Which is the Impact of adding Traceability support over the Quality of ATL Model Transformations?

Iván Santiago, Juan M. Vara, Valeria de Castro and Esperanza Marcos
Kybele Research Group, Rey Juan Carlos University, Avda. Tulipán S/N, 28933 Móstoles, Madrid, Spain

Abstract. Model-Driven Engineering (MDE) provides a new landscape for the management of traceability, which plays a key role when dealing with software evolution. Since model transformations are the wheel that drives MDE proposals forward, traceability data can be automatically available in MDE projects. To that end, the implicit traceability relationships contained in any model transformation has to be made explicit by enriching the model transformation with traces generation capabilities. However, this refinement process implies a cost in terms of quality: enriched transformations are intuitively more complex. To back such intuition, this work presents an empirical study to assess the impact over the quality of the enrichment of ATL model transformations.

1 Introduction

The management of traceability in software development projects implies keeping track of the relationships between the different software artifacts produced along the process. This way, appropriate management of traceability helps to monitor the evolution of system components and carry out different software activities such as change impact assessment, requirements validation, maintenance tasks, etc. [1].

Unfortunately, generating and maintaining links among different software artifacts is a tedious, time-consuming and error prone task if no tooling support is provided to that end [2]. In this sense, the advent of the Model-Driven Engineering (MDE) paradigm, which principles are to enhance the role of models and to increase the level of automation all along the development process [3], provides a new landscape that can positively influence the management of traceability [4]. Indeed, MDE brings new scenarios where appropriate management of traceability is almost mandatory, such as model synchronization or incremental model changes [5], all of them particular scenarios of software evolution.

The key to foster automation in MDE projects are the model transformations that connect the different models involved in the proposal [6]. Simply put, a model transformation defines a set of relationships between the elements of source and target metamodels that must hold between the elements of the models conforming to such metamodels [7]. Therefore, a model transformation contains implicit information from which trace-links (traces) can be derived. Actually, such links can be seen as instances of the relationships defined at metamodel-level. Therefore, if we made explicit this
information in the model transformation itself, it could generate, apart from the corre-
sponding target models, an extra model which contains the traces between the elements
of the models involved in the transformation.

Nevertheless, the enrichment of model transformations to support the production of
traces model might have an impact over the quality of the transformation. This paper
focuses on the assessment of such impact. To that end, it leans on some previous works
by van Amstel and van den Brand [8, 9] who defined a set of quality metrics for model
transformations and tried to relate them with some quality attributes.

In particular, this work provides an empirical study of the impact of enriching ATL
(Atlas Transformation Language) [11] model transformations. To that end, an heuristic
to obtain quantitative indicator to assess the quality of model transformations is in-
troduced. Such indicator is then used to compare standard and enriched versions of 7
model transformations with different levels of complexity.

The rest of this work is structured as follows: Section 2 introduces the proposal
from van Amstel and van den Brand; Section 3 presents the empirical study and the
analysis of results; and finally Section 4 concludes by highlighting the main findings
and providing directions for further work.

2 Quality Metrics for Model Transformations

Despite the crucial role of model transformations in MDE, few works focused on their
quality can be found in the literature. Probably the most mature are those from van
Amstel and van den Brand.

In [8] the authors propose a set of metrics for ATL model transformations. Such
metrics are classified into 4 groups: rule metrics, helper metrics, dependency metrics
and miscellaneous. Besides, they introduce the ATL2Metrics tool that automates the
measurement process for any given (ATL) transformation.

Next, in [9] van Amstel and van den Brand lean on the previously defined metrics
to develop a proposal to assess the quality of model transformations. The idea was to
identify the relationships between the metrics and a set of quality attributes, namely
understability, modifiability, completeness, consistency, conciseness and reusability. To
that end, a poll on the quality of a given set of transformations was conducted between
ATL experts. To establish the relations between their observations and the data gathered
running the metrics, the Kendall correlation test was used. Main findings are summa-
rized in Appendix A).

3 Evaluation

In order to improve the rigor of this study, we have followed the guidelines for conduct-
ing case studies proposed by Runeson and Hst in [12]. In particular, we have adapted the
protocol used in [13] which is based on the proposal of Runeson and Hst. In essence,
the adapted protocol distinguishes a set of stages, namely: case selection, design and
execution, data collection and finally analysis and interpretation. The highlights of each
stage are presented as follows.

