Simulations and Optimization of Manufacturing of Automotive Parts

Lukasz Rauch, Monika Pernach, Jan Kusiak, Maciej Pietrzyk

2015

Abstract

Fast progress in modeling of metal processing encourage researchers to look for better technologies, which can be done through optimization of their design. Authors have developed the computer system ManuOpti for optimization of manufacturing chains based on materials processing. Application of this system to simulations and optimization of manufacturing of automotive parts was the general objective of the paper. ManuOpti software enables performing optimization by the user with little experience in the computer science and in the optimization methods. On the other hand, the application of the optimization techniques is efficient only when reliable material models and accurate numerical methods are applied. Therefore, validation of models describing microstructure evolution in automotive steel (Dual Phase – DP) was the next objective of the paper. Physical simulations of thermal cycles were performed and the experimental results were used to validate the model. Numerical tests with the ManuOpti system recapitulate the paper. Case studies for the tests included various thermal cycles of the continuous annealing of DP steels.

References

  1. Ambrozinski, M., Polak, S., Gronostajski, Z., Kuziak, R., Chorzepa, W., Pietrzyk, M., 2015, Numeryczna symulacja testu zderzeniowego z uwzglednieniem umocnienia odksztalceniowego w procesie wytwarzania energochlonnego elementu samochodu (Numerical simulation of the crash test accounting for strain hardening introduced during the manufacturing stage), Mechanik, 88, 92-96 (in Polish).
  2. Górecki G., Kuziak R., Kwiaton N., Madej L., Pietrzyk M., 2015, DP_builder - the computer system for the design of the continuous annealing cycles for DP steels, Computer Methods in Materials Science, 14, (in press).
  3. Gronostajski, Z., Niechajowicz, A., Polak, S., 2010. Prospects for the use of new generation steel of the AHSS type for collision energy absorbing components, Archives of Metallurgy and Materials, 55, 221-230.
  4. Hofmann, H., Mattissen, D., Schaumann, T.W., 2009. Advanced cold rolled steels for automotive applications, Steel Research International, 80, 22-28.
  5. Kusiak, J., Rauch, L., Pietrzyk, M., 2015. Holistic approach to optimal design of technology of materials processing, Proc. XXXIV Verformungskundliches Kolloquium, ed., Buchmayr, B., Zauchensee, 56-66.
  6. Kuziak, R., Pietrzyk, M., 2011, Physical and numerical simulation of the manufacturing chain for the DP steel strips, Steel Research International, special edition Conf. ICTP, Aachen, 756-761.
  7. Madej L., Kuziak R., Mroczkowski M., Perzynski K., Libura W., Pietrzyk M., 2015, Development of the multi scale model of cold rolling based on physical and numerical investigation of ferritic-pearlitic steels, Archives of Civil and Mechanical Engineering, 15, doi.org/10.1016/j.acme.2015.02.010.
  8. Matlock, D.K., Krauss, G., Speer, J.G., 2005. New microalloyed steel applications for the automotive sector, Materials Science Forum, 500-501, 87-96.
  9. Pietrzyk, M., Kuziak, R., 2012. Modelling phase transformations in steel, in: Microstructure evolution in metal forming processes, eds, Lin, J., Balint, D., Pietrzyk, M., Woodhead Publishing, Oxford, 145-179.
  10. Pietrzyk, M., Kuziak, R., Radwanski, K., Szeliga, D., 2014a. Physical and numerical simulation of the continuous annealing of DP steel strips, Steel Research International, 85, 99-111.
  11. Pietrzyk M., Kusiak J., Kuziak R., Madej L., Szeliga D., Golab R., 2014b. Conventional and multiscale modelling of microstructure evolution during laminar cooling of DP steel strips, Metallurgical and Materials Transactions B, 46B, 497-506.
  12. Rauch, L., Kuziak, R., Pietrzyk, M., 2014a. From high accuracy to high efficiency in simulations of processing of Dual-Phase steels, Metallurgical and Materials Transactions B, 45B, 497-506.
  13. Rauch, L., Skiba, M., Kusiak, J., 2014b. Computer system dedicated to optimization of production processes and cycles in metal forming industry, Computer Methods in Materials Science, 14, 3-12.
  14. Sellars, C.M., 1979, Physical metallurgy of hot working. In Hot working and forming processes, eds, Sellars C.M., Davies G.J., The Metals Soc., London, 3-15.
  15. Szeliga, D., Gawad, J., Pietrzyk, M., Inverse analysis for identification of rheological and friction models in metal forming, Computer Methods in Applied Mechanics and Engineering, 195, 2006, 6778-6798.
  16. Szeliga, D., Sztangret, L., Kusiak, J., Pietrzyk, M., 2013. Optimization as a support for design of hot rolling technology of dual phase steel strips, Proc. 11th Conf. NUMIFORM, AIP Publishing, Shenyang, 718-724.
Download


Paper Citation


in Harvard Style

Rauch L., Pernach M., Kusiak J. and Pietrzyk M. (2015). Simulations and Optimization of Manufacturing of Automotive Parts . In Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-120-5, pages 183-191. DOI: 10.5220/0005554601830191


in Bibtex Style

@conference{simultech15,
author={Lukasz Rauch and Monika Pernach and Jan Kusiak and Maciej Pietrzyk},
title={Simulations and Optimization of Manufacturing of Automotive Parts},
booktitle={Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2015},
pages={183-191},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005554601830191},
isbn={978-989-758-120-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Simulations and Optimization of Manufacturing of Automotive Parts
SN - 978-989-758-120-5
AU - Rauch L.
AU - Pernach M.
AU - Kusiak J.
AU - Pietrzyk M.
PY - 2015
SP - 183
EP - 191
DO - 10.5220/0005554601830191