Accurate 3D Reconstruction from Naturally Swaying Cameras

Yasunori Nishioka1, Fumihiko Sakaue1, Jun Sato1, Kazuhisa Ishimaru2, Naoki Kawasaki2 and Noriaki Shirai3
1Nagoya Institute of Technology, Nagoya, Japan
2NIPPON SOKEN INC., 14 Iwaya, Shimohasumi-cho, Nishio, Aichi, Japan
3DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, Japan

Keywords: 3D Reconstruction, Image Super-resolution, Coded Exposure.

Abstract: In this paper, we propose a method for reconstructing 3D structure accurately from images taken by unintentionally swaying cameras. In this method, image super-resolution and 3D reconstruction are achieved simultaneously by using series of motion blur images. In addition, we utilize coded exposure in order to achieve stable super resolution. Furthermore, we show efficient stereo camera arrangement for stable 3D reconstruction from swaying cameras. The experimental results show that the proposed method can reconstruct 3D shape very accurately.

1 INTRODUCTION

The 3D structure recovery is one of the most important problems in the field of computer vision. Therefore, it was widely studied for many applications. In ordinary case, fixed two or more than 2 cameras, so called stereo camera systems, are used for 3D reconstruction. These stereo camera systems are calibrated in advance, and the relative position of cameras should not be moved after the calibration for measuring 3D structure accurately (Hartley and Zisserman, 2000). However, it is very difficult to fix the relative position of these cameras perfectly in many application systems. For example, when a set of stereo cameras is equipped onto a moving vehicle, these cameras sway independently because of the pitching and rolling motions of the vehicle. These camera motions occur unintendedly according to the lack of rigidity of camera mount systems. Even if the swaying motions are not large, they often cause serious problems in 3D measurements, because small amount of camera rotations cause large amount of changes in camera images. Thus, in ordinary systems, people make large efforts in stereo system fixation for eliminating these relative camera motions.

However, the camera motions do not always cause bad influences, and they sometimes bring good effects to image processing. For example, camera motions are very important in image super-resolution (Park et al., 2003; Glasner et al., 2009). In the image super-resolution, a high resolution image is reconstructed from a series of images taken by a moving camera. In this case, the camera must be moved, since we cannot obtain additional information from a series of images taken by a static camera.

In this paper, we propose a method which enables us to reconstruct 3D structures accurately by positively utilizing the camera motions caused unintentionally. In 3D reconstruction, an accuracy of 3D measurement depends on the image resolution of stereo camera systems as shown in Fig. 1. Thus, if we can generate super-resolution images from unintentionally swaying cameras, we may be able to reconstruct 3D structures more accurately from stereo im-
ages. However, unintentional camera motions are unknown in general, and they are different in each camera. Moreover, observed images from swaying cameras have motion blur and they lose high frequency components, which are necessary for accurate 3D reconstruction. Thus, we in this paper propose a method which enables us to recover camera motions, deblur images, generate super-resolution images and reconstruct 3D structure simultaneously by using a series of images obtained by unintentionally swaying cameras.

The important point of the proposed method is to use unintentional camera motions positively unlike the existing stereo reconstruction methods. The camera motions caused by the shake of camera mount systems disturb the accuracy of 3D reconstruction in ordinary stereo camera systems. In contrast, these camera motions are used positively by combining image super-resolution, camera motion recovery and 3D reconstruction in the proposed method. Since cameras move unintentionally after camera calibrations in many real systems, the proposed method is very useful in many applications.

2 3D RECONSTRUCTION FROM STEREO CAMERA SYSTEMS

2.1 Camera Projection Model and 3D Reconstruction

We in this section describe a basic theory of 3D reconstruction by using stereo camera systems. At first, we describe a projection model from a 3D point to a 2D image. The 3D point \mathbf{X} is projected onto an image point \mathbf{x} by a camera projection matrix \mathbf{P} as follows:

$$\lambda \mathbf{x} = \mathbf{P} \mathbf{X}$$ \hspace{1cm} (1)

where λ denotes a scale ambiguity and $(\cdot)\top$ indicates the homogeneous representation, e.g. $\mathbf{X} = [\mathbf{X}^\top, 1]^\top$. The projection matrix can be represented by an intrinsic matrix \mathbf{A}, a rotation matrix \mathbf{R} and a translation vector \mathbf{t} as follows:

$$\mathbf{P} = \mathbf{A} \left[\begin{array}{c} \mathbf{R} \\ \mathbf{t} \end{array} \right]$$ \hspace{1cm} (2)

