Models for Multimodal Freight Transportation Integrating Consolidation and Transportation Phases

Leonardo Malta¹, Nicolas Jozefowiez¹ and Frédéric Semet²

¹LAAS-CNRS, Toulouse, France
²Ecole Centrale de Lille, Lille, France

Keywords: Intermodal Transportation, Freight Consolidation, Mixed-Integer Programming.

Abstract: It is important for economic development and international trade the ability to move freight in a cost-efficient, safe and quick fashion. The paper will discuss the door-to-door freight transportation problem in its two phases: consolidation phase and transportation between the platforms. In a general way, the problem is described as a set of orders that have a release and delivery date and must be consolidated and routed from a source to a destination point. Two models are proposed, both integrating several aspects of the problem such as long-haul transportation, freight consolidation, freight storage and intermodal transportation. The first is a time-space based model and the second an implicit time representation model. Models are formulated as integer programming problems and some results of small practical instances are shown along with some considerations.

1 INTRODUCTION

Intermodal transportation can be loosely defined as the movement of goods from a source to a destination using a transportation network composed of several modes (rail, truck, road and so on). Seeking to reduce operations costs, meet customer requirements for improved service and the increasing volume of freight itself, the industry has to consolidate their freight in a network of hubs and terminals with regular services. This consolidation is made in a standardized way to decrease the complexity and improve the efficiency of these operations.

Several papers have been devoted to the subject in the past few years. The chapters dedicated to intermodal transportation (Crainic and Kim, 2007) and maritime transportation (Christiansen et al., 2007) are reviews on the subject covering the literature up to 2005. Another review can be found in (SteadieSeifi et al., 2014) focusing recent works on the subject. These reviews present papers covering strategic, tactical and operational aspects of the problem. This work relates more closely with the ones focused on the tactical planning aspect of the problem. At this level the goal is to optimize the use of a given infrastructure by choosing services and modes and allocating their capacities to orders. For a tactical level standpoint review, we refer to (Wieberneit, 2007). Even at this level several approaches can be taken, focusing on different elements. For instance, (Anghinolfi et al., 2011) proposes a path-based approach that also consider the allocation of containers to trains wagon and (Shintani et al., 2007) integrates empty container repositioning.

The closest related papers to our work are (Ayar and Yaman, 2011; Bauer et al., 2010). On (Ayar and Yaman, 2011), the goal is to reduce containers transportation and storage cost using a combination of trucks and maritime transportation. They also consider fixed scheduled vehicles and capacity constraints. On (Bauer et al., 2010) a time-space model is proposed to design a network with the goal of minimizing greenhouse gas emissions. Although, the focus is more on a strategic rather than tactical level, a similar time-space model is used on our work.

Most of the work on intermodal transportation deals with the movement of already consolidated containers. In this paper, we focus on the integration of the consolidation and transportation phase. In other words, the problem faced combines two main decision: the first one is to assign orders to containers, the second one is the transportation of containers themselves. An important aspect to notice in our problem is the fixed schedule of vehicles. In other words, all the routes and departure/arrival dates are known a priori.
This paper is organized as follows. The Section 2 gives a general description of the problem. Section 3 presents two integer programming models proposed for the problem. Section 4 shows tests results comparing both models. Section 5 gives the conclusion and our perspectives for the future of the work.

2 PROBLEM DESCRIPTION

We are given a set of transportation requests (orders), which should be picked up from their origins at given release time and should be delivered to their destinations no later than their due dates. These orders are taken to a consolidation terminal at their origin to be grouped (or assigned into containers). A container is closed and ready for transportation only after the release date of every order assigned to it. It is important to note that containers in this case are just logical entities with the purpose of grouping orders. They themselves do not have the traditional source/destination pair or a release and delivery dates.

Once the consolidation takes place, containers are ready to be transported to its destination consolidation terminal. The transportation happens using scheduled services (vehicles) of a given mode (rail, ships, etc). Each service has a time-window when it is possible to load containers to it. That way, for a container to use a service, it must be closed and ready for transportation at the location as the load time-window takes place. It is possible to transfer containers between different vehicles/modes during the transportation. Furthermore, it is possible to transport a container directly from source to destination using on demand trucks (direct transportation). Finally, there is a limit on the number of containers transported by each vehicle (transportation capacity), the number of containers stored at a given location (storage capacity) and a limit on how many orders can be assigned to a same container (container capacity). Each container operation (transport, storage and vehicle transfer) has a cost associated with it and the goal is to minimize the overall cost for the transportation of every order to its destination.

