Indoor Sensor Placement for Diverse Sensor-coverage Footprints

Masoud Vatanpour Azghandi, Ioanis Nikolaidis and Eleni Stroulia
Computing Science Department, University of Alberta, T6G 2E8, Edmonton, Alberta, Canada

Keywords: Wireless Sensor Networks, Indoor Localization, Optimization, Sensor Placement, Smart Homes, Genetic Algorithms.

Abstract: Single occupant localization in an indoor environment can be accomplished by the deployment of, properly placed, motion sensors. In this paper, we address the problem of cost-efficient sensor placement for high-quality indoor localization, taking into account sensors with diverse coverage footprints, and the occlusion effects due to obstructions typically found in indoor environments. The objective is the placement of the smallest number of sensors with the right combination of footprints. To address the problem, and motivated by the vast search space of possible placement and footprint combinations, we adopt an evolutionary technique. We demonstrate that our technique performs faster and/or produces more accurate results (depending on the application) when compared to previously proposed greedy methods. Furthermore, our technique is flexible in that adding new sensor footprints can be trivially accomplished.

1 INTRODUCTION

Because of their low cost, infrared motion sensors are being used in research and industry for a variety of localization purposes including military applications, target tracking, environment monitoring, industrial diagnostics, etc. One concern in using motion sensors for localization is their placement. Suboptimal placement may result in inefficient usage of the equipment, and correspondingly, waste of equipment cost and deployment effort. Pre-deployment simulation to evaluate the anticipated performance of potential deployment alternatives is a useful methodology for systematically obtaining high-quality sensor placements. The question then becomes how to decide which placements to simulate, i.e., how many sensors should the potential deployment include, of what type, and where exactly these sensors should be placed. In principle, a desirable placement should have the smallest number of contributing sensors (in order to minimize equipment cost, deployment effort, and operating energy consumption) at locations such that the overall space is sufficiently covered and the target’s location can be inferred with a desirable degree of accuracy and precision.

The work described in this paper builds on our previous work, in the context of the Smart-Condo™ (Boers et al., 2009; Ganev et al., 2011) project, where we examined placement of same-type sensors, under a cardinality constraint (i.e., a limited budget of sensors) (Vlasenko et al., 2014) for the purpose of recognizing the location of an individual in a home environment. We adopt a similar formulation in this paper. Namely, the formulation includes the representation of space as a line drawing (floorplan), and the possible locations for the sensor place are from a set which is expressed as a (fine) grid of points over the floorplan.

The placement is assumed to take place on the ceiling (facing “down”). While alternative placements can be accommodated, experience from practical deployments has reinforced that ceiling placement is the most convenient for indoor deployments. Our set of motion sensors include a variety of different volumetric shapes, namely a cone, a square based pyramid, and a rectangular based pyramid. Considering only orthogonal placement with respect to the floor the projection of each of these shapes becomes a disk, a square and a rectangle, respectively. Moreover, the projection of any sensor might be effected by walls, doors or obstacles around the house depending on where the sensor is placed (explained more in Section 3.2).

Given the above description for the varieties of sensors we consider, we expand the problem formulation presented in (Vlasenko et al., 2014) to include the various sensor footprints (from a finite set of footprints) and to determine the optimal number of sen-
sors (not just their placement). The immediate implication of this more general problem formulation is a significantly enlarged search space, due to increased number of possible combinations of placements and footprints. We address the increase in complexity using genetic algorithms (GAs). Evolutionary methods, based on GAs, are frequently employed to explore large problem spaces in order to identify high-quality solutions. Our sensor placement problem naturally belongs to this category. The GA technique elaborated in this paper outperforms the greedy algorithm in (Vlasenko et al., 2014) in two different aspects. First it efficiently delivers placements with acceptable coverage accuracy. For example, we have noted that it reaches 94.81 percent coverage after just 50 seconds of execution on an off-the-shelf personal computer. Second, it delivers placements with higher-accuracy when efficiency is not a factor. It is able to eventually reach coverage of 100, whereas the greedy algorithm can do no better than 98.58 percent.