1 Formal definitions for these attributes can be found in [10], pp. 10
2 ATL helpers can be viewed as the ATL equivalent to methods. They make it possible to define
factorized ATL code that can be called from different points of an ATL transformation
3.1 Case Studies Selection

In order to consider different sizes and levels of complexity, 7 case studies were selected. Their main features are summarized in Table 1. From left to right, the following information is provided for each transformation: identifier (ID); name (Transformation); functionality delivered (Purpose); # of lines of code (LOC); # of mapping rules (MR); # of source and target models (IN/OUT).

Table 1. ATL transformations selected.

<table>
<thead>
<tr>
<th>ID</th>
<th>Transformation Purpose</th>
<th>LOC</th>
<th>MR</th>
<th>IN/OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>ASD2WSDL Maps Abstract Service Descriptions (ASD) into WSDL models.</td>
<td>236</td>
<td>13</td>
<td>1/1</td>
</tr>
<tr>
<td>T2</td>
<td>Class2Relational Maps UML class diagrams into relational models.</td>
<td>112</td>
<td>6</td>
<td>1/1</td>
</tr>
<tr>
<td>T3</td>
<td>Families2Persons Maps Families models into People models.</td>
<td>46</td>
<td>2</td>
<td>1/1</td>
</tr>
<tr>
<td>T4</td>
<td>SQL20032ORDB4ORA Maps ORDB models that conform to the SQL:2003 standard into ORDB models for Oracle.</td>
<td>1247</td>
<td>51</td>
<td>1/1</td>
</tr>
<tr>
<td>T5</td>
<td>UML2SQL2003 Maps UML class diagrams annotated by means of an AMW (Atlas Model Weaver) models into ORDB models that confirm to the SQL:2003 standard.</td>
<td>2181</td>
<td>66</td>
<td>2/1</td>
</tr>
<tr>
<td>T6</td>
<td>UML2XMLSchema Maps UML class diagrams annotated by means of an AMW models into XSD models.</td>
<td>459</td>
<td>13</td>
<td>2/1</td>
</tr>
<tr>
<td>T7</td>
<td>WSDL2ASD Maps WSDL models into ASD models.</td>
<td>190</td>
<td>9</td>
<td>1/1</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>4471</td>
<td>160</td>
<td>9/7</td>
</tr>
</tbody>
</table>

3.2 Design and Execution

The empirical study has been executed as follows:

(1) Original transformation is checked and run to collect the # of LOC and execution time.
(2) ATL2Metrics is run over the transformation to gather values for each metric.
(3) Transformation is automatically enriched using the iTrace framework [14] to support the production of trace models. This process is described in Appendix B.
(4) Enriched transformation is checked and run to collect the # of LOC and execution time.
(5) ATL2Metrics is run over enriched transformation to gather values for each metric.
(6) Steps 1 to 5 are repeated for each transformation under study.
(7) Data collected is analyzed.

The values gathered are then computed to obtain an overall indicator of the quality of each model transformation. This computation is supported by the following heuristic that exploits somehow the data provided by van Amstel and van den Brand.

Let n be the number of metrics, p the number of attributes and k the number of transformations whose attributes we aim to estimate. Let $X \in [-1, -1]^{n \times p}$ be the matrix containing the Kendall correlation coefficients for each pair of metric and attribute. Let $Y \in \mathbb{R}^{n \times k}$ be the matrix containing the metrics for each transformation. The objective is to estimate a matrix $\tilde{Z} \in [0, -1]^{p \times k}$ with the attributes for each transformation.

3 Authors would like to thank Dr. Diego Vidaurre, from the Oxford center for Human Brain Activity, for his valuable advice on the statistical analysis of the results.
Then, as equation (1) shows we can compute Z just as the weighted average of the corresponding metrics, where the weights are given by the correlation coefficients. Finally, equation (2) scales \tilde{Z} so that each element ranges from 0 to 1.

$$Z_{jl} = \frac{\sum_{i=1}^{n} Y_{il} \cdot X_{ij}}{\sum_{i=1}^{n} |X_{ij}|} \quad (1)$$ $$\tilde{Z}_{jl} = \frac{Z_{jl} - \min(Y_l)}{\max(Y_l) - \min(Y_l)} \quad (2)$$

3.3 Data Collection

Table 2 summarizes the results obtained from the execution of the previous process. First column identifies the transformation under consideration, where T_x stands for the original version of the transformation and T_x' for the enriched one.

