 0. 
Consequently, number of miRNAs versus 4k 
dimension matrix is filled by 1 and 0.   By this 
method, sequence information becomes independent 
from nucleotide triplet order, and the sequences are 
not affected from each other (Oğul and Mumcuoğlu 
2007). 

2.3 Data 

To assess the functional relevance of miRNA 
clusters obtained through computational models, we 
use a set of human miRNAs with experimentally 
validated functional annotations. Current TAM 
miRNA catalogue (Lu et al. 2010) for this purpose  
provided miRNA sets for 413 distinct human 
miRNAs. The miRNA groups in TAM are specified 

in 5 distinct categories; family, function, tissue, 
disease and cluster (genomic loci). A miRNA may 
reside in more than one group provided that each 
group is specified in a different category. In this 
way, a set of overlapping miRNA groups can be 
retrieved in varying annotation schemes. Family and 
cluster specifications are based on miRBase 
(Kozomara and Griffiths-Jones 2011) classes. 
Human MiRNA Disease Database (HMDD) (Lu et 
al. 2008) is used for disease specific associations, 
and function and specific tissue relations is collected 
from literature. In current version, TAM database 
contains 238 miRNA sets in total. In TAM 
repository, the names are not specialized with their 
3’ or 5’ overhangs. Therefore, miRNA names are 
matched with their corresponding sequences in 
miRBase tool. When both overhangs are stored, final 
dataset comprises 666 miRNA sequences in total. 

2.4 Biological Validation of the 
Clusters 

For an agreed set of miRNAs, TAM tool estimates a 
significance (p value) for each of its categories, and 
this value describes the enrichment in the set. The 
enrichment value is the function of TAM describes 
how these miRNAs related depending on literature 
reviews. P value is calculated in a correspondence 
with the size of the given set of miRNA and size of 
the dataset. Therefore, percentage of how many 
given miRNAs are in a consistent cluster and its 
significance are outputs of the tool (Lu et al. 
2010).In our analysis, p-value (>0.005) and 
percentage coverage (>0.2) are used to assess the 
level of enrichments, only if there is two miRNA 
found to be related. Each cluster for all clustering 
method we used is tested by TAM, enriched clusters 
are counted, and percentage of them calculated. 
Therefore, the overall enrichment score is the 
percentage of successfully enriched clusters per 
given the total groupings 

2.5 Statistical Validation of the 
Clusters 

Dunn Index (DI) calculation is used to get the ratio 
of the smallest distance between the observations in 
the different clusters to the largest distance of the 
observations in the same cluster (Dunn 1973).  DI 
metric aims to signify how compact and well 
separated the clusters is. The value of DI is 0 when 
all of the objects are in the same cluster and infinite 
when all the objects present for a cluster.  To get a 
better result, DI needs to be maximized. The distance 
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metric in DI can be classical Euclidian or Manhattan 
distance. The method is used in order to understand 
if the data is well separated prior to selection of 
clustering parameters. Only clustered groups are 
used in the study. 

3 RESULTS AND DISCUSSION 

3.1 Data Coverage and Cluster 
Numbers 

The first clue to be provided in order to understand 
the compactness of the cluster is to determine cluster 
numbers (number of grouping) and data coverage 
(percentage of clustered miRNAs) (Table 1). As 
CLAG algorithm tends to devise most strength 
condense  regions, it  has the  smallest  data coverage 

Table 1: Cluster numbers and Data Coverage’s (%) of the 
groupings by different methods. 

 Matrix* Cluster 
Number 

Data 
Coverage 

K-means K-mer 47 99.85 
 NW-Similarity 46 85.44 
 NW-Distance 46 82.73 
 SW-Similarity 38 98.95 
 SW-Distance 37 96.55 
 Random Matrix 47 100.00 
CLAG K-mer 29 9.16 
 NW-Similarity 30 10.96 
 NW-Distance 31 11.26 
 SW-Similarity 50 18.62 
 SW-Distance 24 8.56 
 Random Matrix 104 97.60 
SOTA K-mer 30 100.00 
 NW-Similarity 30 100.00 
 NW-Distance 30 100.00 
 SW-Similarity 30 100.00 
 SW-Distance 30 100.00 
 Random Matrix 30 100.00 
MCL A 15 86.04 
 B 18 73.12 
 C 17 63.81 
 D 56 75.96 
 E 46 58.41 
 F 46 52.70 