A small example is shown in Figure 1. In this example, there are three location A, B, C and D connected by five vehicles. Vehicles schedules can be view on the top table in Figure 2. On the bottom table five orders, represented by colored triangles, are presented with their source, destination, pickup and delivery dates. The dashed boxes are used to represent the grouping/assignment of orders to containers prior to their transportation. In this example, we can notice that even when orders have the same source and destination, they sometimes cannot be assigned to the same container due to their release and deadline dates. That is the case of orders represented by the yellow and black triangles in the example.

3 MODELING THE PROBLEM

This study proposes an integrated approach by designing two 0-1 integer programming models to find a solution to our problem. The first model uses a time-space network which is a intuitive and easy way to represent the problem. The second model makes use of the fact that vehicles schedules are known beforehand and represent the time horizon implicitly.
3.1 Time-space Model

The time-space network representation divides the entire time horizon considered into a set \(T \) of time periods \(t_1, \ldots, t_{\text{max}} \) of equal length. This is a straightforward and traditional way to represent connection between vehicles and storage operations. The notation used by this model are the following:

Locations and Time

Two nodes are defined for each location at every time period: storage and consolidation nodes. Consolidation nodes are used to represent the consolidation phase of the problem.

- \(\mathcal{N} \) - set of locations in the network.
- \(Q_n \) - storage capacity of a location \(n \in \mathcal{N} \).
- \(\sigma_n \) - storage terminal for a location \(n \in \mathcal{N} \).
- \(\gamma_n \) - consolidation terminal for a location \(n \in \mathcal{N} \).
- \(T \) - set of time periods comprising the time horizon considered.

In Figure 3 we illustrate the addition of consolidation and storage terminals for each location used in the small example presented in Figure 1.

![Figure 3: Addition of consolidation and storage terminals](image)

Vehicles

Each vehicle is represented by a different graph. Each node on its graph represent a terminal for that specific vehicle and corresponds, but is not equal, to a location in the network. The arcs of the graph represent the vehicle path. We also assume that a vehicle departs from (or arrives to) a terminal exactly after (or before) the load/unload time interval.

- \(V \) - set of vehicles connecting network locations.
- \(G_v = (N_v, A_v) \) - graph representing the vehicle \(v \in V \).
- Each \(i \in N_v \) - a terminal for that specific vehicle \(v \) at a location in \(\mathcal{N} \).
- \(\eta_i \in \mathcal{N} \) - location of terminal \(i \).
- \(\nu_i \in V \) - vehicle to which terminal \(i \) belongs.
- \(\Upsilon_i \subseteq T \) - load/unload time interval at terminal \(i \in N_v \).
- \((i, j) \in A_v \) - path segment of a vehicle.

In Figure 4 we illustrate each vehicle terminal represented by a separated orange box. The arrows in the Figure, representing vehicle paths, connect only terminals belonging to a single vehicle.

![Figure 4: Separate graph for each vehicle.](image)

Storage and Vehicle Transfer

Storage and transfer operations can take place at each location. To represent this, we divide all vehicle terminals in two sets, one for terminals where a vehicle departs from a location and a load operation can take place and other for terminals where a vehicle arrives to a location and a unload operation can happen. Note that a terminal can be part of both sets in case of an intermediate stop in the vehicle path.

- \(N^+ = \{ i | (i, j) \in A_v, v \in V \} \) - set of departure terminals.
- \(N^- = \{ i | (j, i) \in A_v, v \in V \} \) - set of arrival terminals.
- \(N^S = \{ \sigma_n | n \in \mathcal{N} \} \) - set of all storage terminals.
• $N^C = \{\gamma_n | n \in \mathcal{N}\}$ - set of all consolidation terminals.

To define arcs representing vehicle transfer operations, we must notice that this operation can happen only from an arrival terminal to a departure one (of different vehicles), provided that the load/unload interval of both terminals coincide. Storage arcs are defined in three different types. First, the unloading of a container from an arrival terminal to a storage terminal. Second, the loading of a container from a storage terminal to a departure terminal. And finally, from a storage terminal to the same storage terminal (container stays stored).