When the 3D point \mathbf{X} is projected to 2 images as \mathbf{x}_1 and \mathbf{x}_2, a reconstructed 3D point $\hat{\mathbf{X}}$ can be estimated as follows:

$$\hat{\mathbf{X}} = \operatorname{arg}_{\mathbf{X}} \min_{\sum_{i=1}^{2} \left\| \mathbf{P}_i(\mathbf{X}) - \mathbf{x}_i \right\|^2}$$ \hspace{1cm} (3)

where $\mathbf{P}_i(\mathbf{X})$ represents projection of \mathbf{X} to an i-th camera by a projection matrix. Eq.(3) indicates that the

3D point can be estimated by minimizing reprojection error. This equation includes non-linear components, and thus the minimization can be achieved by non-linear minimization techniques such as LM method.

2.2 Epipolar Geometry

We next consider the relationship between multiple cameras in a stereo camera system. Suppose a 3D point \mathbf{X} is projected to \mathbf{x}_1 and \mathbf{x}_2 in two cameras. Then, it is known that the following epipolar constraints hold for these corresponding points(Hartley and Zisserman, 2000):

$$\mathbf{x}_2^\top \mathbf{F} \mathbf{x}_1 = 0.$$ \hspace{1cm} (4)

where \mathbf{F} is a 3×3 matrix called fundamental matrix.

This equation shows that a point $\mathbf{x}_1/\mathbf{x}_2$ in the image is on a line called epipolar line, as shown in Fig. 2. The epipolar line can be estimated from the corresponding point $\mathbf{x}_2/\mathbf{x}_1$ in the other image and the fundamental matrix \mathbf{F}.

The epipolar geometry represents that corresponding points must be on the epipolar lines. Therefore, the accuracy of 3D reconstruction depends on the image resolution along the epipolar line as shown in Fig. 2. In other words, we cannot reconstruct 3D shape accurately, even if the image resolution in the direction perpendicular to the epipolar line is increased. Therefore, it is important to increase the image resolution along epipolar lines for reconstructing 3D structures accurately.

3 IMAGE SUPER RESOLUTION FROM NATURALLY SWAYING CAMERAS

3.1 Motion Representation by PSF

For accurate 3D reconstruction from a series of im-
ages taken by swaying cameras, we consider image super-resolution. When images are taken by a moving camera, these images include independent information, since these images are obtained from different sampling points in the original 3D scene. Therefore, we can recover images which include high frequency components from the series of images, i.e. high resolution images. However, we cannot ignore motion blur in images, which is caused by the camera motion (Bando et al., 2011; Cho and Lee, 2009). Therefore, we also estimate the motion blur for generating high resolution images in this paper.

The motion blur can be represented by convolution of original image and PSF (Point Spread Function). Therefore, the estimation of motion blur is equivalent to the estimation of PSF. In addition, the PSF can represent not only motion blur, but also camera motion when the motion of camera is sufficiently small. In this paper, we assume that the motion of camera in two consecutive frames is sufficiently small, and represent both camera motion and motion blur by using the PSF.

3.2 Evaluation Function

We next define an evaluation function for image super-resolution. Suppose we have a height resolution image, \(I^h \), and it is down-sampled by a moving camera obtaining \(K \) sampled images \(I_k \) \((k = 1, \ldots, K) \). Then, what we want to do is to recover the original high resolution image, \(I^p \), from input images \(I_k \) \((k = 1, \ldots, K) \). For this objective, we define an evaluation function \(E_s \) as follows:

\[
E_s = \sum_k ||I_k - D(I^p, B(R_k, t_k))||^2 + E_c. \tag{5}
\]

The first term of this equation is a data term and the second term \(E_c \) is a regularization term. In the data term, the high resolution image \(I^p \) is down-sampled by function \(D \) and compared with the input images. \(B \) denotes the PSF defined by the motion parameters, \(R_k \) and \(t_k \) of the camera in the \(k \)-th image. The second term is a regularizer of this estimation, and it is a smoothness constraint, such as image derivative, in ordinary cases. In this paper, we estimate the high resolution image \(I^p \) and the PSF \(B \) form input images \(I_k \) \((k = 1, \ldots, K) \).

When a camera translation is sufficiently small, the camera motion can be represented just by a rotation. In this case, the PSF of a whole image can be represented by a single PSF. In this paper, we assume that the camera motion can be represented by a rotation. Therefore, down-sampling function \(D \) can be represented approximately as follows:

\[
D(I^p, B(R_k, t_k)) \sim D(I^h, B(R_k)) \tag{6}
\]

By minimizing the evaluation function \(E_s \), we can estimate camera rotation \(R_k \) and high resolution image \(I^p \) simultaneously.