*A, B and C are the 2nd; D, E, and F are the 4th power of 
the original Smith Waterman applied MCL matrix. 
4,5,6,2,3, and 4 inflation values are applied into 
respectively A, B, C, D, E and F. 

among the other stated methods. Thus, cluster 
numbers and data coverage are very small (9% to 
18%). Because of the same reason also, CLAG 
operates different on Random matrix than the real 

matrices.  Random assignment of numbers generates 
a scattered and district regions in the matrix which 
CLAG cannot directly cluster the data. Which is 
opposite of SOTA algorithm, it clusters the whole 
dataset and set up of initial cluster number is through 
manual. In a structural manner, classical K-means 
algorithm also clusters the whole dataset. However, 
monic clusters are also generated as district objects, 
re-runs are required to remove the most district 
elements.  After several arrangements by DI 
calculation, cluster number is optimally found as 43. 
Random matrix results with 47 clusters and 100% 
coverage.   

MCL algorithm has a different methodology than 
other algorithms since it is a graphical clustering 
method. Data coverage is the value of inflammation 
value. At least 15 number of clusters with 86% is 
found for the matrix powered by 2 and inflamed by 
4, and the most 56 number of clusters with 73% is 
found for the matrix powered by four and inflamed 
by 2 .  

The representation of miRNA sequence was 
differentiated in the cause of whether how 
simulation important.  Diverse matrices (Similarity, 
Distance, and K-mer) implicated variation by cluster 
numbers and data coverage, as like for also Simith-
Waterman and Needleman-Wunsch algorithms. 

3.2 Statistical Validation 

Table 2: Dunn Indexes evaluations for clusters. 

 Matrix Dunn Index 
K-means K-mer 0.3511 
 NW-Similarity 0.2641 
 NW-Distance 0.2297 
 SW-Similarity 0.4539 
 SW-Distance 0.3507 
  Random Matrix 0.7920 
CLAG K-mer 0.7454 
 NW-Similarity 0.6257 
 NW-Distance 0.4498 
 SW-Similarity 0.4867 
 SW-Distance 0.4789 
  Random Matrix 0.8311 
SOTA K-mer 0.2970 
 NW-Similarity 0.2430 
 NW-Distance 0.2043 
 SW-Similarity 0.2766 
 SW-Distance 0.2369 
  Random Matrix 0.8396 

 

Besides to data coverage and cluster numbers, an 
arithmetic approach needed to calculate the strength 
of the clusters. For this purpose, Dunn Index (DI) 
values are evaluated (Table 2). Rather than other 
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methods, DI is not considered with MCL algorithm 
since it is a graph clustering method, similarity or 
dissimilarity metric between objects can not indicate 
the real distance values. The observation suggesting 
that DIs overvalued for Random matrices can appear 
as they are well grouped than real matrices.  The 
reason behind that is Random matrix is filled 
unsystematically and so very homogeny that 
contains no noise.   

CLAG only objects into the condense regions, 
finds small number of clusters, removing nearly 90% 
of the data. Therefore, clusters are compact, as a 
result DI values are better according other methods. 
Among the two methods, K-means algorithm can 
produce better clusters than SOTA for some 
methods. SOTA DIs are low since SOTA tends to 
cluster whole data unlike altered K-means algorithm. 
Therefore, SOTA parcels the data without rendering 
out the separated objects.  

3.3 Biological Validation 

The next step in the cause of asserting biological 
function into miRNA clusters, the next step carried 
through this study is categorization of the clusters by 
TAM tool. All five categories of TAM tool is shown in 
table 3; Clusters, Function, Family, HMDD, Tissue, 
and ALL (as altogether), with respect to enrichment 
results of clusters as percentages. 