Then the value for each quality attribute, as well as the overall value (arithmetic average) for each transformation are shown. Note that an additional value is shown in those rows corresponding to enriched transformations. It states the difference between the values obtained by the original and enriched versions of the transformations. For instance, the understability value for T_1 is 0.93 whereas the one for T_1' is 0.75. Understability of T_1 has consequently decreased 18.43% because of the enrichment process.

Last row sums up the data by showing the average values and differences of each attribute and the overall indicator.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>0.96</td>
<td>1.00</td>
<td>0.88</td>
<td>0.88</td>
<td>0.96</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>T_1'</td>
<td>0.60</td>
<td>-36.64%</td>
<td>0.90</td>
<td>-9.89%</td>
<td>0.71</td>
<td>-17.04%</td>
<td>0.70</td>
</tr>
<tr>
<td>T_2</td>
<td>1.00</td>
<td>1.00</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
<td>0.97</td>
<td>0.98</td>
</tr>
<tr>
<td>T_2'</td>
<td>0.69</td>
<td>-30.95%</td>
<td>0.90</td>
<td>-9.89%</td>
<td>0.78</td>
<td>-17.04%</td>
<td>0.78</td>
</tr>
<tr>
<td>T_3</td>
<td>0.84</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>0.97</td>
</tr>
<tr>
<td>T_3'</td>
<td>0.65</td>
<td>-19.05%</td>
<td>0.90</td>
<td>-9.89%</td>
<td>0.83</td>
<td>-17.04%</td>
<td>0.82</td>
</tr>
<tr>
<td>T_4</td>
<td>0.55</td>
<td>1.00</td>
<td>0.38</td>
<td>0.40</td>
<td>0.66</td>
<td>0.93</td>
<td>0.65</td>
</tr>
<tr>
<td>T_4'</td>
<td>0.34</td>
<td>-21.13%</td>
<td>0.91</td>
<td>-9.99%</td>
<td>0.21</td>
<td>-17.04%</td>
<td>0.22</td>
</tr>
<tr>
<td>T_5</td>
<td>0.71</td>
<td>0.99</td>
<td>0.22</td>
<td>0.22</td>
<td>0.31</td>
<td>0.22</td>
<td>0.29</td>
</tr>
<tr>
<td>T_5'</td>
<td>0.33</td>
<td>-37.18%</td>
<td>0.00</td>
<td>-9.99%</td>
<td>-0.00</td>
<td>-22.47%</td>
<td>0.00</td>
</tr>
<tr>
<td>T_6</td>
<td>0.32</td>
<td>0.37</td>
<td>0.89</td>
<td>0.85</td>
<td>0.90</td>
<td>0.47</td>
<td>0.63</td>
</tr>
<tr>
<td>T_6'</td>
<td>0.00</td>
<td>-32.02%</td>
<td>0.27</td>
<td>-9.82%</td>
<td>0.67</td>
<td>-28.10%</td>
<td>0.59</td>
</tr>
<tr>
<td>T_7</td>
<td>1.00</td>
<td>1.00</td>
<td>0.92</td>
<td>0.92</td>
<td>1.00</td>
<td>0.97</td>
<td>0.97</td>
</tr>
<tr>
<td>T_7'</td>
<td>0.64</td>
<td>-35.95%</td>
<td>0.90</td>
<td>-9.89%</td>
<td>0.75</td>
<td>-17.04%</td>
<td>0.74</td>
</tr>
<tr>
<td>Average</td>
<td>0.62</td>
<td>-30.42%</td>
<td>0.73</td>
<td>-9.99%</td>
<td>0.66</td>
<td>-28.10%</td>
<td>0.65</td>
</tr>
</tbody>
</table>

3.4 Analysis and Interpretation

To ease the analysis and interpretation of the data collected, we first introduce the main findings to later dig into the data collected regarding each quality attribute.

General Overview. According to Table 2, the enrichment of model transformations to support the production of trace models has a negative impact over the quality of the transformations. On average such impact is about 20%. This negative influence becomes more pronounced as the quality of the original transformation gets worse. See for instance the impact of enrichment over the quality of T_5.