The remainder of this paper is organized as follows. In Section 2 we review earlier relevant research in the same area. Section 3 presents details of our mobility and sensor coverage model, as well as the objective function. Section 4 provides a comprehensive discussion of the GA methodology in the context of our problem, and its parameters. Section 5 presents simulation results. Finally, we conclude with a summary of the contributions of this work and some future plans in Section 6.

2 RELATED WORK

The sensor placement problem is relevant to many wireless sensor network (WSN) applications. Kang, Li, and Xu (Kang et al., 2008) use a virus coevolutionary parthenogenetic algorithm (VEPGA) to optimize sensor placement in large space structures (i.e., portal frame and concrete dam) for modal identification purposes. They concluded that their method outperforms the sequential reduction procedure. Rao and Anandakumar (Rao and Anandakumar, 2007), also addressing the sensor placement problem in large-scale civil-engineering structures, developed a solution based on particle swarm optimization, another evolutionary technique. Poe and Schmitt adopt a GA approach to sensor placement for worst-case delay in minimization (Poe and Schmitt, 2008). Comparing their results against a exhaustive and a Monte-Carlo method, they found out that these methods serve as an upper and lower bound, respectively. Their method is a fast and near-optimum solution for optimized placement. These papers show that evolutionary methods are preferred over the exhaustive search approaches. However none of them consider as an objective that of optimizing the number of sensors placed.

Yi, Li and Gu (Yi et al., 2011) compared evolutionary methods for sensor placement and described a generalized genetic algorithm (GGA) approach for a predefined number of sensors. According to them the GGA can get better results than the simple version of the GA. They also describe a number of different exhaustive and evolutionary methods to sensor placement.

As we have already mentioned, the work conceptually closest to the method described in this paper is our own previous work (Vlasenko et al., 2014) also conducted in the context of the Smart-Condo™ and aiming at inexpensive placements for high-accuracy localization of an individual in a home environment. The greedy approach of (Vlasenko et al., 2014) identified sensor locations one at a time, resulting in exploring a large number of potential locations and, in some cases, requiring a large amount of time. Our method adopts evolution-based techniques to address exactly these shortcomings.

3 MOBILITY AND SENSOR COVERAGE MODEL

In this section we detail the mobility and coverage models and we introduce the terminology, notation, and definitions (Table 1) used in the remaining of the study.

3.1 Basics of Localization

In order to improve localization accuracy, coverage areas of the sensors are allowed to overlap. By having the sensor coverage areas overlap the detection areas will be reduced because the space is segmented into new, smaller, polygons defined by the intersection of the coverage areas. We consider as location of the individual to be the center of mass of the polygon occupied by the individual. To illustrate this, Figure 1 is presented. In this figure A12 is the new polygon that has been created as a result of the overlap of the coverage areas A1 and A2. A12 has the least amount of localization error among the regions (because R3 is less than R1, R2, and R4).

With respect to representation conventions, we can consider each polygon (or, more generally, overlap area) to be defined by a specific signature signifying the sensors that are “on” when an individual is in that polygon. The signature can be represented by
Table 1: Table of notation.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_i</td>
<td>Coverage utility at point i</td>
</tr>
<tr>
<td>v_i</td>
<td>Heat-map value at point i</td>
</tr>
<tr>
<td>c_{max}</td>
<td>Maximum desired coverage score (c_i)</td>
</tr>
<tr>
<td>$t(c_{\text{max}})$</td>
<td>Threshold value</td>
</tr>
<tr>
<td>A_s</td>
<td>Points in space covered by sensor s</td>
</tr>
<tr>
<td>D_s</td>
<td>Points in space that are "seen through" the doorway by sensor s</td>
</tr>
<tr>
<td>$p_{s\rightarrow o}$</td>
<td>Probability of detection at point o by sensor s</td>
</tr>
<tr>
<td>$p_{\text{door open}}$</td>
<td>Probability of doors being open</td>
</tr>
<tr>
<td>K</td>
<td>Budget of sensors</td>
</tr>
<tr>
<td>P_{Z^o}</td>
<td>Joint sensing probability at point o by the sensors in set Z</td>
</tr>
<tr>
<td>C</td>
<td>Chromosome</td>
</tr>
<tr>
<td>λ^C</td>
<td>Coverage percentage metric of chromosome C</td>
</tr>
<tr>
<td>F^C</td>
<td>Fitness function for chromosome C</td>
</tr>
<tr>
<td>f^C</td>
<td>Collective information utility</td>
</tr>
</tbody>
</table>

a series of 1s and 0s. If the e^{th} motion sensor covers the polygon, its value of the signature at position e will be 1, otherwise it is set to 0. For example in Figure 1 each of the four regions have distinct signatures which are $(1, 0, 0), (0, 1, 0), (1, 1, 0)$ and $(0, 0, 1)$ for A_1, A_2, A_{12} and A_3, respectively. The signature also represents the sensor readings that we will get if a person is present in the corresponding region.