- $A^M = \{(i, j) | i \in N^-, j \in N^+, \eta_i = \eta_j, v_i \neq v_j\}$ - vehicle transfer arcs.
- $A^{S_{un}} = \{(i, \sigma_n) | i \in N^+, \eta_i = n\}$ - unloading arcs.
- $A^{S_{lo}} = \{\sigma_n, i | i \in N^-, \eta_i = n\}$ - loading arcs.
- $A^{S_{stored}} = \{\sigma_n, \sigma_m\}$ - storage arcs.
- $A^S = A^{S_{in}} \cup A^{S_{out}} \cup A^{S_{stored}}$ - all storage arcs.

To illustrate these definitions, we can zoom in a location from the example in Figure 1. Figure 5 shows the unloading arcs $A^{S_{un}}$ (red arrows), unloading arcs $A^{S_{in}}$ (blue arrows), storage arcs $A^{S_{stored}}$ (black arrows) and vehicle transfer arcs (dashed arrows) for location B.

Direct Transportation

To represent direct transportation of containers we define a set of arcs from a consolidation terminal to each storage terminal (incoming arcs) and the other way around (outgoing arcs). In other words, these arcs represent that a container is closed (at the consolidation terminal) and is ready for transportation at its source storage terminal or at a storage terminal in another location (using on demand trucks). Similarly, arcs form a storage terminal to a consolidation terminal represent that a container arrives at its destination.

- $I = \{\gamma_n, \sigma_m | n, m \in \mathcal{N}\}$
- $O = \{\sigma_n, \gamma_n | n, m \in \mathcal{N}\}$

Figure 6 illustrates this in the example of Figure 1. We show only two of the locations (B and C) of the example to simplify the illustration. The incoming arcs are represented by blue arrows, going from each consolidation terminal to each storage terminal. Outgoing arcs are represented by red arrows and connect each storage terminal to each consolidation terminal.

Time Periods

Finally, we add time dimension to our definitions. For each time period $t \in \mathcal{T}$, we define $G_t = (N_t, A_t)$ as a graph representing the network at period t, where:

- $N_t = N^+_t \cup N^-_t \cup N^S_t \forall t \in \mathcal{T}$ - set of all nodes at period t.
- $A^T_t = \{(i, j, t) | (i, j) \in A, v \in V, \delta_{ij} = t\}$ - set of arcs representing all transportation that happens at period t.
- $A^{S_{un}}_t = \{(i, j, t) | (i, t) \in N^S_t, (j, t) \in N^+_t, \eta_i = \eta_j\}$ - unloading arcs at period t.
- $A^{S_{lo}}_t = \{(i, j, t) | (i, t) \in N^-_t, (j, t) \in N^S_t, \eta_i = \eta_j\}$ - loading arcs at period t.

Figure 6: Incoming and outgoing operations for locations B and C.
We can now describe the entire model:

• \(A_{t+1}^{\text{stored}} = \{(i,j,t)|(i,t) \in N_t^S,(j,t + 1) \in N_{t+1}^S, \eta_i = \eta_j\} \) - storing arcs at period \(t \).
• \(A_t^S = A_t^{\text{in}} \cup A_t^{\text{out}} \cup A_t^{\text{stored}} \) - all storage arcs.
• \(A_t^M = \{(i,j,t)|i \in N_t^I,j \in N_t^I, \eta_i = \eta_j,v_i \neq v_j,t \in Y_t^I \cap Y_t^O\} \), set of mode transfer terminals at period \(t \).
• \(A_t = A_t^T \cup A_t^S \cup A_t^M \) - mode transfers arcs at period \(t \).
• \(I^* = \{(y_n,\sigma_m,t)|n,m \in \mathcal{N},t \in T\} \) - set of all incoming arcs.
• \(O^* = \{(\sigma_n,y_m,t)|n,m \in \mathcal{N},t \in T\} \) - set of all outgoing arcs.

The complete time-space network is then, the union of each period graph \(G = (N,A) \), where:

- \(N = \bigcup_{t \in T} (N_t^I \cup N_t^O \cup N_t^S \cup N_t^C) \)
- \(A = \bigcup_{t \in T} A_t \cup I^* \cup O^* \)

Finally, each arc in the graph has the following parameters:

- \(c_{ij} \) - cost of a transport, storage or transfer operation between terminal \(i \) and \(j \).
- \(Q_{ij} \) - operation capacity (in numbers of containers).
- \(\Delta_{ij} \) - time taken to perform operation.