As a matter of fact, these evidences are aligned with the initial intuition since the enrichment of the transformations implies adding extra LOC to implement the machinery that will generate the traces. Besides, bigger transformations are more affected: the more mapping rules the original transformation contains, the more machinery have to be added in the enriched version of the transformation.

Completeness. The quality attribute most negatively affected by the enrichment process is completeness (30.42% on average). According to the Kendall’s coefficient table (see Appendix B, it shares some metrics with the rest of quality attributes. However, the completeness values obtained for the different transformations do not follow the same trend than those of the rest of attributes. Therefore, we may conclude that completeness values are mainly derived from the Helper cyclomatic complexity, # Direct copies, # Imported units and Rule fan-out metrics since they are related just to the completeness attribute. Indeed, the negative impact could be granted almost exclusively to the Rule fan-out metric. In the enriched transformations produced by iTrace, an auxiliary mapping rule is called for each element in the source and target pattern of every mapping rule. As a result, complete mapping rules (those able to produce target elements without calling other rules or helpers) are turned into non-complete mapping rules in the enriched version of the transformation, with the consequent impact over completeness of the transformation.

Modifiability. In contrast with the impact on completeness, modifiability is the quality attribute least affected by the enrichment process (9.68% on average). The value of this attribute is mainly conditioned by the number of units and source and target models involved in the transformation. As well, the use of constructions that raise the level of coupling, like the resolveTemp operation has a negative impact on modifiability.

As a matter of fact, the enriched transformations produced by iTrace do not imply the addition of building-blocks that raise the level of coupling or new units. Besides, the data show that the impact on modifiability does not depend on the size of the original transformation.

Consistency, Reusability and Conciseness. Unfortunately, the conclusions regarding consistency, reusability and conciseness are not conclusive. This is mainly due to the metrics proposed by van Amstel and van den Brand. Back to the table, transformations can be grouped into two categories attending to the values for these attributes. First group comprises T1, T2, T3, T4 and T7. Second group comprises T5 and T6 transformations. If we check which are the features shared by each group, we find out that transformations in the first group involve two source models, while those in the second group involve just one source model.

Nevertheless, Table 3 shows that, in theory, there is no relation between the metric computing the number of source models # Input models and the values for three attributes. In order to explain this paradox, we focus on the metrics shared by the attributes under study in this section, namely # Called rules and # Unused called rules.

4 The Rule fan-out metric computes the average number of external invocations, e.g. a mapping rule invokes a helper or another mapping rule

5 Allows pointing, from an ATL rule, to any of the target model elements that will be generated. Its use goes against the declarative nature of ATL transformations.
The enrichment process supported by iTrace results in the addition of a called rule for each source model. Such rule is in charge of linking each source element with its corresponding model in the traces model produced. The more source models involved in the original transformation, the more called rules added in the enriched version. The # of source models has consequently a direct influence over the value delivered by the # Called rules metric. All this given we can conclude that, according to the metrics proposed by van Amstel and van den Brand, the # of source models has a direct influence on the consistency, reusability and conciseness of an ATL (enriched) transformation.

Understandability. Understandability is the attribute for which more scattered values are obtained for enriched transformations, even though it shares a good number of metrics with consistency, reusability and conciseness, for which a common trend was found. Therefore, we focus on the # Elements per output pattern metric, since it is the only metric solely related with understandability.

Given a mapping rule containing \(n \) elements in the source an target patterns, the enriched version of such rule contains \(n + 1 \) additional elements in the target pattern. These additional elements serve to generate \(n \) references to the source and target elements related by the rule, plus a trace link element that connect them. The addition of these elements contributes obviously to increment the # Elements per output pattern, with the consequent impact on understandability.

Under the light of these observations, it becomes clear that the disparity in the values for understandability comes from the disparity on the values returned by the # Elements per output pattern for the original transformations.

4 Conclusions

In order to reason about the cost of having traceability data in MDE projects, this work has presented an empirical study to assess the impact of enriching model transformations over their quality. In particular, the quality of 7 ATL [11] model transformations owning different levels of complexity was assessed before and after the enrichment process.

To do so, an heuristic has been defined that combines the data provided by battery of metrics related with a set of quality attributes [9]. The heuristic provides a measure for each quality attribute as well as an overall quality measure. Finally, the values gathered have been compared and analyzed.

