Linear Software Models: Equivalence of Modularity Matrix to Its Modularity Lattice

Iaakov Exman1 and Daniel Speicher2

1Software Engineering Dept., The Jerusalem College of Engineering – JCE-Azrieli, Jerusalem, Israel
2Bonn-Aachen International Center for Information Technology, University of Bonn, Bonn, Germany

Keywords: Linear Software Models, Modularity Matrix, Modularity Lattice, Formal Concept Analysis, Equivalence.

Abstract: Modularity is an important feature to solve the composition problem of software systems from subsystems. Recently it has been shown that Software systems’ Modularity Matrices linking structors to functionals can be put in almost block-diagonal form, where blocks reveal higher-level software modules. An alternative formalization has been independently proposed using Conceptual Lattices linking attributes to objects. But, are these independent formalizations related? This paper shows the equivalence of Modularity Matrices to their respective Modularity Lattices. Both formalizations support the simplest form of software composition, i.e. linear composition, expressed as an addition of independent components. This equivalence has both theoretical and practical advantages. These are illustrated by comparison of both representations for a series of case studies.

1 INTRODUCTION

Composition of software systems from subsystems and basic components is an important problem. It is widely accepted that modularity is essential to solve this problem. Two independent approaches have formalized modularity for the software composition problem, relying on algebraic structures.

One approach uses Modularity Matrices linking structures to their functionality. Another approach represents relations between objects and attributes as Lattices of formal concepts. This work shows the equivalence of the matrix and lattice approaches, assuring that results in either approach are valid in the other approach as well. In other words, they are alternative representations of the software system.

1.1 Modularity Matrix Concepts

A Modularity Matrix displays relations between two kinds of architectural entities in a software system: structors, the columns, and functionals, the rows. Structors generalize UML classes (i.e. a class, interface, aspect, sets of related classes, such as design patterns). Functionals generalize class functions (i.e. a method, families of functions, such as trigonometric functions). Each 1-valued matrix element links a structor to a provided functional. Functionals are potential functions, not necessarily invoked in the system. In (Exman, 2012) it was shown by linear algebra arguments that:

- A Modularity Matrix is square – if its structors are linearly independent and also its functionals are linearly independent;
- A Modularity Matrix is block-diagonal – if certain structor sub-sets provide sub-sets of functionals, disjoint to other sub-sets; each block is an independent module.

In a standard Modularity Matrix all the matrix elements outside modules are zero-valued. A block-diagonal matrix is got by reordering rows/columns.

Modularity Matrix elements are numbers used in actual calculations. For instance, to compare the relative modularity of different software designs of a system one calculates the Matrix Diagonality, with elements M_{jk} (row j, column k) and dimension N:

$$\text{Diagonality}(M) = \text{Trace}(M) - \text{offdiag}(M) \quad (1)$$

where

$$\text{offdiag}(M) = \sum_{j=1}^{N} \sum_{k=1}^{N} |M_{jk}^*| \quad (2)$$

1.2 Modularity Lattice Concepts

A conceptual lattice displays relations between two
kinds of entities: attributes and objects. Attributes express the concepts’ intent, and object sets express the concepts’ extent. The Top lattice node has empty set intent and an extent as the set of all objects. Mutatis mutandis the Bottom lattice node has empty set extent and an intent as the set of all attributes.

A conceptual lattice is built by first preparing its formal context, i.e. a table displaying which objects have certain attributes, marked by X signs. In contrast to the Modularity Matrix, the formal context has not been defined as a matrix with numerical matrix elements, allowing calculations. Moreover, there are no underlying linear algebra theorems on the formal context, such as being square or block-diagonal. A formal context may be a rectangular table without any specific requirements.

In this work, we make the unique decision of generating conceptual lattices directly from given Modularity Matrices, with the expectation that the resulting Modularity Lattices carry on the characteristic properties of these matrices. This work aims to show that this is indeed the case.

To show the equivalence of a modularity matrix to a modularity lattice, we choose to match between matrix ‘structors’ and the lattice intent (viz. ‘attributes’) on the one hand, and match between matrix ‘functionals’ and lattice extent (viz. ‘objects’) on the other hand. A link between a structor and a functional corresponds either to an attribute in the same node as its object, or to an attribute in a node connected to a node by a downward set of edges in the Lattice, not passing through Top or Bottom.