Orders and Containers

Moreover, we define the set of orders and the set of containers. In this model, we do not manage empty containers movement. We assume there is a container available to each order (both sets have the same size).

- \(\mathcal{L} \) - the set of orders.
- \(\mathcal{K} \) - set of containers.
- \(s_n,d_n \in \mathcal{N} \) - the source and destination location of the order.
- \(\varphi_t,\omega_t \in T \) - the pickup and delivery date.
- \(w_t \) - the weight of the order.
- \(Q_k \) the capacity of a container \(k \).

Model

We can now describe the entire model:

Minimize: \(\sum_{d_{ij} \in A} \sum_{k \in K} c_{ij} x_{ijk} \quad (1) \)

Subject to:

\[\sum_{k \in K} y_{lk} = 1 \quad \forall l \in \mathcal{L} \quad (2) \]
\[\sum_{l \in \mathcal{L}} w_l y_{lk} \leq Q_k \quad \forall k \in \mathcal{K} \quad (3) \]
\[\sum_{d_{ij} \in A^k} x_{ijk} \leq Q_n \quad \forall t \in T, \quad n \in \mathcal{N},i = \sigma_n \quad (4) \]
\[x_{ijk} \leq Q_{ij} \quad \forall d_{ij} \in A \setminus A^S \quad (5) \]
\[\sum_{\gamma_{ij} \in \gamma_{ij}} x_{ijk} \geq y_{lk} \quad \forall l \in \mathcal{L}, \quad \forall k \in \mathcal{K},i = \gamma_{ij} \quad (6) \]
\[\sum_{\gamma_{ij} \in \gamma_{ij}} x_{ijk} \geq y_{lk} \quad \forall l \in \mathcal{L}, \quad \forall k \in \mathcal{K},j = \gamma_{ij} \quad (7) \]
\[\sum_{d_{ij} \in O^*} \sum_{\delta_{jk} \in A^k} \sum_{\gamma_{jk} \in \gamma_{jk}} x_{ijk} - \sum_{d_{ij} \in O^*} \sum_{\delta_{jk} \in A^k} \sum_{\gamma_{jk} \in \gamma_{jk}} x_{ijk} = 0 \quad \forall i \in \mathcal{N},A^C \quad (8) \]
\[\sum_{d_{ij} \in I^*} x_{ijk} \leq 1 \quad \forall k \in \mathcal{K} \quad (9) \]
\[\sum_{d_{ij} \in O^*} x_{ijk} \leq 1 \quad \forall k \in \mathcal{K} \quad (10) \]
\[y_{lk} \in \{0,1\}, \quad \forall l \in \mathcal{L},\forall k \in \mathcal{K} \quad (11) \]
\[x_{ijk} \in \{0,1\}, \quad \forall d_{ij} \in A \quad (12) \]

The variables \(y_{lk} \) are assignment variables to indicate if order \(l \) is assigned to container \(k \) and \(x_{ijk} \) are transportation variables to indicate if container \(k \) travels through an arc at period \(t \). The objective function 1 is the operation cost minimization.

Constraint 2 ensures every order is assigned to a container. Next constraints concern with capacity of elements. Constraint 3 ensures the number of orders assigned to a container respects its capacity. Constraint 4 ensures the number of containers traveling through all storage arcs \(A^S \) at a given location is below its storage capacity. And constraint 5 are capacity on transportation or transfers operations.

Constraint 6 ensures the departure of a container from the consolidation terminal of its assigned orders and also ensures time restrictions (pickup/delivery date). Constraint 7 is analogous to 6 for the arrival of containers. Constraints 8 and 9 ensures containers enter and exit the network only once.

3.2 Implicit Time Representation

As we can expect, the main drawback of a time-space representation is how it scales with the size of the time horizon. The model grows very fast the more periods it considers. Nonetheless, since the schedule information for all vehicles are known a priori, the representation of time can be made implicitly avoiding a
complete discretization of it. To achieve this, most of changes on the previous model are very straightforward but a more careful effort during the definition of the graph representing the transportation network (specially, the mode transfer arcs) is required. Instead of defining a set of transportation variables for each time period, we define variables to indicate if a container is transported between locations using a given vehicle.