3.3 Linear Representation of Evaluation Function

The evaluation function described in the previous section can be represented by a linear function. In this section, we describe the detail of this linear representation.

We first describe a linear representation of down-sampling \(D \). The image blur represented by a PSF can be described by an image convolution and the convolution can be represented by a matrix computation. Let us describe the convolution of PSF and high resolution image \(I^p \) by using a PSF matrix \(B \) as follows:

\[
I^h_k = B(R)I^p \tag{7}
\]

where \(I^h_k \) is a blurred image of \(I^p \), and \(B(R) \) is a PSF matrix determined by the camera motion \(R \). Note that, the PSF matrix \(B \) is an \((N \times M) \times (N \times M) \) matrix when the resolution of \(I^p \) is \(N^s \times M^s \). Each row of \(B \) represents the PSF of each image pixel.

After blurring the image by matrix \(B \), the blurred image is down-sampled by a down-sampling matrix \(D \) as follows:

\[
I^d_k = DB(R)I^p \tag{8}
\]

where \(I^d_k \) is a blurred and down-sampled image of \(I^p \). The matrix \(D \) is an \((N^s \times M^s) \times (N \times M) \) matrix when the resolution of the down-sampled image \(I^d_k \) is \(N^d \times M^d \). The down-sampled image \(I^d_k \) is compared with the input image, and their similarity is evaluated as follows:

\[
||I_k - DB(R)I^p||^2 \tag{9}
\]

We next consider the linear representation of the regularization term \(E_c \). This term is represented by the derivatives of high resolution image as follows:

\[
\Delta_x I = S_x I^p \tag{10}
\]

\[
\Delta_y I = S_y I^p \tag{11}
\]

where \(\Delta_x I \) and \(\Delta_y I \) represent derivatives of \(I^p \) in \(x \) and \(y \) directions respectively, and \(S_x \) and \(S_y \) are matrices which represent discrete derivative in \(x \) and \(y \) directions. When the image is sufficiently smooth, these derivatives also become small. Therefore, we can describe the regularization term by a linear representation as follows:

\[
||S_x I^p||^2 + ||S_y I^p||^2. \tag{12}
\]

We can finally obtain the linear representation of \(E_s \) in Eq.(5) as follows:

\[
E_s = \sum_k ||I_k - DB(R_k)I^p||^2 + ||S_x I^p||^2 + ||S_y I^p||^2. \tag{13}
\]
The evaluation function E_s can be minimized by an ordinary least square means method easily. As a result, we can estimate high resolution image I^h from low resolution images I_k.

4 3D RECONSTRUCTION WITH SUPER RESOLUTION

4.1 Simultaneous Estimation of High Resolution Image and Accurate 3D Structure

We next consider a method for reconstructing 3D structures accurately from a series of images. This is achieved by reconstructing 3D structures and generating super-resolution images simultaneously.

As we explained in the previous section, we can estimate not only high resolution images, but also camera motion parameters from blurred images obtained in each camera. However, the camera motion parameters can also be estimated from the geometric constraint, i.e. epipolar geometry, in our method. Since the image super resolution, camera motion estimation and the 3D reconstruction are closely related to each other, these must be estimated simultaneously for accurate 3D reconstruction. In the following sections, we propose a method for estimating 3D structures, camera motions and super-resolution images simultaneously.

4.2 3D Reconstruction with Image Super-resolution

For simultaneous estimation of high resolution images, camera motion parameters and accurate 3D structures, we define the evaluation function as follows:

$$E_r = E_s + E_b$$

where E_r is the evaluation value of image super-resolution defined by Eq.(5) and E_b is the evaluation value of 3D reconstruction. The evaluation value E_b is defined as a reprojection error as follows:

$$E_b = \sum_i \sum_j ||x^j_i - P(R_i, t_i, X_j)||^2$$

where x^j_i denotes a j-th image point in i-th image, and $P(R_i, t_i, X_j)$ indicates the projection of a 3D point X_j to the i-th camera whose rotation is R_i and translation is t_i. In the ordinary 3D reconstruction method so called bundle adjustment(Triggs et al., 1999; Agarwal et al., 2011), a set of 3D points X_j and camera parameters R_i, t_i are estimated by minimizing the reprojection error.

In our proposed method, we consider not only geometric reprojection error E_b, but also the evaluation value of image super-resolution E_r. By minimizing E_b, we can estimate 3D structures, camera motions and super-resolution images efficiently and accurately.