The conceptual justification for this matching is clarified as follows. UML classes represent concepts with definite intents. For instance, the class “car” is a type of vehicle with the intent of travelling on roads. Cars have wheels, their speed and travelled distance may be calculated by suitable functions (the extent). The class “airplane” is another type of transportation medium with a different intent, viz. to travel by flying. Airplanes also have wheels, their speed is also calculated by suitable functions. Thus different classes have clearly different intents, but may have similar extents.

Software conceptual lattices are a broader subject than implied by the above simple examples. They deserve extensive discussion, which is outside of this paper scope. Here we focus on the equivalence of Modularity Matrices and Modularity Lattices. For further details on formal concepts, see (Ganter, 1999), (Ganter, 2005), (Belohlavek, 2008).

The remaining of this paper is organized as follows. Section 2 refers to related work. Section 3 displays an introductory example. Section 4 formulates theoretical considerations. Section 5 deals with heuristics for modules’ decoupling. Section 6 presents canonical case studies. Section 7 shows a larger system case study. The paper is concluded by a discussion in section 8.

2 RELATED WORK

In this work we refer to the modularity matrix – e.g. (Exman, 2014). Other matrices have also been used in the context of modularity. For instance, the Design Structure Matrix (DSM) proposed in (Steward, 1981), and incorporated in ‘Design Rules’ (Baldwin, 2000). It has been applied in various contexts – see e.g. (Cai, 2006).

Two essential differences between DSM and the modularity matrix are: a- Linearity as an essential idea of the modularity matrix; b- Both DSM dimensions are labelled by the same structures.

The modularity matrix, in contrast to the DSM, displays pairs of different entities, viz. structors to functional links. The use of pairs of entities was important to suggest the correspondence to conceptual lattices, as the latter also refer to pairs of entities, viz. attributes and objects.

Conceptual lattices, generally known as part of Formal Concept Analysis (FCA) were introduced in (Wille, 1982). There are many available generic overviews describing mathematical foundations (Ganter, 1999), applications (Ganter, 2005) and surveys of the field (Belohlavek, 2008).

FCA has been used as a technique for modularization and system design. This includes works such as (Lindig, 1997), (Siff, 1999) and (Snelting, 2000). A specific usage of conceptual lattices for software engineering is found in (Heckmann, 2012).

3 INTRODUCTORY EXAMPLE: COMMAND DESIGN PATTERN

The Command software design pattern, in the GoF book (Gamma, 1995), serves as an introductory example. The pattern decouples an object invoking an action, say clicking a “Print” button, from another object that actually prints a file. The pattern enables generic features, such as Undo and Redo, independently of the specific commands’ nature.

3.1 Command Modularity Matrix

The six structors in the Command Modularity Matrix
are in the list of Participants in the GoF book: an abstract command (cmd), a concrete command (say, Print File), an invoker (a button), a receiver (a file to be printed), a client (initializes the application) and history (enables undo). The Pattern functionals are: execute, undo, create objects, bind command-to-button, set-receiver, and the receiver action.

Block-diagonal modules, in Fig. 1, reflect the pattern purpose: the command is decoupled from the generic infrastructure. The top-left module is the command itself, its abstract interface and concrete implementation. The middle module is the generic infrastructure: a client, the invoker and a history mechanism for undo operations. The bottom-right module is a specific receiver and its action.

Figure 1: Command Design Pattern Modularity Matrix.

It has six structors and functionals, forming three modules (blue background): a- upper-left, the command; b- middle, the generic infrastructure c- lower-right, the specific receiver. Zeros outside modules are omitted for simplicity.

3.2 Command Modularity Lattice

We use the Modularity Matrix in Fig. 1 to generate the Command Modularity Lattice. The result in Fig. 2, is obtained by the (Concept Explorer, 2006) tool.

4 THEORETICAL CONSIDERATIONS

The set of Definitions and Theorems herein, for both Modularity Matrix and Modularity Lattice, form altogether the equivalence proof of these representations regarding modularity.

4.1 Modularity Lattice Defined

We define a Modularity Lattice with respect to the Modularity Matrix (Exman, Nov 2012):

Definition 1: Modularity Lattice
A Modularity Lattice is a conceptual lattice generated from a Modularity Matrix.

A standard Modularity Lattice is generated from a standard Modularity Matrix. From this definition follow its characteristic properties.

Figure 2: Command Design Pattern Modularity Lattice - Any path (or set of paths) from Top to Bottom not linked to other paths is a module. One sees 3 modules: a- l.h.s. with 2 attributes (Concrete Command and Cmd); b- middle with 3 attributes (Client, Invoker, History) c- r.h.s. with 1 attribute (Receiver). These match the matrix in Fig. 1. Nodes may have three colors: upper-half blue – an attribute is associated with the node; lower-half black – an object is associated with the node; white – no association.