Trying to find good combinations of sensors to overlap in certain “important” areas brings complications too. In Section 5 we show how our proposed method handles overlaps, and places sensors where their usefulness is maximized.

3.2 Sensor Coverage Model

As mentioned in our introduction section, walls, doors and obstacles around the house can restrict sensor footprints. Figure 2 presents an example where two sensors (marked with green) with originally rectangular footprints (depicted with blue lines) are restricted because of obstruction by walls (thick black lines) and doors (painted in yellow). Some parts of the polygon fall “behind” a door and the sensor may cover these areas if the door is open, otherwise the door restricts the sensor’s projection even further. The probability of doors being open ($p_{\text{door open}}$) directly translates into probability of detection in the aforementioned parts of the polygon.

A sensor’s coverage model is:

$$p_{s\rightarrow o} = \begin{cases} 1, & \text{if } o \in A_s \setminus D_s \\ p_{\text{door open}}, & o \in D_s \\ 0, & \text{otherwise} \end{cases}$$ \((1)\)

In this equation z is a point in space, A_s is the set of points sensor s covers, and D_s is a set of points seen by the sensor through the doorway. A_s is represented by:

$$A_s = \{a_1, a_2, \ldots, a_{|A_s|}\}$$ \((2)\)

For our experiments we will set $p_{\text{door open}}$ to 0 in order to avoid complexity. Therefore, we can rewrite our coverage model, which now becomes a boolean coverage model, as in Equation 3.

$$p_{s\rightarrow o} = \begin{cases} 1, & \text{if } o \in A_s \\ 0, & \text{otherwise} \end{cases}$$ \((3)\)

If all of the sensors in the set of sensors Z cover o, the joint sensing probability at that specific point is (Wang et al., 2006):

$$P_{Z^o} = 1 - \prod_{s \in Z} (1 - p_{s\rightarrow o})$$ \((4)\)

3.3 Mobility Model

In this research, we adopt the environment model developed in (Vlasenko et al., 2014). We consider a floorplan and a corresponding “heat-map” created through observation of the paths traversed by an individual in this space over time. Figures 3 and 4

\(^1\)In most cases, as in our evaluation section, this will be a “sharp” probability, i.e., either 1 or 0, but the formulation is applicable to general coverage probabilities.
show such floorplans with the heat-map represented as various intensities of the same colour. The approximation of this heat-map can be constructed without a-priori observations of the occupant, but solely by knowing the points of interest (e.g. locations in the environment that form the origin/destination of an occupant’s paths).

The points of interest must include all potential destinations in order to cover important areas. Failing to do so, will result in data loss and system deficiency. There are various parameters regarding how to produce the heat-map, and depending on the occupant, different configurations can be adopted. In cases were the user tends to choose more random and unusual paths to traverse, the corresponding parameter(s) can be altered to accommodate exactly this. For more information on how to produce the heat-map please refer to (Vlasenko et al., 2014).

The heat-map is produced only once, at the pre-deployment phase. It is at this phase that all the planning has to be completed. After the sensors are mounted on the ceiling, redeployment is considerably expensive and time consuming. Thus, we should make sure that the quantity of sensors in need agree with our cost/accuracy trade-off, and that the placement is optimal.