In order to significate a cut-off value, given the set 
of miRNA random samples are taken and analyzed 
through the same way by TAM tool (10, 30, and 150 
grouping). Depending on sampling values, miRNA 
enrichments change expressively. 10 clusters, for 
example, tend to show increase in enrichment, whilst 
150 clusters nearly does not give any enrichment 
results. Actually, it is about the size of the cluster, as 
size of a cluster increase, it is more likely it gets hit 
from TAM tool. As the samples are only taken by 
change, we can confirm the meaning of the grouping 
generated by sequence similarity. Yet, our cluster 
analyses  in  this study  mostly run by nearly 30 number 

Table 3: Enrichment results of clusters calculated by TAM tool. 

 Matrix Clusters Function Family HMDD Tissue All* 
K-means K-mer 44.68 12.76 72.34 44.68 10.63 80.85 
 NW-Similarity 57.78 22.22 82.22 40.00 11.11 88.89 
 NW-Distance 52.17 19.56 76.09 45.65 6.52 84.78 
 SW-Similarity 63.16 23.68 78.94 55.26 15.79 92.11 
 SW-Distance 56.76 32.43 70.27 40.54 10.81 81.08 
 Random Matrix 8.51 6.38 8.51 14.89 4.25 34.04 
CLAG K-mer 24.13 13.79 75.86 27.59 13.79 75.86 
 NW-Similarity 30.00 16.67 80.00 36.67 13.33 80.00 
 NW-Distance 22.58 16.13 77.42 41.94 9.68 77.42 
 SW-Similarity 20.00 14.00 70.00 24.00 10.00 70.00 
 SW-Distance 16.67 20.83 79.17 45.83 4.17 79.17 
 Random matrix 4.81 2.88 4.81 8.63 0 16.35 
MCL A 60.00 26.67 86.66 33.33 13.33 86.66 
 B 38.89 22.22 66.67 33.33 16.67 72.22 
 C 41.17 23.53 58.82 29.41 17.65 70.59 
 D 32.14 14.29 51.79 25.00 7.14 66.07 
 E 39.13 13.04 47.03 21.74 8.70 60.87 
 F 39.13 15.22 47.83 21.74 10.87 60.87 
SOTA K-mer 50.00 33.33 63.33 36.67 10.00 80.00 
 NW-Similarity 40.00 23.33 73.33 26.67 6.67 80.00 
 NW-Distance 36.67 13.33 70.00 50.00 6.67 83.33 
 SW-Similarity 50.00 30.00 70.00 43.33 10.00 83.33 
 SW-Distance 43.33 23.33 60.00 50.00 10.00 73.33 
 Random Matrix 10.00 10.00 10.00 20.00 3.33 43.33 
Random Clusters 10 groups 10.00 13.33 6.67 33.33 0 46.67 
 30 groups 14.44 10.00 11.11 22.22 0 40.00 
 150 groups 3.16 4.28 2.48 9.93 0.68 16.7 

* Five categories of TAM tool is shown; clusters, function, family, HMDD, and tissue. All represents the percentage result 
annotated by any of the categories at least one time. The results are given as percentage. 30 groups chosen as cut-off value 
bonded.
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of clusters. Consequently, 40% percentage is chosen as 
effective cut-off value.  Furthermore, before, randomly 
filled matrices were also generated to determine the 
cluster sizes, they are also used as control metric 
through analysis by TAM. For ALL case, Random 
matrix enrichments are also found lower than 40% 
percentage. 

Two different similarity detection approaches, k-
mer counting and pair-wise sequence comparison, were 
analyzed with TAM tool. Results illustrate that even 
though, for k-mer method SOTA and k-means 
algorithms are not effective as CLAG and MLC, the 
general view to the outputs of TAM tool signifies that 
there is no considerable change by modification in 
similarity methods, at least 70% of clusters display 
enrichment which is considerably exceeds the cut-off 
value 40%. The finding proves that all of the similarity 
representation methods able to show a momentous 
enrichment over cut-off values (14%, 10%, 11%, 22%, 
0, and 40% sequentially as Table 3). 