Probably, the main contribution of this paper is to provide empirical evidence to confirm the intuitive knowledge about the impact of adding trace generation support to model transformations. The data collected show that the quality of enriched versions is worse than that of original transformations (the loss rate is about 20%). This impact has a direct consequence over the effort needed for the maintenance of enriched model transformations.

In order to alleviate this impact we advocate in favor of using model-based techniques. To do so, we must adopt the approach introduced by Bèzivin et al. to deal with model transformations as transformations models [15]. From there on, model transformations can be used to handle and produce transformation models. As a matter of fact, \(^6\) Average # of elements per output pattern.
this work has partially shown that this approach can be effectively adopted. The completely automated enrichment process supported by iTrace is largely based on the use of transformation models.

To conclude, we would like to introduce two considerations about the validity of the study. On the one hand, the results might be partially biased by the nature of the particular enrichment process adopted. The trace models generated by the enriched transformations produced by iTrace conform to a particular traces metamodel that was defined as part of the proposal. If a different (traces) metamodel is used, the refinements over the original transformation might be different, as well as the results delivered by the metrics when computed over the enriched version of the transformation.

This drives us to the main threat to validity: the metrics proposed by van Amstel and van den Brand [8, 9] and their relation with the quality attributes. To address this issue we are reviewing the metrics in order to add new metrics, as well as refine and eliminate some others. Besides, we plan to carry out a new survey in order to have data to apply a mathematically solid regression methodology to correlate metrics and quality attributes.

Acknowledgements

This research is partially funded by the MASAI project, financed by the Spanish Ministry of Science and Technology (Ref. TIN2011-22617).

References

Appendix

A Kendall’s Coefficient

From [9], pp.26:

"This test returns two values, viz. a correlation coefficient (c_{cc}) and a significance value (c_{sig}). The correlation coefficient indicates the strength and direction of the correlation. A positive correlation coefficient means that there is a positive relation between metric and quality attribute and a negative correlation coefficient implies a negative relation. The significance indicates the probability that there is no correlation between metric and quality attribute even though one is reported, i.e., the probability for a coincidence. Note that correlation does not indicate a causal relation between metric and quality attribute.”

Table 3 shows the correlations that were identified in the study of van Amstel and van den Brand.

B Enriching Model Transformations with iTrace

iTrace leans on the fact that any model transformation can be represented as a (transformation) model [15] and on the use of Higher-Order Transformations (HOTs). In
considered the de facto riched by a HOT (b) and finally the resulting transformation models is again serialized model from a given ATL transformation (a); next, such transformation model is exported by iTrace in to support the enrichment of ATL transformations. The enrichment process bundled corresponding target models, but also trace models. This way, iTrace uses HOTs as “a model transformation such that its input and/or output models are themselves transformation model”. This idea was first proposed by Jouault in [17] that introduced an initial prototype to support the enrichment of ATL transformations. The enrichment process bundled in iTrace is a little bit more complex than the one from [17], due to the increased complexity of iTrace metamodels.

Fig. 1 depicts graphically the enrichment process for m2m transformations supported by iTrace: first, the TCS [18] injector/extractor for ATL files bundled in the AMMA (Atlas Model Management Architecture) platform\(^7\) produces a transformation model from a given ATL transformation (a); next, such transformation model is enriched by a HOT (b) and finally the resulting transformation models is again serialized into an ATL model transformation (c). As mentioned before, the execution of such enriched transformation will produce not only the corresponding target models, but also a traces model.

With regard to the selection of ATL, there were two decisive factors. Firstly, ATL is considered the de facto standard for the development of model transformations [19] and

it has additionally been developed according to MDE principles. As a result, it provides a complete metamodel that allows ATL model transformations to be modeled without the need to define a new metamodel. Note that the metrics defined by van Amstel and van den Brand are computed by executing a set of model transformations over the transformation models obtained from the source code that implements the transformations under study.

However, the evaluation of other transformation languages is technically feasible, since any metamodel-based transformation language facilitates obtaining a transformation model from a given transformation. Computing the metrics for such language only requires the adaptation of the set of transformations aforementioned to the metamodel of the targeted language.

Fig. 1. Adding traceability capabilities in ATL transformations - adapted from [17].