Large-scale Terrain Level of Detail Estimation based on Wavelet Transform

Sid'Ali Kalem, Assia Kourgli

2015

Abstract

The goal of the following paper is to point out an alternative approach to the adaptive triangulation problem. A new technique of terrain rendering which uses wavelet transform to select appropriate LOD is described. This technique is a region-based multi-resolution approach that partitions the terrain into tiles that can be processed independently. The algorithm organizes the heightmap into a QuadTree of nodes and computes maximum world-space errors for each node. World-space errors are then calculated at preprocess step. As the datasets of realistic terrains are usually huge, we suggest using the multi-resolution wavelet decomposition to localize the position of the maximum world-space error estimated and limit the region of research inside the node. It permits to choose the appropriate resolution of the regular grid that will represent the node at run time. By this way, computation load on the CPU is greatly reduced.

References

  1. Peucker T. K., Fowler R. J., Little J. J.: The triangulated irregular network. In Proc. ASP-ACSM Symposium on DTM's (1978).
  2. Fowler R. J., Little J. J.: Automatic extraction of irregular network digital terrain models. In Proc. ACMSIGGRAPH (1979), pp. 199-207.
  3. Lindstrom P., Koller D., Ribarsky W., Hodges L. F., Faust N., Turner G. A.: Real-time, continuous level of detail rendering of height fields. In Proc. ACM SIGGRAPH (1996), pp. 109-118.
  4. Duchaineau M., Wolinsky M., Sigeti D. E., Miller M. C., Aldrich C., Mineev-Weinstein M. B.: ROAMing terrain: Real-time optimally adapting meshes. In Proc. IEEE Visualization (1997), pp. 81-88.
  5. Von Herzen B., Barr A. H.: Accurate triangulations of deformed, intersecting surfaces. In Proc. ACM SIGGRAPH (1987), pp. 103-110.
  6. Pajarola R.: Large scale terrain visualization using the restricted quadtree triangulation. In Proc. IEEE Visualization (1998), pp. 19-26.
  7. Koller D., Lindstrom P., Ribarsky W., Hodges L. F., Faust N., Turner G.: Virtual GIS: A real-time 3D geographic information system. In Proc. IEEE Visualization (1995), pp. 94-100.
  8. Suter M., NĂ¼esch D.: Automated generation of visual simulation databases using remote sensing and GIS. In Proc. IEEE Visualization (1995), pp. 86-93.
  9. Blow J.: Terrain rendering at high levels of detail. In Proc. Game Developer's Conference (2000).
  10. Ferguson R. L., Economy R., Kelly W. A., Ramos P. P.: Continuous terrain level of detail for visual simulation. In Proc. IMAGE V (1990), pp. 144-151.
  11. Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., and Scopigno, R. BDAM - batched dynamic adaptive meshes for high performance terrain visualization. Computer Graphics Forum, Vol. 22, No. 3, pp. 505-514, 2003.
  12. Cignoni P., Ganovelli F., Gobbetti E., Marton F., Ponchio F., Scopigno R.: Planet-sized batched dynamic adaptive meshes (P-BDAM). In Proc. IEEE Visualization (2003), pp. 147-154.
  13. Gobbetti, E., Marton, F., Cignoni, P., Di Benedetto, M., and Ganovelli, F. C-BDAM - compressed batched dynamic adaptive meshes for terrain rendering. Computer Graphics Forum, Vol. 25, No. 3, pp. 333- 342, 2006.
  14. Schneider, J., and Westermann, R. GPUFriendly HighQuality Terrain Rendering. Journal of WSCG, Vol. 14, pp. 49-56, 2006.
  15. Dick, C., Schneider, J., and Westermann, R. Efficient Geometry Compression for GPUbased Decoding in Realtime Terrain Rendering. In Computer Graphics Forum, Vol. 28, No 1, pp. 67-83, 2009.
  16. Pajarola, R., and Gobbetti, E. Survey on semi-regular multiresolution models for interactive terrain rendering. The Visual Computer, Vol. 23, No. 8, pp. 583-605, 2007.
  17. Losasso F., Hoppe H.: Geometry clipmaps: terrain rendering using nested regular grids. In Siggraph 2004 (New York, NY, USA, 2004), vol. 23 (3), ACM Press, pp. 769-776. http://research.microsoft. com/hoppe/.
  18. Asirvatham A., Hoppe H.: GPU Gems 2. Addison-Wesley, 2005, ch. Terrain Rendering Using GPU-Based Geometry Clipmaps, pp. 27-46.
Download


Paper Citation


in Harvard Style

Kalem S. and Kourgli A. (2015). Large-scale Terrain Level of Detail Estimation based on Wavelet Transform . In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015) ISBN 978-989-758-087-1, pages 258-264. DOI: 10.5220/0005310402580264


in Bibtex Style

@conference{grapp15,
author={Sid'Ali Kalem and Assia Kourgli},
title={Large-scale Terrain Level of Detail Estimation based on Wavelet Transform},
booktitle={Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)},
year={2015},
pages={258-264},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005310402580264},
isbn={978-989-758-087-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2015)
TI - Large-scale Terrain Level of Detail Estimation based on Wavelet Transform
SN - 978-989-758-087-1
AU - Kalem S.
AU - Kourgli A.
PY - 2015
SP - 258
EP - 264
DO - 10.5220/0005310402580264