Lemma 1: Standard Modularity Lattice Properties
a- Its number of attributes is the same as its number of objects;
b- No specific object is the Top; no specific attribute is the Bottom.

Proof outline:
a- This property is obvious from the fact that the Modularity Matrix is square;
b- This follows from the requirement that the standard Modularity Matrix should not have column vectors or row vectors fully consisting of 1-valued matrix elements.

4.2 Modularity Lattice Modules

The Modularity Matrix modules are its diagonal blocks. Modularity Lattice modules are given by:

Theorem 1: Modularity Lattice Modules
The modules of a software system in its Modularity Lattice are the connected components obtained when one cuts the Top and the Bottom from the Modularity Lattice.

Proof outline:
Modules of a Modularity Matrix are diagonal
blocks whose set of structors and functionals are disjoint from the respective sets of other modules. Since structors correspond to Lattice attributes and their functionals to the respective Lattice objects, a set of attributes/objects disjoint to other sets has no edges to other attributes/objects, except the Lattice *Top* and *Bottom*. Cutting the latter from the Lattice leaves a set of connected components corresponding to the Modularity Matrix modules.

The converse of Theorem 1 is easily verified.

Next, we deal with different kinds of modules in the Modularity Lattice. The paths in the next corollary refer to connected components after cutting edges to *Top*/Bottom of the Lattice.

Corollary: Modularity Lattice Module Types

1a- single path with single node – a path with no edges to other paths, and a single node, fits a purely diagonal Modularity Matrix module;

1b- single path with N nodes – a path without edges to other paths, with N nodes, fits a block-diagonal N-dimension module forming a full lower triangular matrix in the block, in a Modularity Matrix having no outliers.

1c- a set of connected paths – a set of paths with edges among paths within the set, and N attributes fits an N-dimension diagonal block, in a Modularity Matrix having no outliers.

Proof outline:

1a- a single node means just one attribute with one object;

1b- N nodes mean that there are N attributes, one for each node, therefore also N objects, as the module must be square; the full triangular matrix within the block is needed to avoid linear dependence among the structors in the Modularity Matrix, since each attribute has all the objects in its own node and below its node;

1c- N nodes mean that there are N attributes, one for each node, therefore also N objects, as the module must be square; since there are two or more paths, not all attributes have all the objects below its node in the same path.

It is straightforward to obtain module attributes and objects in the Modularity Lattice, corresponding to their Modularity Matrix. Going downwards (from *Top* to *Bottom*) in any path, one uses set intersection for objects, to obtain the respective objects of the next node, down to one-level above the Bottom. Going upwards in any path, one uses set intersection for attributes, to obtain the respective attributes of the next node, up to one-level below the Top. For more details see e.g. (Belohlavek, 2008).

4.3 Modularity Matrix Outliers Criterion

Formally within Linear Software Models, *cohesion* is defined in terms of sparsity of the Modularity Matrix (Exman, 2012). Sparsity of a matrix is the ratio between the number of zero-valued elements to the total number of elements in the matrix:

\[
\text{Sparsity} = \frac{\text{NumZeros}}{\text{TotalNumElements}}
\]

In general, one expects the sparsity of modules to be lower than the sparsity of the Modularity Matrix elements outside the modules. Thus, the lower is the sparsity, the higher the cohesion. This implies a threshold of maximal sparsity inside a module. For instance, assuming a maximal sparsity threshold of 50%, one writes:

\[
\text{Module Sparsity} < 0.5
\]

An outlier is a 1-valued matrix element in the Modularity Matrix outside of any of the diagonal blocks. Outliers are coined interferences in the Conceptual Lattice domain (Lindig, 1997). Outliers cause an undesirable coupling between modules. The outcome of this coupling is a much larger coupled diagonal block made of:

- The joint original diagonal blocks coupled by the outliers;
- A few 1-valued matrix elements outside the original blocks – the coupling outliers;
- Many zero-valued matrix elements surrounding the outliers.

The resulting larger coupled diagonal block has a much lower cohesion than the original modules coupled by the outlier (see Fig. 3).