Next, using the two-dimensional heat-map that contains \(N \) points of interest, \((x_1, y_1), \ldots, (x_N, y_N) \), where each point has an information utility of \(v_i \), we construct a coverage utility map (with the same dimensions) which is the mapping of intensities from the heat-map into numerical values. This is done using a configurable application-specific parameter called \(c_{\text{max}} \) that indicates the upper bound of values in the coverage utility map. Equations 5 and 6 show how the translation between heat-map values \(v_i \) and coverage utility values \(c_i \) are calculated.

\[
c_i = \left\lceil \frac{v_i}{f(c_{\text{max}})} \right\rceil \tag{5}
\]

Here, \(c_{\text{max}} \) is the maximum desired coverage score.

\[
f(c_{\text{max}}) = \frac{\max_{i \in \{1, \ldots, N\}} v_i}{c_{\text{max}}} \tag{6}
\]

The coverage utility map will be used throughout the rest of the study, mainly during the optimized sensor placement.

3.4 Objective Function

Given the notation given in Table 1, the placement problem can be formulated as follows:

Given (a) the coverage utility map and (b) \(K \), the set of sensors available, where \(\| K \| \leq N \), the objective is to find the combination of sensors, \(Z \), that maximizes the collective information utility:

\[
f(Z) = \sum_{i=1}^{N} (p_i^Z \cdot c_i) \tag{7}
\]
4 THE EVOLUTIONARY MODEL

GA solutions are represented as a population of chromosomes, where each chromosome consists of genes. In our model, the genes are a sensor’s type and its location. In each evolution, new, and hopefully improved, solutions are developed by applying a number of different operators on the population. The criterion for deciding whether a particular chromosome is better than another is defined through a fitness function, also known as the cost function. The classical GA methodology that we use defines the following steps:

- **Start.** Generate an initial random population of chromosomes representing potential problem solutions, which in our case is sensor combinations. Section 4.1 discusses the encoding of sensor placements as chromosomes and the construction of the initial population.

- **Loop.** Create a new population by:
 - selecting a percentage of the current population as parents, and performing crossover to produce new offsprings,
 - performing mutation of the new offsprings,
 - applying elitism, i.e., including the new offsprings in the new population but reducing the population to its original size, keeping only the best solutions for the next iteration.

Section 4.2 discusses the process of population renewal.

- **Termination Check.** If an end condition has been reached,
 - return the best solution in the current population,
 - else, go to Loop.

Section 4.3 discusses the termination conditions of our method.

We note that the GA methodology requires a number of parameters for its configuration, which must be designed taking into account the specifics of the problem domain. A list of these parameters is given in Table 2.

4.1 Chromosome Encoding

Each chromosome in the population contains a number of genes. In the context of our sensor placement problem, genes are sensors with coverage models introduced in Section 3.2. A chromosome is therefore represented by a set of sensors:

\[C : \{s_1, s_2, \ldots, s_{|C|}\} \]

By combining equation 4 and 3, we can conclude that \(P_C^o = 1 \) whenever there is at least one sensor in \(C \) that covers \(o \).

In order to evaluate the performance of a solution found by the genetic algorithm, we divide the chromosomes collective information gain (calculated according to Equation 7) by the summation of positive coverage utility values. This will give a metric that we call the coverage percentage metric, formulated as follows:

\[\lambda^C = \frac{\sum_{i=1}^{N} (P_C \cdot c_i)}{\sum_{i=1}^{N} c_i} \cdot 100\% \]

In the Start step, we have to create the initial population for the algorithm to use as its first evolution. This is done by randomly creating \(m \) chromosomes, i.e., sensor placement solutions. The initial length of the chromosomes must be set to a value less than or equal to a user-specified upper bound called max, i.e., \(n \leq \text{max} \).

4.2 Selection, Crossover, Mutation and Elitism

To produce children two parents must be selected for a crossover procedure. The parents are chosen randomly from the population, according to a selection percentage also known as the crossover probability, \((p_c) \). For example, if the population consists of 100 chromosomes, and \(p_c = 0.2 \), then approximately 20 parents are randomly chosen to participate. From the chosen parents, two parents are randomly selected to create two children. A second parameter, \(u \), decides the total number of children that will be produced in
each iteration. We continue the procedure until we have all u children.

We use the “cut and splice” crossover method (Banzhaf et al., 1998). In this method, the crossover point for each parent is chosen separately and randomly. As shown in Figure 5, the first part of the first parent and the second part of the second parent are used to construct the genes in the first child, and the rest construct the second child. Figure 5 shows how cut and splice is performed to produce two children from two parents. This crossover method leads to offsprings with different chromosome lengths, which in our case implies different numbers of sensors placed. As we are seeking the number of sensors to use, as well as the sensor locations, this method helps achieve this. In addition, throughout the whole process of the GA, chromosome lengths must remain less than or equal to max.

