Gamma-ray Dose-rate Dependence of Fiber Bragg Grating Inscribed Germano-silicate Glass Optical Fiber with Boron-doped Inner Cladding

Seongmin Ju, Youngwoong Kim, Seongmook Jeong, Jong-Yeol Kim, Nam-Ho Lee, Hyun-Kyu Jung, Won-Taek Han

2014

Abstract

The dose-rate effect on the spectral characteristics of the fiber Bragg grating written in the germano-silicate optical fiber incorporated with boron oxide in the inner cladding under gamma-ray radiation was investigated for sensing applications. The Bragg peak shift of the FBG was found to saturate at a 78 pm level and a radiation-induced attenuation of 1.345 dB/m was obtained with the accumulated dose-rate of 22.86 kGy/h. However, the full-width half maximum bandwidth of the FBG remained practically unchanged.

References

  1. Shah, J., 1975. Effects of Enviromental Nuclear Radiation on Optical Fibers, The Bell System Technical Journal, vol. 54, no. 7, pp. 1207-1213.
  2. Gusarov, A. I., Berghmans, F., Deparis, O., Fernandez, A. F., Defosse, Y., Mégret, P., Decréton, M., and Blondel, M., 1999. High Total Dose Radiation Effects on Temperature Sensing Fiber Bragg Gratings, IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1159-1161.
  3. Gusarov, A. I., Berghmans, F., Fernandez, A. F., Deparis, O., Defosse, Y., Starodubov, D., Decréton, M., Mégret, P., and Blondel, M., 2000. Behavior of Fiber Bragg Grating Under High Total Dose Gemma Radiation, IEEE Trans. Nucl. Sci., vol. 47, no. 3, pp. 688-692.
  4. Fernandez, A. F., Brichard, B., Berghmans, F., and Decréton, M., 2002. Dose-Rate Dependencies in Gamma-Irradiated Fiber Bragg Grating Filters, IEEE Trans. Nucl. Sci., vol. 49, no. 6, pp. 2874-2878.
  5. Gusarov, A., Kinet, D., Caucheteur, C., Wuilpart, M., and Mégret, P., 2010. Gamma Radiation Induced ShortWavelength Shift of the Bragg Peak in Type I Fiber Gratings, IEEE Trans. Nucl. Sci., vol. 57, no. 6, pp. 3775-3778.
  6. Gusarov, A., Vasiliev, S., Medvedkov, O., Mckenzie, I., and Berghmans, F., 2008. Stabilization of fiber Bragg Gratings against Gamma Radiation, IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2205-2212.
  7. Evans, B. D., 1998. The Role of Hydrogen as a Radiation Protection Agent at Low Temperature in a Low-OH, Pure Silica Optical Fiber, IEEE Trans. Nucl. Sci., vol. 35, no. 6, pp. 1215-1220.
  8. Iino, A. and Tamura, J., 2010. Radiation Resistivity in Silica Optical Fibers, J. Lightwave Technol., vol. 6, no. 2, pp. 145-149.
  9. Sanada, K., Shamoto, N., and Inada, K., 1994. Radiation Resistance of Fluorine-doped Silica-core Fibers, J. Non-Cryst. Solids, vol. 179, no. 4, pp. 339-344.
  10. Henschel, H., Kuhnhenn, J., and Weinand, U., 2005. Radiation Hard Optical Fibers, in Proceedings of Optical Fiber Communication Conference, (Academic, Anaheim, California, 2005), OThI1, pp. 1-3.
  11. Nagasawa, K., Hoshi, Y., Ohki, Y., and Yahagi, K., 1985. Improvement of Radiation Resistance of Pure Silica Core Fibers by Hydrogen Treatment, Jpn. J. Appl. Phys., vol. 24, no. 9, pp. 124-1228.
  12. Kakuta, T., Shikama, T., Narui, M., and Sagawa, T., 1998. Behavior of Optical Fibers under Heavy Irradiation, Fusion Eng. Des., vol. 41, no. 1, pp. 201-205.
  13. Dianov, E. M., Golant, K. M., Khrapko, R. R., and Tomashuk, A. L., 1995. Nitrogen Doped Silica Core Fibers: A New Type of Radiation-resistant Fiber, Electron. Lett., vol. 31, no. 17, pp. 1490-1491.
  14. Ju, S., Watekar, P. R., and Han, W.-T., 2010. Enhanced Sensitivity of the FBG Temperature Sensor Based on the PbO-GeO2-SiO2 Glass Optical Fiber, J. Lightwave Technol., vol. 28, no. 18, pp. 2697-2700.
  15. Hill, K. O. and Meltz, G., 1997. Fiber Bragg Grating Technology Fundamentals and Overview, J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276.
  16. Cavaleiro, P. M., Araújo, F. M., Ferreira, L. A., Santos, J. L., and Farahi, F., 1999. Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers, IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1635-1637.
Download


Paper Citation


in Harvard Style

Ju S., Kim Y., Jeong S., Kim J., Lee N., Jung H. and Han W. (2014). Gamma-ray Dose-rate Dependence of Fiber Bragg Grating Inscribed Germano-silicate Glass Optical Fiber with Boron-doped Inner Cladding . In Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-008-6, pages 107-113. DOI: 10.5220/0004716201070113


in Bibtex Style

@conference{photoptics14,
author={Seongmin Ju and Youngwoong Kim and Seongmook Jeong and Jong-Yeol Kim and Nam-Ho Lee and Hyun-Kyu Jung and Won-Taek Han},
title={Gamma-ray Dose-rate Dependence of Fiber Bragg Grating Inscribed Germano-silicate Glass Optical Fiber with Boron-doped Inner Cladding},
booktitle={Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2014},
pages={107-113},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004716201070113},
isbn={978-989-758-008-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Gamma-ray Dose-rate Dependence of Fiber Bragg Grating Inscribed Germano-silicate Glass Optical Fiber with Boron-doped Inner Cladding
SN - 978-989-758-008-6
AU - Ju S.
AU - Kim Y.
AU - Jeong S.
AU - Kim J.
AU - Lee N.
AU - Jung H.
AU - Han W.
PY - 2014
SP - 107
EP - 113
DO - 10.5220/0004716201070113