Location storage capacity representation cannot be made without some bigger changes, though. The reason for this is that we no longer define a single variable to indicate if a container is stored at a specific period as in the time-space model. Then, we have to find a way to discretize time so that at any specific period as in the time-space model. Then, we consider that a container can be stored either if it has just been closed (and waits for transportation) or if is being transferred from a vehicle to another.

The events that can potentially change the number of containers stored at a location are the arrival or departure of vehicles. So we can divide time based on these events and define sets \(\Lambda \) of arcs representing vehicle transfers occurring between them. Thus, these sets contain arcs that simultaneously require storage resources. The idea is represented in Figure 7.

![Figure 7: Example of storage time for vehicle transfers.](image)

The timeline represent the possible container transfers at a hypothetical location \(n \). The colored lines represent the arrival and departure date for three vehicles (red: vehicle \(v \), blue: vehicle \(s \) and purple: vehicle \(r \)). The orange box represents the storage time required to transfer a container. The first line, for instance, illustrates a container storage time for a transfer from vehicle \(v \) to vehicle \(s \). The first red line represents the arrival of vehicle \(v \) and the second blue line the departure of vehicle \(s \).

To define the set of transfers that requires simultaneously storage resources we observe the timeline and take the first vehicle arrival event (\(t_1 \)) that occurs after \(e_1 \). Every arc that requires storage (orange box) between \(e_1 \) and \(d_1 \) is added to a new set \(\Lambda_n^1 \) for the location \(n \). We repeat the process by taking the next arrival event and the departure event after it until no more events lasts.

Let \(\Lambda_n = \{ \Lambda_n^1, \Lambda_n^2, \ldots, \Lambda_n^m \} \) be the set of all sets defined for a location \(n \). The pseudo-algorithm to identify these sets can be described as following way:

1. Let \(e_n \), be the arrival date of a vehicle \(v \) at location \(n \). Let \(d_n \), be the departure date of a vehicle \(v \) at location \(n \)
2. Let \(\Lambda_n = 0 \).
3. Let \(t_i = t_d = 0 \), let \(i = 1 \).
4. If there is a vehicle arrival \(t_d < e_v \), then \(t_a = e_v \)
 else end the algorithm.
5. If there is a vehicle departure \(t_d < d_i \), then \(t_d = d_i \)
 else end the algorithm.
6. Let \(\Lambda_n^i \) be the set of all transfers the requires storage resources between periods \(t_a \) and \(t_d \)
7. \(\Lambda_n = \Lambda_n \cup \Lambda_n^i \), \(i = i + 1 \)

On the example of Figure 3 the first arrival event is from vehicle \(s \) (\(e_1 \)) and the first departure event after it is from vehicle \(v \) (\(d_1 \)). All transfers that happen between these events are added to set \(\Lambda_n^1 = \{(v,s),(v,r),(s,v)(s,r)\} \). The first arrival event after \(d_1 \) is from vehicle \(r \) (\(e_2 \)) and first departure event after it is from vehicle \(s \) (\(d_2 \)). This results in \(\Lambda_n^2 = \{(v,s),(v,r),(s,r)(s,r)\} \). So the algorithm yields \(\Lambda_n = \{\Lambda_n^1, \Lambda_n^2\} \) for location \(n \).

The storage constraint can be defined as:

\[
\sum_{d_j \in \bar{\Lambda}_n} \sum_{k \in K} x_{ijk} \leq Q_n \quad n \in \mathbb{N}, \forall \bar{\Lambda}_n \in \bar{\Lambda}_n
\]

This constraints ensures that the number of containers stored simultaneously (represented by the sets contained in \(\bar{\Lambda}_n \)) does not violate location storage capacity. The complete model is described below:

Minimize: \[
\sum_{d_j \in \bar{\Lambda}_n} \sum_{k \in K} c_{ijk} x_{ijk} \quad (13)
\]

\[
\sum_{k \in K} y_{lk} = 1 \quad \forall l \in \mathbb{L} \quad (14)
\]

\[
\sum_{l \in \mathbb{L}} w_{lj} y_{lk} \leq Q_k \quad \forall k \in \mathbb{K} \quad (15)
\]

\[
\sum_{d_j \in \bar{\Lambda}_n} \sum_{k \in K} x_{ijk} \leq Q_n \quad n \in \mathbb{N}, \forall \bar{\Lambda}_n \in \bar{\Lambda}_n \quad (16)
\]
\[
\sum_{k \in K} x_{ijk} \leq Q_{ij} \quad \forall a_{ij} \in A \setminus A^S \tag{17}
\]
\[
\sum_{a_{ij} \in A} x_{ijk} \geq y_{lk} \quad \forall l \in L, \quad \forall k \in K, i = \sigma_h \tag{18}
\]
\[
\sum_{a_{ij} \in A} x_{ijk} \geq y_{lk} \quad \forall l \in L, \quad \forall k \in K, i = \sigma_h \tag{19}
\]
\[
\sum_{a_{ij} \in A \cap K} x_{ijk} - \sum_{a_{ij} \in A \setminus K} x_{ijk} = 0 \quad \forall \mathcal{A} \in N \setminus N^C \tag{20}
\]
\[
\sum_{a_{ij} \in A} x_{ijk} \leq 1 \quad \forall k \in K \tag{21}
\]
\[
\sum_{a_{ij} \in A} x_{ijk} \leq 1 \quad \forall k \in K \tag{22}
\]
\[
y_{lk} \in \{0, 1\}, \quad \forall l \in L, \forall k \in K \tag{23}
\]
\[
x_{ijkp} \in \{0, 1\} \quad \forall a_{ij} \in A \tag{24}
\]

Variables and constraints remain similar to the ones on the previous model, without the time dimension. The variables \(y_{lk}\) are assignment variables to indicate if order \(l\) is assigned to container \(k\) and \(x_{ijk}\) are transportation variables to indicate if container \(k\) travels through an arc. The objective function \(13\) remains the operation cost minimization.

Constraint 14 ensures every order is assigned to a container. Next constraints concern with capacity of elements. Constraint 15 ensures the number of orders assigned to a container respects its capacity. Constraint 16 ensures the number of containers traveling through all storage arcs \(A^S\) at a given location is below its storage capacity. And constraint 17 are capacity on transportation or transfers operations.

Constraint 18 ensures the departure of a container from the consolidation terminal of its assigned orders and also ensures time restrictions (pickup/delivery date). Constraint 19 is analogous to \(19\) for the arrival of containers. Constraints 20 and 21 ensures containers enter and exit the network only once.

4 RESULTS

Two sample transportation networks were designed. One consisting of 6 locations, 20 vehicles serving them and a time horizon of 25 time periods. The second, consisting of 4 locations, 12 vehicles and a time horizon of 40 time periods. Random generated instances were also created with 10, 12 and 15 orders. Tests were made on an Intel Core i5-3570 3.4 GHz and 4Gb of RAM. The solver used was ILO CPLEX v12.4. Table 1 shows the results obtained for the time taken to find a solution and model size in terms of number of variable and constraints for the time-space model (TSM) and the implicit time representation model (ITRM). The percentage values in the solution time column represent the size of the optimality gap when stopping the solver after 20 minutes of running time.

<table>
<thead>
<tr>
<th>10 orders</th>
<th>TSM</th>
<th>ITRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time(s)</td>
<td>Var</td>
<td>Const</td>
</tr>
<tr>
<td>test1</td>
<td>20.98</td>
<td>7739</td>
</tr>
<tr>
<td>test2</td>
<td>9%</td>
<td>7853</td>
</tr>
<tr>
<td>test3</td>
<td>911.08</td>
<td>6965</td>
</tr>
<tr>
<td>test4</td>
<td>3.51</td>
<td>7439</td>
</tr>
<tr>
<td>test5</td>
<td>45.47</td>
<td>7082</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 orders</th>
<th>TSM</th>
<th>ITRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time(s)</td>
<td>Var</td>
<td>Const</td>
</tr>
<tr>
<td>test6</td>
<td>11%*</td>
<td>9638</td>
</tr>
<tr>
<td>test7</td>
<td>18%*</td>
<td>9222</td>
</tr>
<tr>
<td>test8</td>
<td>32%*</td>
<td>9650</td>
</tr>
<tr>
<td>test9</td>
<td>11.19</td>
<td>9734</td>
</tr>
<tr>
<td>test10</td>
<td>59.97</td>
<td>9710</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 orders</th>
<th>TSM</th>
<th>ITRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time(s)</td>
<td>Var</td>
<td>Const</td>
</tr>
<tr>
<td>test11</td>
<td>82.58%*</td>
<td>12302</td>
</tr>
<tr>
<td>test12</td>
<td>43.21%*</td>
<td>12332</td>
</tr>
<tr>
<td>test13</td>
<td>65.34%*</td>
<td>12392</td>
</tr>
<tr>
<td>test14</td>
<td>44.54%*</td>
<td>12392</td>
</tr>
<tr>
<td>test15</td>
<td>8.24%*</td>
<td>12452</td>
</tr>
</tbody>
</table>