Figure 3: Block-diagonal Modularity Matrix with coupling outlier – There are 5 original modules (marked by blue background), all of them with high cohesion (i.e. low sparsity). The outlier couples modules 1 and 2. Around the outlier there are mostly zeros, causing high sparsity (i.e. low cohesion) of the coupled joint module of 1 and 2.
Searching for outliers, outside the original modules, the inequality sign is inverted, as the sparsity is above the threshold:

\[\text{Outlier Sparsity Criterion} > 0.5 \] (5)

The TotalNumElements (total number of elements) of a block in the Modularity Matrix is the square of NumStructors, (number of structors). The NumZeros (number of zero-valued matrix elements) equals the TotalNumElements minus NumOnes (number of 1-valued matrix elements). Substituting these terms in equations (3) and (5), one finally gets the Outlier Sparsity Criterion for the presence of outliers in a coupled module of a Modularity Matrix:

\[\text{Outlier Sparsity Criterion} = 0.5 \times (\text{NumStructors})^2 - \text{NumOnes} > 0 \] (6)

4.4 Modularity Lattice Outliers Criterion

To find the equivalent Outlier Sparsity Criterion for a Modularity Lattice, we use the same previous equation, substituting it with Lattice quantities:

Theorem 2: Modularity Lattice Outliers Criterion
Given equation (6) for a Modularity Matrix, the equivalent Outlier Sparsity Criterion for a Modularity Lattice module containing outliers is

\[\text{Outlier Sparsity Criterion} = 0.5 \times (\text{NumAttributes})^2 - \text{NumOnes} > 0 \]

where

\[\text{NumOnes} = \text{LocalPairs} + \text{EdgePairs} \]

LocalPairs is the number of nodes in which there are both an attribute and its object locally. EdgePairs is the number of edges below each attribute node needed to reach each of its objects, down to the lowest object, above the Bottom.

Proof outline:
Given equation (6) above, then:
NumAttributes (Number of attributes) in a module is trivially equal to NumStructors (Number of structors). NumOnes (Number of 1-valued matrix elements) is the number of links between attributes (structors) and objects (functionals). These are of two Attribute-Object Pair types: a- Local – both in the same node; b- Edge – in different nodes linked by edges. Thus, one only needs to count and sum correctly both types of Attribute-Object pairs.

To illustrate the calculation of quantities appearing in Theorem 2, we take the simple example of the Command design pattern middle module. By the Modularity Lattice in Fig. 2, the number of Attributes is 3 (Client, Invoker and History). The first term of the r.h.s. of the equation in Theorem 2 is half the square of NumAttributes, i.e. 4.5. The second term NumOnes equals 5 which is the sum of 2 LocalPairs (Client/CreateObjs and History/Undo) and 3 EdgePairs (edges from Invoker-to-Undo, Invoker-to-Set-Receiver and Client-to-Set-Receiver). As the Outlier Sparsity Criterion is negative, there is no outlier in this module.

This calculation is totally equivalent to equation (6). By the Modularity Matrix middle module in Fig. 1, the number of Structors is also 3 (Client, Invoker and History). Half the square of NumStructors is 4.5. By directly counting the number of ones in the middle module in Fig. 1, NumOnes equals 5. The conclusion is the same: no outliers in this module.

5 HEURISTICS FOR DECOUPLING

Once outliers were pointed out in a system design, software engineers should apply their ingenuity to solve the coupling problems and improve the design. A heuristic rule suggests a decoupling starting point. This rule is alternatively formulated either in terms of the Modularity Matrix or in terms of the Modularity Lattice.

Decoupling Heuristic Rule

Modularity Matrix version
Start decoupling with a row/column with a large number of 1-valued (outlier) matrix elements.

Modularity Lattice version
Start decoupling with a Lattice node with a large number of edges to other nodes.

In order to systematically eliminate outliers in a Modularity Lattice, one should look first for the node with a maximal connectivity to other nodes. Then look for the next node in terms of connectivity, and so on. Following the heuristic rule, a way to deal with an outlier node coupling of potential modules in the Modularity Lattice, is to erase a minimal number of edges from the outlier node and see whether this reduces the lattice to a modular one.

6 CANONICAL CASE STUDIES

Here we look at software systems case studies, which are canonical from a modularity viewpoint. These case studies have been analysed earlier,
Exman, 2014), but here we show the equivalence of the Modularity Matrix to the respective Lattice.

6.1 The Observer Design Pattern

The Observer design pattern is taken from the GoF book (Gamma, 1995). Its well-known purpose is a many-following-one behavior, viz. many observers change according to the changes in the one subject.

Figure 4: Observer Design Pattern Modularity Matrix.

There are 8 structors and functionals in this matrix. These form 5 modules (in blue background): a- upper-left subject role; b- middle observer role; c- lower-right three strictly diagonal modules: specific application GUIs and initiator.