Besides, no matter which method in which way is 
used we see weighted enrichments for all 5 categories. 
Also, between the categories of TAM, it is found out 
that the most enrich one is family (60% to 86% with 
11% cut off). This result proves the hypothesis that 
among the same miRNA families there is a 
considerable sequence similarity. For cluster category, 
the enrichment is also noteworthy. In literature, 
between the same clusters like let-7 family sequence 
similarity is stated (Hertel et al. 2012; Newman et al. 
2008). As the results estimate, we prove that there are 
significant sequence similarities between some miRNA 
clusters. However, in conclusion we see that miRNA 
clusters itself are not correspond to a major sequence 
similarity, unless they are not originated from the same 
hairpin. Cluster enrichments are respectively smaller 
since clusters of miRNAs are found by expression 
analysis and proximity in location also. Nevertheless, 
the information for Cluster category is not enough for 
encompassing study, more literature views needed. 
Furthermore, unavoidably tissue analysis of TAM was 
not complete and so the information was not adequate 
for a meaningful analysis, which is observable through 
the results. Thus, to increase the quality of the 
biological evaluation the collected information for 
miRNA relations need to be large enough.  
MCL method is applied only by Smith-Waterman 
distance matrix. Various optimizations are needed to 
made TAM enrichment analysis. Outputs show that 
when a prior data inflation is increased, more clusters 
are found but less functional annotation is possible 
through TAM.  Best functional annotation for Clusters 
category (60%) is found by MCL  algorithm  with  the 
matrix  powered by 2  and inflated with 4. This matrix 

was the also less covered dataset, probably only found 
the best relations in the dataset. MCL algorithm with 
respect to other algorithms uses graph theory for 
grouping indeed able to generate well group of 
miRNAs separated from noise with 86% of enrichment 
in function. 

Data coverage found to be also related with 
enrichment analysis. CLAG analysis represents that as 
data coverage decrease, more similarity can be found in 
miRNA sequences. Since only pair-wise similarities are 
detected at least 75 % of the clusters enriched in all 
categories and in families. K-means algorithm with 
respect to CLAG tends to cover whole data and show 
more enrichment. At least 80 % of the clusters enriched 
in all categories. SOTA, like k-means, also show at 
least 80% enrichment, but in cluster category, K-means 
better than SOTA and any other cluster algorithms. 

K-means and SOTA algorithms are able to cluster 
whole data, with significant DI values. By using the 
classical K-means algorithm, in fact, it is possible to 
generate clusters 92% of them enriched in at least one 
of TAM categories, and also 82% of them significantly 
enriched in family category.  However CLAG 
algorithm only projects into condense regions of the 
data, and found small major shrink clusters visualized 
by low data coverage with high DI value. Yet, it is 
proven that, these small clusters are well enriched in 
function (80 % in ALL). Therefore, a pipeline can be 
constructed as using CLAG a prior to cluster analysis to 
shape the centroids of the data.   

3.4 MicroRNA-target Relations 

Here, the method describes how the miRNA sequences 
can be clustered by using alone its sequence patterns. 
Yet, as mentioned in methodology part, a miRNA can 
regulate various mechanisms and processes in the cell 
(Antonov et al. 2009). Recently, there are researches 
focusing on specific miRNA to disease relations(Satoh 
2012; Jacobsen et al. 2013), these are the touchstones of 
broad searches on miRNA regulated gene networks 
(Gennarino et al. 2012) . These studies suggest that 
miRNA target gene ontology needs to be investigated 
in a well-shaped network design. In our study, 
nevertheless, as the complexity of the network for 
many miRNA to many target relation make the 
clustering of the targets very hard without designing a 
new algorithm, we could not cover clustering of 
miRNA target genes. 

4 CONCLUSIONS 

In search of finding miRNA groups with predicted 
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functions regulating their target genes in turn pathways 
such as development, immunity, environmental 
responses and many more,  the expression levels of 
miRNAs are commonly preferred approach, since 
experimental analyses are considered most reliable and 
promising.  However, they are indeed costly and time 
consuming. Therefore, there is an urgent need in 
generating computational tools for cluster analyses to 
determine relevant miRNAs groups.  Toward this end, 
this study is focused on developing a novel approach 
using the data available in databanks of human genome 
with experimentally determined mature miRNA 
sequences.  Given a list of mature miRNA sequences, 
sequence content translated into a metric system and 
clustered by available clustering algorithms.  