4.3 Minimizing Method

In order to minimize E_r in Eq.(14), we use an iterative minimization technique, in which E_s and E_b are minimized iteratively. It is difficult to minimize E_s and E_b simultaneously because corresponding points used in E_b minimization strongly depend on the results of image super-resolution. Thus, we minimize E_s and E_b iteratively.

In this method, we first detect corresponding points x^j_i by using feature point detector, such as SIFT in input images. By using the corresponding points, 3D structures and camera motion parameters are estimated by minimizing E_b.

We next estimate super-resolution image by minimizing E_s by using the motion parameters estimated by the previous geometric estimation. In this estimation, high resolution image and motion parameters are updated by using blurred images.

After that, corresponding points are extracted from the estimated high resolution images, and 3D structures and camera motion parameters are estimated again by minimizing E_b. By iterating these procedures, we can estimate super-resolution images, camera motion parameters and 3D structures simultaneously.

5 SEVERAL TECHNIQUES FOR EFFECTIVE ESTIMATION

5.1 Controlling Camera Motion

In order to achieve stable recovery of 3D structures and high resolution images, we add several techniques into the proposed method. We first consider the restriction of camera motions.

As we described in Sec.2.2, we only need to increase the image resolution along with the epipolar line. For example, if the epipolar lines are parallel to x axis, we only need to increase the resolution in x axis. Also, we cannot increase the image resolution in x axis, when the camera motion occurs along y axis.
Figure 3: 1DoF camera swaying stage: By using this stage, unintentional camera rotations can be limited around a single rotation axis.

Figure 4: Examples of effective camera arrangement. In these arrangements, the epipolar lines and camera swaying direction are neither parallel nor orthogonal to each other.

Thus, we restrict the direction of camera motions, although they occurs unintentionally. For this objective, we in this paper use a camera stage, which allows camera to rotate only in 1 axis as shown in Fig.3. Furthermore, the stage is connected with a spring, which controls the frequency of the swaying motion of the camera. As a result, the series of camera rotation can be parametrized by a small number of parameters because of characteristic of a spring. When the spring sway with its characteristic vibration, the motion can be represented by phase ϕ, frequency f and amplitude λ. Therefore, we can estimate series of camera rotation only by estimating these 3 parameters.

5.2 Camera Arrangement

We next consider the camera arrangement for our stereo camera system. As described in the previous section, we can reconstruct 3D structures effectively when the camera swaying direction is parallel to the epipolar lines. Therefore, it seems that the cameras should be arranged along with swaying direction at a glance. However, we cannot reconstruct 3D structures nor estimate camera motions under this condition. This is a degenerate case in the structure and motions, and the 3D geometry and camera motions cannot be estimated uniquely from camera images (Maysbank, 1993).

In order to avoid this problem, the epipolar lines defined by the camera arrangement should not be parallel to the swaying direction of cameras. For example, we can estimate these parameters when cameras are arranged as shown in Fig.4. In these arrangements, camera swaying direction is neither orthogonal nor parallel to the epipolar lines in each image, and thus, we can estimate high resolution images and accurate 3D structures simultaneously.

5.3 Coded Exposure for Stable Image Reconstruction

Finally, we consider the image exposure in the proposed method. Figure 7(a) shows some examples of input images and their PSFs obtained under swaying motions of a camera. In this figure, the color of PSFs under example images shows the intensity of PSFs as shown in the right color bar. These examples indicate that input images and their PSFs are very similar to each other under the swaying motion of camera. In this case, these input images do not have much independent information, and thus, we cannot estimate high resolution images effectively. In order to avoid this problem, we in this paper use a coded exposure (Raskar et al., 2006; Naito et al., 2012; Liang et al., 2008).

The coded exposure is one of the technique for stable estimation of motion blur. In this technique, the shutter of camera is opened and closed many times while taking a single image. Figure 5 shows an example of coded exposure. In this figure, white regions indicate shutter opening time and black regions indicate shutter closing time. In normal exposure, camera shutter is opened continuously while taking an image. In contrast, the shutter is closed and opened many times in coded exposure. As a result, the frequency characteristics become much better than the normal exposure as shown in Fig.6. This figure indicates power spectrum of each exposure technique. When we use the normal exposure, several zero cross occur in frequency space, and thus, some components in high resolution image cannot be estimated stably. In contrast, the frequency characteristics of the coded exposure are flat and high, and thus, we can reconstruct motion blur effectively.

By using this coded aperture, we can obtain better images for motion blur estimation and reconstruction. In addition, we can obtain images including different information from each other. Figure 7 shows examples of series of input images by using normal ex-
Figure 6: Power spectrum of exposure.