Few points can be noticed. First, the addition of very few orders to the problem greatly increases model size and time taken to find a solution. On the network having 6 locations, for most instances having more than 15 orders, both models could not finish calculations due to memory restrictions. Second, implicit time representation indeed reduces number of constraints and variables significantly, proportionally to the number of periods considered. Most of the time this reduction leads to a shorter solution time, but that is not always the case. This can be seen in results of tests 4 and 9. Third, there is a great variation of the solution time for instances of the same size. And an interest-

Table 2: Results for randomly created instances and 4 locations.

<table>
<thead>
<tr>
<th>10 orders</th>
<th>TSM</th>
<th>ITRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time(s)</td>
<td>Var</td>
<td>Const</td>
</tr>
<tr>
<td>test1</td>
<td>5%*</td>
<td>8677</td>
</tr>
<tr>
<td>test2</td>
<td>55.4</td>
<td>8288</td>
</tr>
<tr>
<td>test3</td>
<td>48.3</td>
<td>8249</td>
</tr>
<tr>
<td>test4</td>
<td>3</td>
<td>8341</td>
</tr>
<tr>
<td>test5</td>
<td>112.6</td>
<td>8084</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12 orders</th>
<th>TSM</th>
<th>ITRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time(s)</td>
<td>Var</td>
<td>Const</td>
</tr>
<tr>
<td>test6</td>
<td>11.5%*</td>
<td>10628</td>
</tr>
<tr>
<td>test7</td>
<td>26.3</td>
<td>10580</td>
</tr>
<tr>
<td>test8</td>
<td>41.87%*</td>
<td>10508</td>
</tr>
<tr>
<td>test9</td>
<td>5</td>
<td>10592</td>
</tr>
<tr>
<td>test10</td>
<td>39</td>
<td>10532</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 orders</th>
<th>TSM</th>
<th>ITRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time(s)</td>
<td>Var</td>
<td>Const</td>
</tr>
<tr>
<td>test11</td>
<td>42.6%*</td>
<td>13574</td>
</tr>
<tr>
<td>test12</td>
<td>61.4%*</td>
<td>13634</td>
</tr>
<tr>
<td>test13</td>
<td>30.0%*</td>
<td>13529</td>
</tr>
<tr>
<td>test14</td>
<td>11.6</td>
<td>13634</td>
</tr>
<tr>
<td>test15</td>
<td>56.2%*</td>
<td>13454</td>
</tr>
</tbody>
</table>
ing point for research is to explore how the structure of an instance can influence solution time. Finally, the integration of consolidation and transportation phases make freight transportation problem a lot harder. For comparison, if we pre-assign order to containers (by fixing variables) and thus not considering the consolidation phase, both models can find solution for instances with 100 order in a few seconds.

5 CONCLUSION

Freight transportation is an important and complex domain to be studied. In this paper we have presented the initial study on the integration of consolidation and transportation phase. We have proposed two 0-1 integer programming models for the problem. The first model is a time-space model whereas the second represent time implicitly. The discretization of time used by the time-space model allows to easily add more features to the problem (pre-consolidation storage cost, multi-drop capabilities, etc) whereas the second model has the advantage of being capable to consider a longer time horizon. The initial results obtained from both approaches shows that the integration of phases makes freight transportation problem harder.

Several research points can be explored from this initial work. The large size of the problem suggests the use of decomposition methods, such as column generation. Moreover, the result suggests that the instance structure can have a great influence on solution times and a formal description of this relation is needed. Finally, since transportation industry may have different concerns besides economical costs (environmental, QoS, etc), it is desirable to include multiple objectives to the model.

REFERENCES