In this study, we provided a workflow for clustering 
miRNA sequences independent from their expression 
profiles using a sequence clustering approach by means 
of existing machine learning algorithms, K-means, 
CLAG, SOTA and MCL. Given a list of mature 
miRNA sequences, similarity relations were detected 
by two approaches; k-length substring counting and 
pair-wise sequence alignment algorithms.  To detect 
pair-wise similarities between two sequences Smith-
Waterman and Needleman-Wunsch algorithms were 
used. As a result, three different sequence 
representation methodologies were utilized to detect 
sequence similarities. Pair-wise sequence algorithms 
were used to construct a matrix filled by scores of 
descriptive scores. An all-to-all approach is used and all 
sequences in the list compared to each other. Thus, the 
filled matrix becomes the representations of distances 
between all miRNAs, and it is used as input of cluster 
algorithms. The other approach was k-mer counting, 
independent from the order which is a priority in pair-
wise alignment algorithms. It is also a novel approach 
for representation of a sequence as input of clustering 
algorithms.  

Preexisting clustering methods are used in the 
contexts of the study in order to provide a comparison 
between different methodologies which are appropriate 
for different type of metrics. The methods used in this 
study have been not previously applied into a miRNA 
sequence metric matrices.  In that perspective too, this 
study has also an innovative outcome.  Only, MCL 
algorithm which is a graphical clustering method 
indeed was originated to cluster protein sequence score 
metrics, which is very useful for sequences represented 
as distance values. From different perspective used in 
this study,  hierarchical clustering on nucleic sequences 
is possible through multiple sequence alignment (MSA) 
(Corpet 1988).  Because of the fact that MSA methods 
directly operate on sequences, but not on a metric in 
matrix, in this study we did not used this standpoint.  

Furthermore, within the supervision of the sequence 
similarity information behind some clusters studies 
before (Hertel et al. 2012; Abbott et al. 2005; Newman 
et al. 2008) supervised machine learning methods may 
be possible to use. The problem, yet, would be the fact 
that there is not adequate information for sequence 
similarity between existing miRNA functional 
groupings which need to be experimented through 
laboratory techniques. Notwithstanding, unsupervised 
methods more gainful to recognize hidden relationships 
between miRNAs is a fortiori in this study to use (Zhao 
and Liu 2007). Hereafter, supervised clustering 
techniques can be carried out and this study will be 
guide for them too. Thus, this study developed a new 
approach specifying the detection of miRNA sequence 
groups by using various existing clustering algorithms, 
we were able to instruct appropriate optimizations to 
choose best possible one most fitting for miRNA 
functional clustering analysis.  

Statistical evaluation of clusters was completed 
through DI calculations.  Only the clusters significantly 
showed strength of clusters used in the study. The 
functional enrichments in that clusters were calculated 
by very effective bioinformatics tool, Tool for 
annotations of miRNA; TAM uses a given set of 
miRNAs by calculating p-values of enrichment in the 
set and it shows the number of sequences in the cluster 
found in the same category. Our analyses have shown 
the clustering approaches used in the study represent 
important functional enrichments. Although, there are 
some minor changes compared to TAM results when 
similarity detection method changed.  Most 
significantly, in family category we saw the highest 
enrichments indicating that sequence similarity in 
miRNA families is predictable. Since, our method 
yielded significant similarities it is applicable to 
sequence clustering for miRNAs regardless of the small 
differences that were observed in comparison to TAM 
output. Thus, our results indicate that a higher 
enrichment was obtained compared to any random 
matrix that is used.   

The final results of our analyses show that 
biologically important patterns do exist in miRNA 
sequences and they can be found by similarity detecting 
tools.  Moreover, there is important sequence 
similarities in miRNAs families and this likeness can be 
directly related to function due to the consequence of 
the fact that miRNA family members operate together 
(Burge et al. 2013). Actually, since miRNA to target 
network is highly complicated (Gennarino et al. 2012), 
starting from sequence similarity information may be 
the first clue into functional assignment. To this end, 
we suggest that the pipeline created with this study can 
be used for investigations of novel miRNA datasets for 
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search of functional annotations. We believe that this 
study will comprise a baseline for future studies.   

