Design of a 50MO Transimpedance Amplifier with 0.98fa/vHz Input Inferred Noise in a 0.18µM CMOS Technology

William Wilson, Tom Chen

2014

Abstract

Low noise and low power consumption are key requirements for high performance electrochemical biosensors. Noise performance directly affects the sensor’s ability to detect small amounts of target chemical compounds. These requirements present challenges for the design of frontend circuitry in electrochemical biosensors. These challenges are especially apparent for integrated electrochemical biosensor arrays, as sensor size is limited by tissue cell size and the desire to achieve a cellular scale resolution. This paper presents a low-noise and low-power transimpedance amplifier (TIA) intended for (but not limited to) use as an analog frontend in an electrochemical biosensor. The amplifier was designed on a commercial 0.18µm CMOS process. The overall design achieves a 50MΩ transimpedance gain with 981aA/√Hz input inferred noise, 8.06µW power consumption at 0.9V power supply, and occupies an overall silicon area of 0.0074mm2. To our best knowledge, the design presented in this paper achieved the best noise performance and power consumption among transimpedance amplifier designs reported to date.

References

  1. Agah, A., Hassibi, A., Plummer, J., Griffin, P., 2005. Design requirements for integrated biosensor arrays. In Proc. SPIE 5699, Imaging, Manipulation, and Analysis of Biomolecules and Cells: Fundamentals and Applications III.
  2. Balasubramanian, V., Ruedi, P.-F., Temiz, Y., Ferretti, A., Guiducci, C., Enz, C.C., 2013. A 0.18 µmbiosensor front-end based on 1/f noise, distortion cancelation and chopper stabilization techniques. In Biomedical Circuits and Systems, IEEE Transactions on, vol.PP, no.99, pp.1,14.
  3. Ferrari, G., Gozzini, F., Molari, A., Sampietro, M., 2009. Transimpedance Amplifier for High Sensitivity Current Measurements on Nanodevices. In SolidState Circuits, IEEE Journal of, vol.44, no.5, pp.1609,1616.
  4. Figueiredo, M., Santin, E., Goes,J., Santos-Tavares, R., Evans, G., 2010. Two-stage fully-differential inverter-based self-biased CMOS amplifier with high efficiency. In Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on , vol., no., pp.2828-2831, May 30 2010-June 2 2010.
  5. Hassibi, A., Vikalo, H., Hajimiri, A., 2007. On Noise Processes and Limits of Performance in Biosensors. In Journal of Applied Physics, vol. 102, issue 1, 2007.
  6. Henze, D. A., Borhegyi, Z., Csicvari, J., Mamiya, A., Harris, K. D., Buzsáki, G., 2000. Intracellular Features Predicted by Extracellular Recordings in the Hippocampus in Vivo. In Journal of Neurophysiology, Jul. 2000, pp. 390-400.
  7. Kinget, Peter R., 2005. Device Mismatch and Tradeoffs in the Design of Analog Circuits. In IEEE JSSC, Vol. 40, No. 6, June 2005.
  8. Liao, Y., et al., 2012. A 3-µW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring. In IEEE JSSC, Vol. 47, No. 1, Jan. 2012.
  9. Niwa, O., et al. 1998. Small-Volume On-Line Sensor for Continuous Measurement of -Aminobutyric Acid. In Analytical Chemistry, 1998, 70, 89-93.
  10. Pettine, W., Jibson, M., Chen, T. Tobet, S., Henry, C., 2012. Charaterization of novel microelectrode geometries for detection of neurotransmitters. In IEEE Sensors Journal, Vol.12, No. 5, May, 2012.
  11. Pihel, K., et al., 1996. Overoxidized Polypyrrole-Coated Carbon Fiber Microelectrodes for Dopamine Measurements with Fast-Scan Cyclic Voltammetry. In Anal. Chem. 1996, 68, pp. 2084-2089.
  12. Qi, P., et al., 2003. Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. In Nano Lett, 2003, No. 2. 2003.