Figure 7: Examples of input images and PSFs. The input images obtained by the normal exposure are similar to each other, while those obtained by the coded exposure are very different from each other.

Figure 8: Translation and rotation stage. The camera was moved in horizontal and vertical direction by using the stage and a set of stereo cameras was constructed. In addition, a rotation stage was equipped on the translation stage, and the swaying motions of cameras was generated.

Figure 9: Stereo camera setting.

Figure 10: Examples of input images.

The frequency of the rotational motion was 10.5 Hz, the amplitude was 1.0 degree, and the phase was 0 degrees respectively. The angle between the epipolar line and the camera swaying direction was 45 degrees. The pattern of the coded exposure is random pattern. The resolution of input images was 320 × 240, and 1280 × 240 images were reconstructed from 8 sequential images by using the proposed method. Figure 10 shows examples of the series of input images at each camera position. From these images, we reconstructed a planar object. The depth of the planar object was about 1000 mm.

Figure 11 shows reconstructed high resolution images by the proposed method. The results show that the proposed method can reconstruct high resolution images.

Table 1 shows 3D reconstruction errors. For comparison, we reconstructed 3D structures by using the proposed method and the ordinary stereo reconstruction method which uses low resolution image deblurred from a single blurred image. We also re-
covered 3D structures by using high resolution images without motion blur, and considered them as the ground truth. Table 1 shows that the average depth of the proposed method is more close to the ground truth, and hence it is more accurate than the ordinary stereo reconstruction method.

Figure 12 shows the results of 3D reconstruction in each method. In this figure, reconstructed 3D points are represented by a 2D image, where the vertical axis shows Z axis and the horizontal axis shows X axis in the 3D space. The results show that 3D points reconstructed by the proposed method are much more close to the ground truth plane, while the 3D points reconstructed from the low resolution images are far from the ground truth plane. Thus, we find that our method can reconstruct 3D points more accurately than the ordinary reconstruction method, and it can use unintentional camera swaying motions efficiently for improving the accuracy of 3D reconstruction.

6.2 Experiments in Synthesized Environment

We next show experimental results under synthesized environment. In this experiment, two cameras were arranged as shown in Fig.13. These cameras are swaying horizontally, and thus, the input images include horizontal motion blur. The rotation parameters of these cameras are the same as those in the previous experiment. Thus, the angle between the epipolar lines and the camera swaying direction in the image was 45 degrees. The frame rate of these cameras was 30 fps. Frequencies of the cameras were 9.9Hz and 8.1Hz. The magnitudes of the motions were 0.9 degrees and 1.1 degrees. The phases of the motions were 0.53 degrees and 1.05 degrees. The pattern of the coded exposure is random pattern.

Figure 14 shows examples of input images from the left and the right cameras. The resolutions of input images were 200×150. By using 8 sequential images, we reconstructed 800×150 image pair. The relative camera positions were calibrated beforehand, and thus we just estimated camera rotations in the proposed method. The corresponding points in images were extracted by using the SIFT feature detector. Target object in this experiment is a plane and texture image as shown in Fig.13 are mapped onto this plane. For comparison, the 3D structure of the target plane was reconstructed by using the proposed method and the ordinary stereo method which uses low resolution images deblurred from a single blurred image.

We first show the results of image super-resolution in Fig. 15. As shown in these images, we obtained very sharp high resolution images, and thus we find that the proposed method can reconstruct super resolution images from series of images taken by unintentionally swaying cameras. Table 2 shows the accuracy of 3D reconstruction in the proposed method and the ordinary stereo reconstruction method. The error indicates the average distances from the ground truth of a target plane. These results show that the proposed method can reconstruct 3D structures more accurately than the ordinary stereo reconstruction method, even if the series of input images include motion blur. As the results, we find that the proposed method can reconstruct 3D structures and super-resolution images simultaneously from unintentionally swaying cameras.

7 CONCLUSIONS

In this paper, we proposed a method for reconstructing 3D structures accurately by using unintentionally...
swaying stereo camera systems. In this method, cameras are swaying naturally and take series of images including motion blur. From the series of images, high resolution images and accurate 3D structure are obtained simultaneously. In this proposed method, we use 1 DoF swaying stage for controlling camera rotation. In addition, coded exposure is used for stable image super-resolution. The image super resolution and 3D reconstruction are achieved simultaneously because both estimations need the same camera motion parameters. The experimental results show that the proposed method can reconstruct high resolution images and accurate 3D structures simultaneously.

REFERENCES