![Random Position in the Chromosome image](image)

Figure 5: “Cut and splice” crossover method for producing children chromosomes.

Once u children chromosomes have been produced through the parent-population crossover, according to the mutation probability (p_m), they might be mutated. The chromosome mutation operation that we use in our experiments is called a uniform mutation (Banzhaf et al., 1998), which involves randomly choosing a gene from the chromosome and performing the mutation operation on that gene. For this, we either use relocating the sensor to a new random location or we change its type, for example, turn its coverage footprint from a disk to a square.

The last step of this phase involves adding the new children in the population, and selecting the best chromosomes from the combined population for the next iteration so that the population cardinality always remains stable. This selection is accomplished through the fitness function.

The fitness of each chromosome is evaluated according to the following three criteria. Sensors should cover as much heat as possible. Sensors are penalized for covering “restricted” areas, i.e., areas known to not require coverage. For example sensors should not be placed directly on top of a table, simply because people don’t tend to walk there. Finally, the number of contributing sensors should be minimized, therefore shorter chromosomes are preferable to longer chromosomes. In order to capture these three criteria, we have formulated the fitness function to be:

$$F^C = w_1 \sum_{i=1}^{N} (P^C_i - c_i) - w_2 \sum_{i=1}^{[C]} \parallel A_{n_i} \parallel$$

Where w_1 and w_2 are fixed values, P^C_i can be computed using equation 4. Here, because the c_i for points in the restricted area is negative, the second criterion is embedded in the first summation.

4.3 The Termination Criterion

In principle, the evolutionary process terminates if (a) the maximum number of iterations or execution time has been reached, or (b) the average fitness of the population does not change over a certain number of evolutions, or (c) 100% accuracy is achieved. When the genetic algorithm terminates, the best solution in the current population is returned as the final solution.

5 SIMULATION AND RESULTS

The evolutionary process described above is controlled by the parameters listed in Table 2. As it is a convention for users of evolutionary algorithms, parameter tuning needs to be performed based on experimental comparisons on a limited scale (Smit and Eiben, 2009). We follow this requirement by fine-tuning the GA model parameters on a simple artificial scenario. In the heat-map of Figure 6, the overlapping footprints of several sensors are shown. The different footprint shapes correspond to three different sensor types; the first type projects a square footprint ($edge = 175$ points); the second type projects a rectangle ($length = 200$ and $width = 150$ points); and the third type projects a disk ($radius = 100$ points). The darker the colour, the higher the significance of the area, i.e., the higher the utility of the area. The environment shown in this simple heat-map consists of 6 different regions to be covered by the sensors, and the ideal solution should place exactly 6 sensors of the right types in exactly the right locations. Given this desired solution, we proceeded to identify the parameter configuration that results in the solution at hand.

Because of the implicit randomness of the evolutionary GA process, we cannot predict the exact resulting amounts for coverage percentage. So, the experiments conducted in this section are tested multiple times (i.e., 50 times), and the average is taken.

2 All experiments are run on Mac OS X, Processor: 1.7 GHz Intel Core i5, Memory: 4 GB 1600 MHz DDR3, platform: Java.
To configure the algorithm parameters, we started by optimizing p_c, with the following initial settings: $m = 50$, $n = 10$, $u = 50$, $l = 50$ and $p_m = 0.2$. Figure 7 shows how the coverage percentage changes for different values of p_c. Lower p_c values result in lower accuracy. This is because, when there is little crossover in the evolutionary process, the potential parents are less likely to pair with each other to produce better solutions. On the other hand, a high crossover probability also threatens accuracy, because good subsets of sensors inside the chromosomes have a high risk of getting involved in a crossover procedure and being separated from each other; in these cases, the good subset, which should have been passed to the next generation of chromosomes, is lost. We notice that the coverage percentage at $p_c = 0.4$ yields the best result. We used this value for the remainder of the experiments and proceeded to select p_m through the experiments shown in Figure 8.

As p_m increases, more mutations occur and, as a result, the diversity of the chromosomes increases. However, too much mutation may result in losing good chromosomes generated through crossover. Based on the data of Figure 8, p_m was set to 0.5 for the rest of the experiments.

