Multi-source Energy Harvesting Powered Acoustic Emission Sensing System for Rotating Machinery Condition Monitoring Applications

Wensi Wang, Anderson Machado Ortiz, Ningning Wang, Michael Hayes, Brendan O’Flynn, Cian O’Mathuna

2013

Abstract

.

References

  1. Aygün, B. and Gungor, V. C. (2011). Wireless sensor networks for structure health monitoring: recent advances and future research directions. Sensor Review, 31(3):261-276.
  2. Bastianini, F., Sedigh, S., Pascale, G., and Perri, G. (2013). Cost-effective dynamic structural health monitoring with a compact and autonomous wireless sensor system. In Nondestructive Testing of Materials and Structures, pages 1065-1070. Springer.
  3. Bohse, J. (2013). Acoustic emission. In Handbook of Technical Diagnostics, pages 137-160. Springer.
  4. Ching, J., To, A., and Glaser, S. (2004). Acoustic emission source deconvolution: Bayes vs. minimax, fourier vs. wavelets, and linear vs. nonlinear. Journal of the Acoustical Society of America, 115(6):3048-3058.
  5. De Silva, C. W. (2010). Vibration monitoring, testing, and instrumentation. CRC Press.
  6. Grosse, C. U. and Krüger, M. (2006). Wireless acoustic emission sensor networks for structural health monitoring in civil engineering. In Proc. European Conf. on Non-Destructive Testing (ECNDT), DGZfP BB103-CD. Citeseer.
  7. Grosse, C. U., Reinhardt, H. W., Motz, M., and Kroplin, B. (2002). Signal conditioning in acoustic emission analysis using wavelets. NDT. net, 7(9):1-9.
  8. Im, J.-P., Wang, S.-W., Ryu, S.-T., and Cho, G.-H. (2012). A 40 mv transformer-reuse self-startup boost converter with mppt control for thermoelectric energy harvesting. Solid-State Circuits, IEEE Journal of, 47(12):3055-3067.
  9. Ledeczi, A., Hay, T., Volgyesi, P., Hay, D. R., Nádas, A., and Jayaraman, S. (2009). Wireless acoustic emission sensor network for structural monitoring. Sensors Journal, IEEE, 9(11):1370-1377.
  10. Lédeczi, Í ., Völgyesi, P., Barth, E., Nádas, A., Pedchenko, A., Hay, T., and Jayaraman, S. (2011). Self-sustaining wireless acoustic emission sensor system for bridge monitoring. In New Developments in Sensing Technology for Structural Health Monitoring, pages 15- 39. Springer.
  11. Loutas, T., Kalaitzoglou, J., Sotiriades, G., and Kostopoulos, V. (2011). The combined use of vibration, acoustic emission and oil debris sensor monitored data coming from rotating machinery for the development of a robust health monitoring system.
  12. Lubieniecki, M. and Uhl, T. (2012). Thermoelectric energy harvester: Design considerations for a bearing node. Journal of Intelligent Material Systems and Structures, 23(16):1813-1825.
  13. Mba, D. and Rao, R. B. (2006). Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines; bearings, pumps, gearboxes, engines and rotating structures.
  14. McFadden, P. and Smith, J. (1984). Vibration monitoring of rolling element bearings by the high-frequency resonance techniquea review. Tribology international, 17(1):3-10.
  15. O'Donnell, T. and Wang, W. (2009). Power management, energy conversion and energy scavenging for smart systems. Ambient Intelligence with Microsystems, pages 241-266.
  16. Ramadass, Y. K. and Chandrakasan, A. P. (2011). A batteryless thermoelectric energy harvesting interface circuit with 35 mv startup voltage. Solid-State Circuits, IEEE Journal of, 46(1):333-341.
  17. Rutzig, M. B. (2013). Multicore platforms: Processors, communication and memories. In Adaptable Embedded Systems, pages 243-277. Springer.
  18. Wang, W., Wang, N., Hayes, M., O'Flynn, B., and O'Mathuna, C. (2012). Power management for submw energy harvester with adaptive hybrid energy storage. Journal of Intelligent Material Systems and Structures.
  19. Weddell, A. S., Magno, M., Merrett, G. V., Brunelli, D., Al-Hashimi, B., and Benini, L. (2013). A survey of multi-source energy harvesting systems. In Design, Automation and Test in Europe (DATE).
  20. Weddell, A. S., Zhu, D., Merrett, G. V., Beeby, S., and AlHashimi, B. (2012). A practical self-powered sensor system with a tunable vibration energy harvester. In PowerMEMS 2012.
  21. Zhu, D., Beeby, S., Tudor, M., and Harris, N. (2012a). Electromagnetic vibration energy harvesting using an improved halbach array.
  22. Zhu, D., Roberts, S., Mouille, T., Tudor, M. J., and Beeby, S. P. (2012b). General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters. Smart Materials and Structures, 21(10):105039.
Download


Paper Citation


in Harvard Style

Wang W., Machado Ortiz A., Wang N., Hayes M., O’Flynn B. and O’Mathuna C. (2013). Multi-source Energy Harvesting Powered Acoustic Emission Sensing System for Rotating Machinery Condition Monitoring Applications . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-70-9, pages 492-499. DOI: 10.5220/0004593804920499


in Bibtex Style

@conference{icinco13,
author={Wensi Wang and Anderson Machado Ortiz and Ningning Wang and Michael Hayes and Brendan O’Flynn and Cian O’Mathuna},
title={Multi-source Energy Harvesting Powered Acoustic Emission Sensing System for Rotating Machinery Condition Monitoring Applications},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2013},
pages={492-499},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004593804920499},
isbn={978-989-8565-70-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Multi-source Energy Harvesting Powered Acoustic Emission Sensing System for Rotating Machinery Condition Monitoring Applications
SN - 978-989-8565-70-9
AU - Wang W.
AU - Machado Ortiz A.
AU - Wang N.
AU - Hayes M.
AU - O’Flynn B.
AU - O’Mathuna C.
PY - 2013
SP - 492
EP - 499
DO - 10.5220/0004593804920499