ACKNOWLEDGEMENTS 

We acknowledge Scientific and Technological Research 
Council of Turkey (TÜBİTAK) for project grant under 
113E527 and master thesis grant under 2210 BIDEB 
program. 

REFERENCES 

Abbott, A.L. et al., 2005. The let-7 MicroRNA family 
members mir-48, mir-84, and mir-241 function 
together to regulate developmental timing in 
Caenorhabditis elegans. Developmental cell, 9(3), 
pp.403–14.  

Altuvia, Y. et al., 2005. Clustering and conservation 
patterns of human microRNAs. Nucleic acids 
research, 33(8), pp.2697–706.  

Antonov, A. V et al., 2009. GeneSet2miRNA: finding the 
signature of cooperative miRNA activities in the gene 
lists. Nucleic acids research, 37(Web Server issue), 
pp.W323–8.  

Asgari, S., 2011. Role of MicroRNAs in Insect Host-
Microorganism Interactions. Frontiers in physiology, 
2(August), p.48.  

Bartel, B. & Bartel, D.P., 2003. Update on Small RNAs 
MicroRNAs : At the Root of Plant Development ? 1. 
Plant physiology, 132(June), pp.709–717.  

Bartel, D.P., 2013. Micro RNA Target Recognition and 
Regulatory Functions. Cell, 136(2), pp.215–233. 

Bartel, D.P., 2004. MicroRNAs : Genomics , Biogenesis , 
Mechanism , and Function Genomics : The miRNA 
Genes. Cell, 116, pp.281–297. 

Burge, S.W. et al., 2013. Rfam 11.0: 10 years of RNA 
families. Nucleic acids research, 41(Database issue), 
pp.D226–32.  

Corpet, F., 1988. Multiple sequence alignment with 
hierarchical clustering. Nucleic acids research, 16(22), 
pp.10881–10890. 

Dib, L. & Carbone, A., 2012. Open Access CLAG : an 
unsupervised non hierarchical clustering algorithm 
handling biological data. 

Dopazo, J. et al., 1997. Self-organizing tree-growing 
network for the classification of protein sequences. 
Protein science : a publication of the Protein Society, 
7(12), pp.2613–22.  

Dunn, J.C., 1973. A Fuzzy Relative of the ISODATA 
Process and Its Use in Detecting Compact Well-
Separated Clusters. Journal of Cybernetics, 3(3), 
pp.32–57.  

Dweep, H. & Gretz, N., 2015. miRWalk2.0: a 
comprehensive atlas of microRNA-target interactions. 
Nature methods, 12(8), p.697. 

Edgar, R.C., 2010. Search and clustering orders of 

magnitude faster than BLAST. Bioinformatics 
(Oxford, England), 26(19), pp.2460–1.  

Enright, a J., Van Dongen, S. & Ouzounis, C. a, 2002. An 
efficient algorithm for large-scale detection of protein 
families. Nucleic acids research, 30(7), pp.1575–84.  

Flynn, P.J., 1999. Data Clustering : A Review. IEEE 
Computer Society, 31(3). 

Gennarino, V.A. et al., 2012. Identification of microRNA-
regulated gene networks by expression analysis of 
target genes. Genome research, 22(6), pp.1163–1172. 

He, L. & Hannon, G.J., 2004. MicroRNAs: small RNAs 
with a big role in gene regulation. Nature reviews. 
Genetics, 5(7), pp.522–31.  

Herrero, J., Diaz-Uriarte, R. & Dopazo, J., 2003. Gene 
expression data preprocessing. Bioinformatics, 19(5), 
pp.655–656.  

Herrero, J., Valencia, A. & Joaquin, D., 2001. network for 
clustering gene expression patterns. , 17(2), pp.126–
136. 