Figures 9, 10 and 11 show the impact of l, m and u, respectively. According to Figure 9, higher number of iterations lead to better coverage percentages. Also, as Figure 10 suggests the value of m should be set to be the same as u, which in this case is 50. In Figure 11, we note that increasing the value of m (which is equal to u) will result in higher accuracy. This is because, more children are produced in each iteration, increasing the likelihood of finding a better solution. Further, as the number of iterations increases, the likelihood of identifying a better solution increases since more of the solution space is explored.

However, the downside to increasing m, u and l is that execution time will also increase. So the question becomes how to decide the tradeoff between m, l and accuracy versus time consumption.

To answer this question we experimented with different configurations of m during different time periods. As shown in Figure 12 a larger population size results in better accuracy, given the same amount of execution time. Note that, because more execution time is consumed to produce children through crossover in each iteration, there will be fewer iterations in total.

In addition to running the same algorithm multiple times...
times, we also illustrate a logarithmic trend line function in order to visualize how different configurations of the GA are performing. The trends in Figure 13 indicate that although $m = 500$ performs slightly worse than $m = 100$ at the beginning, it catches up and finally exceeds the accuracy achieved with $m = 100$. In conclusion, the process of parameter fine-tuning reported in this section produced the following parameter configuration: $m = 500$, $u = 500$, $p_c = 0.4$ and $p_m = 0.5$. When m is higher than 500, results deteriorate because the time spent in each iteration on producing children increases and in a given amount of time the algorithm cannot perform enough iteration to achieve acceptable results.

5.1 Comparison Against the Greedy Method

Let us now compare our GA method against the greedy algorithm by (Vlasenko et al., 2014). In the greedy method, sensors are placed one after the other, in a location which optimizes the additional “heat”, i.e., utility, covered. Once a sensor is placed, the heat in the area covered by the sensor is reduced, since gaining more localization accuracy in a given area is becoming increasingly less useful as the area gets covered. This procedure continues until the desired number of sensors has been reached. It is important to note here that, in the greedy method (Vlasenko et al., 2014; Wang et al., 2006), the number of sensors to be placed is assumed to be decided a-priori, based on the cost that can be afforded. Near-optimal results are guaranteed in this method when certain types of sensors are used (Vlasenko et al., 2014). Although realistic, this problem formulation does not address the cases where the budget is flexible and the users desire to explore the cost/accuracy tradeoff. Another fundamental shortcoming of the greedy method is that it consumes exponentially more processing time as the types of available sensors increase.

Running the greedy algorithm on the simple heat-map of Figure 6 always returns the same result of 98.58 percent coverage, after an average time of 1974 seconds. Figure 13 shows that after approximately 1800 seconds the GA surpasses the greedy method. The greedy does not reach 100 percent accuracy with the simple case heat-map, because it fails to exactly match every area with the right sensor (Figure 14);
it always starts by covering the highest-utility area, i.e., the darkest area in the heat-map, and gets stuck in a local optimum. This phenomenon does not happen with the genetic algorithm. The GA can get even 100 percent accuracy thanks to its ability to find the best combination of sensors and not focusing on one at a time (Figure 15). Although the process may take time for very high accuracy (i.e., 37333.55 seconds for 99.81%) but in time critical applications, it can achieve very high accuracy in short time periods. Accuracy as high as 94.81% can be reached within the first 50 seconds.

In order to compare the two methods more realistically, we use the two complicated and larger scale heat-maps, shown in Figures 3 and 4. The scale of the Smart-CondoTM heat-map is 629 × 1060 points and for the ILS it is 573 × 651 points. Moreover, the value of c_{max} is set to 4 while producing these heat-maps. It is noteworthy that the data reported throughout the remainder of this section for the GA is the average of 10 runs.

The comparison methodology here is to first see how the greedy method is preforming with a designated budget of sensors and mark its coverage percentage (calculated using equation 9) for that budget as the “desired accuracy”. After that, we give the GA the same budget and see how fast we can achieve coverage percentages higher than or equal to the desired accuracy.