The Observer structors are (abstract/concrete) subject and observer, (analog/digital) clock application GUI (Graphical User Interface), a subject resource (the internal clock) and an initiator to construct objects. The pattern functionals include the clock application Display “digital” and “analog”.

The Observer Modularity Matrix in Fig. 4 shows a perfect block-diagonal modularity. The upper left block is the subject. The middle block is the observer. The lower right structors refer to application specific GUIs and initiator.

The Parnas described in his seminal paper (Parnas, 1972) the KWIC system for producing an index containing sentences circular shifted through all possibilities, keeping word order, and alphabetically sorted. KWIC illustrated the idea of modularity. Two modularizations were suggested: one with couplings and another with couplings resolved.

The KWIC system 1st modularization illustrates a coupling case, seen in the Modularity Matrix in Fig. 6. Its matching Lattice is in Fig. 7. Both representations lead to the same conclusions.

The Parnas 1st Modularity Matrix of the KWIC system in Fig. 6 points to two couplings (with a hatched background): a- the Master Control is not a real sub-system, as it refers to all functionals (a whole column S3 of 1-valued matrix elements); b- the “Store line in word order” functional in row F3 is a coupling of any two potential modules (marked by a blue background).

The Parnas KWIC 1st modularization Modularity Lattice in Fig. 7 points to exactly the same couplings as its Modularity Matrix: a- The Master Control is indeed not a real sub-system, as it appears at the Top (its extent is all the 5 objects!); b- The node of the “Stores line in word order” has no proper attribute and it couples every attribute, except Output.

The solution of the above coupling problems is to eliminate the Master Control from the system composition as it is not a sub-system and add a new “Line Storage” structor (attribute), to which all the
Figure 7: Parnas KWIC System 1st Modularization Lattice – Two modules are apparent in this lattice: a- l.h.s. with 4 attributes (Circular Shifter, Alphabetizer, Input, Master Control); b- r.h.s. with 2 attributes (Output, Master Control). The Master Control couples the 2 modules. The “Stores Line in word order” object is also coupling the l.h.s. module. This Lattice matches the matrix in Fig. 6.

Other structors refer for “Storing line in word order”. The outcome fits Parnas KWIC 2nd modularization which is indeed canonical. It is a strictly diagonal Modularity Matrix, and a matching Lattice with five neat single node modules.

7 REAL SYSTEM CASE STUDY

7.1 The NEESGrid System

This system, developed at the NCSA at Urbana, Illinois, enables a “Network Earthquake Engineering Simulation” – for details see (Finholt 2004).

The system Modularity Matrix is in Fig. 8. It has three diagonal blocks. The top-left module refers to Data as seen by structor and functional names. The middle module refers, by the functionals with Col suffix, to collaboration types, viz. synchronous, asynchronous and other. The right bottom strictly diagonal elements are external modules.

![Figure 8: NEESGrid System Modularity Matrix](image)

Of the 3 outliers (with hatched background) close to the block borders, two of them are in the OtherCol row F4 and the third one in the DataAc column S4, pointing out to specific couplings.

7.2 The NEESGrid Modularity Lattice

There is a clear matching between the NEESGrid Modularity Matrix in Fig. 8 and its Lattice in Fig. 9.

![Figure 9: NEESGrid Modularity Lattice](image)
8 DISCUSSION

This work has shown by theoretical arguments and case studies, the equivalence between two different modularity representations of a software system, viz. the Modularity Matrix and its Modularity Lattice. This is interesting as it mutually reinforces their independent conclusions, and it triggers new questions in each representation, motivated by the line of thoughts of the other one.

In practical terms, both representations enable to assess modularity of a software system and to highlight localized couplings deserving software sub-system redesign.

8.1 Future Work

Concerning rigorous formalization, linearity still is an open issue worth of investigation in the context of Modularity Lattices. Moreover, is there any meaning to non-linearity for software systems?

In the context of Modularity Matrices, we have asked whether systems with outliers like the NEESGrid system, are amenable to complete block-diagonalization or they are essentially non-block-diagonal. Are these systems the exception, or a class on their own? The equivalence of Modularity Matrices and Lattices should facilitate research.

REFERENCES

Belohlavek, R., 2008. Introduction to Formal Concept Analysis, Dept. of Computer Science, Palacky University, Olomouc, Czech Republic.
Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1995. *Design Patterns: Elements of Reusable Object-Oriented Software*, Addison-Wesley, Boston, MA.