Hertel, J. et al., 2012. Evolution of the let-7 microRNA 
Family. RNA biology, 9(3), pp.1–11. 

Jacobsen, A. et al., 2013. Analysis of microRNA-target 
interactions across diverse cancer types. Nature 
structural & molecular biology, 20(11), pp.1325–32.  

Jain, A.K., 2010. Data clustering: 50 years beyond K-
means. Pattern Recognition Letters, 31(8), pp.651–
666.  

Kozomara, A. & Griffiths-Jones, S., 2011. miRBase: 
integrating microRNA annotation and deep-
sequencing data. Nucleic acids research, 39(Database 
issue), pp.D152–7.  

Lagos-Quintana, M. et al., 2001. Identification of novel 
genes coding for small expressed RNAs. Science (New 
York, N.Y.), 294(5543), pp.853–8. 

Lai, E.C. et al., 2003. Computational identification of 
Drosophila microRNA genes. , 4(7), pp.1–20. 

Li, L., Stoeckert, C.J. & Roos, D.S., 2003. OrthoMCL: 
identification of ortholog groups for eukaryotic 
genomes. Genome research, 13(9), pp.2178–89.  

Lu, M. et al., 2008. An analysis of human microRNA and 
disease associations. PloS one, 3(10), p.e3420.  

Lu, M. et al., 2010. TAM: a method for enrichment and 
depletion analysis of a microRNA category in a list of 
microRNAs. BMC bioinformatics, 11, p.419.  

Macqueen, J., 1967. Some Methods For Classification and 
Analysis of Multivariate Observation. In Berkeley 
Symposium on Matematical Statistic and Probablity. 
University of California Press, pp. 281–297. 

Needleman, S.B. & Wunsch, C.D., 1970. A general 
method applicable to the search for similarities in the 
amino acid sequence of two proteins. Journal of 
Molecular Biology, 48(3), pp.443–453.  

Newman, M.A., Thomson, J.M. & Hammond, S.M., 2008. 
Lin-28 interaction with the Let-7 precursor loop 
mediates regulated microRNA processing. RNA 
biology, 14(8), pp.1539–1549. 

Oğul, H. & Mumcuoğlu, E.U., 2007. A discriminative 
method for remote homology detection based on n-
peptide compositions with reduced amino acid 
alphabets. Bio Systems, 87(1), pp.75–81.  

Sequence-based MicroRNA Clustering

115



Ölçer, D. & Oğul, H., 2013. Clustering MicroRNAs from 
Sequence and Time-Series Expression. BIOTECHNO 
2013, 5(c), pp.1–4. 

Pratt, A.J. & MacRae, I.J., 2009. The RNA-induced 
silencing complex: a versatile gene-silencing machine. 
The Journal of biological chemistry, 284(27), 
pp.17897–901.  

Rawlins, T. et al., 2012. Interactive k-means clustering for 
investigation of optimisation solution data. , 0, pp.1–2. 

Satoh, J.-I., 2012. Molecular network analysis of human 
microRNA targetome: from cancers to Alzheimer’s 
disease. BioData mining, 5(1), p.17.  

Shi, B., Gao, W. & Wang, J., 2012. Sequence fingerprints 
of microRNA conservation. PloS one, 7(10), p.e48256.  

Sisodia, D., 2012. Clustering Techniques : A Brief Survey 
of Different Clustering Algorithms. International 
journal of latest trends in engineering and Technlogy, 
1(3), pp.82–87. 

Smith, T.F. & Waterman, M.S., 1981. Identification of 
common molecular subsequences. Journal of 
Molecular Biology, 147(1), pp.195–197.  

Zhao, D. et al., 2010. PMirP: a pre-microRNA prediction 
method based on structure-sequence hybrid features. 
Artificial intelligence in medicine, 49(2), pp.127–32.  

Zhao, Z. & Liu, H., 2007. Spectral feature selection for 
supervised and unsupervised learning. Proceedings of 
the 24th international conference on Machine learning 
- ICML ’07, pp.1151–1157.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

BIOINFORMATICS 2016 - 7th International Conference on Bioinformatics Models, Methods and Algorithms

116