In the first experiment conducted, we only use one type of sensor footprint, the rectangle. Say the budget for covering the ILS is 15 sensors, we would like to know how much coverage each method achieves having this budget. It turns out that greedy can get 81.48% coverage percentage in 466.7 seconds. This value becomes our desired value, that the GA aims to reach. The GA can achieve this accuracy in just 41.5 seconds on average.

Now, let us use a sensor set consisting of more than one type of sensor. In the second experiment we will use a budget of 5 squares, 5 disks, and 5 rectangles (all with the same sizes as before). The same procedure as in the first experiment is adopted to fill tables 3 and 4 which show the results for both methods when dealing with heat-maps 3 and 4, respectively. In addition, we record the fitness (calculated according to Equation 10) of the solution as well as the average

$$\text{Number of sensors}$$
Table 3: Comparison of different methods in the Smart-Condo™ layout.

<table>
<thead>
<tr>
<th>Desired Accuracy (%)</th>
<th>Greedy</th>
<th>GA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nos</td>
<td>time (s)</td>
</tr>
<tr>
<td>74.29</td>
<td>10</td>
<td>3725</td>
</tr>
<tr>
<td>76.82</td>
<td>11</td>
<td>4231</td>
</tr>
<tr>
<td>79.93</td>
<td>12</td>
<td>4622</td>
</tr>
<tr>
<td>83.69</td>
<td>13</td>
<td>5023</td>
</tr>
<tr>
<td>84.50</td>
<td>14</td>
<td>5380</td>
</tr>
<tr>
<td>85.25</td>
<td>15</td>
<td>5572</td>
</tr>
</tbody>
</table>

Table 4: Comparison of different methods in the ILS layout.

<table>
<thead>
<tr>
<th>Desired Accuracy (%)</th>
<th>Greedy</th>
<th>GA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nos</td>
<td>time (s)</td>
</tr>
<tr>
<td>72.45</td>
<td>10</td>
<td>643</td>
</tr>
<tr>
<td>73.77</td>
<td>11</td>
<td>741</td>
</tr>
<tr>
<td>76.80</td>
<td>12</td>
<td>837</td>
</tr>
<tr>
<td>77.60</td>
<td>13</td>
<td>912</td>
</tr>
<tr>
<td>79.43</td>
<td>14</td>
<td>967</td>
</tr>
<tr>
<td>80.80</td>
<td>15</td>
<td>996</td>
</tr>
</tbody>
</table>

and standard deviation of chromosome fitness in the population in which that solution was found (namely solution cost, average cost, and cost STD).

According to these tables, the GA reached the desired accuracy checkpoint with the same budget of sensors in considerably less time. Comparing the results from experiments one and two, we notice that increasing sensor types affects the greedy’s time consumption substantially, while increasing the GA’s only slightly.

The GA can continue beyond this point and find even better solutions which brings us to our third and final experiment. In this experiment, again we get back to only having 15 rectangles and want to see how much accuracy we can achieve if we let the GA consume the same amount of time that the greedy has used. The GA reaches an average coverage percentage of 83.55% and shows is superiority when is comes to hitting high accuracy, too.

6 CONCLUSION

Sensor placement can greatly impact the effectiveness of sensor-based systems. In our work, in the context of sensor-based indoor localization, we developed an evolutionary technique for sensor placement. Our simulation experiments demonstrate that our method achieves excellent coverage utility (close to 100%) when time efficiency is not a factor; it also delivers acceptable accuracy for applications that are time sensitive. An important feature of our method is that it does not require an a-priori number of sensors as input, which is the case with an earlier greedy algorithm developed by our group for this problem. Furthermore, although a larger number of sensor types tends to increase the run-time of the greedy algorithm, it does not affect the genetic algorithm described in this paper.

In the future, we plan to design a hierarchical framework in the context of which to embed our algorithm. The core idea is to decide sensor locations for each utility level, starting from the highest level and progressively descending to lower levels.

We also plan to extend the localization algorithm with additional information sources, such as dead-reckoning for a more accurate estimation of the person’s location, while this person moves between the sensor regions.

ACKNOWLEDGEMENTS

This work has been partially funded by IBM, the Natural Sciences and Engineering Research Council of Canada (NSERC), Alberta Innovates - Technology Futures (AITF), and Alberta Health Services (AHS).
REFERENCES