  13. Razavi, B., 2000. A 622 Mb/s 4.5 pA//spl radic/Hz CMOS transimpedance amplifier [for optical receiver front-end]. In Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC. 2000 IEEE International , vol., no., pp.162,163, 9-9 Feb. 2000.
  14. Rosenstein, J., Sorgenfrei, S., Shepard, K.L., 2011. Noise and bandwidth performance of singlemolecule biosensors. In Custom Integrated Circuits Conference (CICC), 2011 IEEE , vol., no., pp.1,7, 19-21 Sept. 2011.
  15. Salvia, J., Lajevardi, P., Hekmat, M., Murmann, B., 2009. A 56M? CMOS TIA for MEMS applications. In Custom Integrated Circuits Conference, 2009. CICC 7809. IEEE , vol., no., pp.199,202, 13-16 Sept. 2009.
  16. Sharma, A., Zaman, M.F., Ayazi, F., 2007. A 104-dB Dynamic Range Transimpedance-Based CMOS ASIC for Tuning Fork Microgyroscopes. In SolidState Circuits, IEEE Journal of , vol.42, no.8, pp.1790,1802, Aug. 2007.
  17. Starkey, S., et al., 2001. A rapid and transient synthesis of nitric oxide (NO) by a constitutively expressed type II NO synthase in the guinea-pig suprachiasmatic nucleus. In British Journal of Pharmacology (2001) 134, 1084-1092.
  18. Tang,Y., Zhang, Y., Fedder, G.K., Carley, L.R., 2012. An ultra-low noise Switched Capacitor Transimpedance Amplifier for parallel Scanning Tunneling Microscopy. In Sensors, 2012 IEEE , vol., no., pp.1,4, 28-31 Oct. 2012.
  19. Toumazou, C., et al., 2002 Tradeoffs in Analog Circuit Design. Springer, 2002.
  20. Villagrasa, J.P., Colomer-Farrarons, J., Miribel P.L., 2013. Bioelectronics for Amperometric Biosensors, State of the Art in Biosensors - General Aspects, Dr. Toonika Rinken (Ed.), ISBN: 978-953-51-1004-0, InTech.
  21. Wilson, W., Chen, T., Selby, R., 2013. A current-starved inverter-based differential amplifier design for ultralow power applications. In Circuits and Systems (LASCAS), 2013 IEEE Fourth Latin American Symposium on, vol., no., pp.1,4, Feb. 27-March 1, 2013.
  22. Wightman, R Mark, 2006. Probing Cellular Chemistry in Biological Systems with Microelectrodes. In Science, 17 March 2006, Vol. 311.
  23. Xu, C., Lemon, W., and Lui, C., 2002. Design and Fabrication of a High Density Metal Microelectrode Array for Neural Recording. In Sensors and Actuators, Vol. A 96, Issue. 1. pp. 78-85, Jan. 2002.
  24. Yao, J., Gillis, K., 2012. Quantification of Noise Sources for Amperometric Measurement of Quantal Exocytosis Using Microelectrodes. In Analyst, vol. 137, issue 11, pp.2674-2681. ROYAL SOCIETY OF CHEMISTRY.
  25. Zand, B., Phang, K., Johns, D.A., 2001. A transimpedance amplifier with DC-coupled differential photodiode current sensing for wireless optical communications. In Custom Integrated Circuits, 2001, IEEE Conference on. , vol., no., pp.455,458, 2001.
Download


Paper Citation


in Harvard Style

Wilson W. and Chen T. (2014). Design of a 50MO Transimpedance Amplifier with 0.98fa/vHz Input Inferred Noise in a 0.18µM CMOS Technology . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014) ISBN 978-989-758-013-0, pages 112-119. DOI: 10.5220/0004786801120119


in Bibtex Style

@conference{biodevices14,
author={William Wilson and Tom Chen},
title={Design of a 50MO Transimpedance Amplifier with 0.98fa/vHz Input Inferred Noise in a 0.18µM CMOS Technology},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)},
year={2014},
pages={112-119},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004786801120119},
isbn={978-989-758-013-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2014)
TI - Design of a 50MO Transimpedance Amplifier with 0.98fa/vHz Input Inferred Noise in a 0.18µM CMOS Technology
SN - 978-989-758-013-0
AU - Wilson W.
AU - Chen T.
PY - 2014
SP - 112
EP - 119
DO - 10.5220/0004786801120119