Designing Next-generation Implantable Wireless Telemetry

Deyasini Majumdar, Christian Schlegel, Navid Rezaei, Bruce Cockburn

2014

Abstract

Biomedical applications in general, and health monitoring in particular, extensively involve on-body as well as implantable wireless communications devices to enable viable end-user solutions. While technologies to wirelessly transmit data from implanted devices have already been reported, they fall short of being able to support the needs of emerging next-generation biomedical applications. In order to translate state-of-the-art wireless technologies into solutions fitting body area network applications (BANs), a key challenge to overcome is the strictly limited power budget. This paper attempts to review design challenges and proposes a viable solution for wireless telemetry to meet the targets for next-generation BANs.

References

  1. A. S. Y. Poon, S. O. S. and Meng, T. (2007). Optimal operating frequency in wireless power transmission for implantable devices. Proc. IEEE 29th International Conference EMBS, page 56735678.
  2. A. Yakovlev, S. K. and Poon, A. S. Y. (April 2012). Implantable biomedical devices: Wireless powering and communication. IEEE Communications Magazine.
  3. Chavez-Santiago, R., Sayrafian-Pour, K., Khaleghi, A., Takizawa, K., Wang, J., Balasingham, I., and Li, H.-B. (2013). Propagation models for ieee 802.15.6 standardization of implant communication in body area networks. Communications Magazine, IEEE, 51(8):80-87.
  4. Drude, S. (July 2007). Requirements and application scenarios for body area networks. Proceedings of the IST Mobile and Communications Summit.
  5. Group, I. . T. (2002). Ieee standard for telecommunications and information exchange between systems - lan/man - specific requirements - part 15: Wireless medium access control (mac) and physical layer (phy) specifications for wireless personal area networks.
  6. Group, I. . T. (2011). Ieee 802.15.4 zigbee standard - ieee standard for local and metropolitan area networkspart 15.4: Low-rate wireless personal area networks.
  7. J. Abouei, D. Brown, P. N. K. and Pasupathy, S. (May 2011). Energy efficiency and reliability in wireless biomedical implant systems. IEEE Transactions on Information Technology in Biomedicine, 15(3).
  8. J. Olivo, S. C. and Micheli, G. D. (July 2011). Energy harvesting and remote powering for implantable biosensors. IEEE Sensors Journal, 11(7):1573-1586.
  9. Maush, J. and Delgado-Rstituto, M. (2013). Ultra Low Power Transceiver for Wireless Body Area Networks. Springer International Publishing, Switzerland.
  10. Meinerzhagen, P., Andersson, O., Sherazi, Y., Burg, A., and Rodrigues, J. (2011). Synthesis strategies for subvt systems. In Circuit Theory and Design (ECCTD), 2011 20th European Conference on, pages 552-555.
  11. Merli, F. (2011). Implantable antennas for biomedical applications. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne.
  12. N. R. Sarchoghaei, D. Majumdar, B. C. and Schlegel, C. (June 25-28, 2013). Electromagnetic energy and data transfer in biological tissues using loop antennas. Proc. International Workshop on Body Area Sensor Networks (BASNet-2013).
  13. Pennes, H. H. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol., 1(2):93-122.
  14. Poon, A. S. Y. (Sept. 2-6 2009). Miniaturization of implantable wireless power receiver. Invited paper at the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE EMBS), pages 3217-3220.
  15. S. Nagaraj, S. Khan, C. S. and Burnashev, M. (Feb. 2009). Differential preamble detection in packet-based wireless networks. IEEE Transactions on Wireless Communications, 8(2):599-607.
Download


Paper Citation


in Harvard Style

Majumdar D., Schlegel C., Rezaei N. and Cockburn B. (2014). Designing Next-generation Implantable Wireless Telemetry . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014) ISBN 978-989-758-013-0, pages 271-277. DOI: 10.5220/0004914802710277


in Bibtex Style

@conference{biodevices14,
author={Deyasini Majumdar and Christian Schlegel and Navid Rezaei and Bruce Cockburn},
title={Designing Next-generation Implantable Wireless Telemetry},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)},
year={2014},
pages={271-277},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004914802710277},
isbn={978-989-758-013-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)
TI - Designing Next-generation Implantable Wireless Telemetry
SN - 978-989-758-013-0
AU - Majumdar D.
AU - Schlegel C.
AU - Rezaei N.
AU - Cockburn B.
PY - 2014
SP - 271
EP - 277
DO - 10.5220/0004914802710277