Evidence for the Relationship between Pilot Effectiveness, Surface Anomalies, and Operational Efficiency Data

Daniel Howell\(^1\) and Sherry Borener\(^2\)

\(^1\)MCR Federal LLC, 2601 Mission Point Blvd. Suite 320, Beavercreek, OH, U.S.A.
\(^2\)Federal Aviation Administration Aviation Safety Analytical Services, 800 Independence Ave., SW, Washington, DC, U.S.A.

Keywords: Aviation, Airports, Fatigue, Operational Efficiency, Taxi Time.

Abstract: To justify an investment in a safety-related program, the U.S. Federal Aviation Administration must develop a business justification with a positive return on investment. While the assumed value of an avoided aviation accident is quite large, the rarity of such events many times makes a business case built strictly on safety metrics untenable. It is therefore helpful to examine if there are efficiency or capacity impacts related to the investment. One area of interest to the aviation safety community is fatigue and pilot effectiveness. Previous research has examined the connection between operator fatigue and accident frequency. In this study, we examine the relationships between pilot effectiveness, measured surface anomalies, and archived operational efficiency data at Atlanta Hartsfield-Jackson International Airport and Memphis International Airport to provide evidence to support future taxi path conformance or crew rest requirement investments.

1 INTRODUCTION

Catastrophic airport surface accidents are thankfully rare. To justify an investment in a safety-related program the U.S. Federal Aviation Administration (FAA) must develop a business justification with a positive return on investment. While the assumed value of an avoided accident is quite large, the rarity of such events many times makes a business case built strictly on safety metrics untenable. It is therefore helpful to examine if there are efficiency or capacity impacts related to the investment. For example, the Airport Surface Detection Equipment – Model X (ASDE-X) system is often described as a runway-safety tool that enables air traffic controllers to detect potential runway conflicts by providing detailed coverage of movement on runways and taxiways. While a reduction in projected accidents played a role in the benefits estimate, the majority of the quantified benefits in the final FAA business case were related to possible increases in airport efficiency related to better identification of aircraft and better awareness of queue position and sequence. (FAA, 2005)

The System Safety Management Transformation program (SSMT), managed by the Office of Aviation Safety Analytical Services, offers an integrated safety management approach that will provide a proactive strategy for building increased safety into the air transportation system. SSMT supports the FAA as it develops and implements NextGen and manages the transition from the current National Airspace System (FAA, 2011). Because the investment decisions that are needed to implement NextGen changes depend on the complete business case and not just the safety case, SSMT is developing benefits estimates that include both safety and efficiency.

One area of interest to the SSMT program and the wider safety community is fatigue and pilot effectiveness. Previous research has examined the connection between operator fatigue and accident frequency for motor vehicles (Folkard, 2003 and Blanco, 2011), the railroad industry (Hursh, 2009), and aviation (Goode, 2003). Because aviation accidents are so rare, we believe that relationships between pilot effectiveness and operational efficiency metrics will also be required to justify related investments. In this study, we examine the relationships between pilot effectiveness, measured surface anomalies, and archived operational efficiency data at two airports.
2 DESCRIPTION OF DATA AND DATA SOURCES

2.1 Surface Anomaly Data

The ASDE-X system represents the most detailed source of surveillance data available for airport surface operations. Although the primary purpose of ASDE-X is to support Air Traffic Control Tower staff with a real-time display of the position of airport objects (aircraft and vehicles), there are many additional potential applications of the surveillance data received by the system.

As support to the SSMT project, the Saab Sensis Corporation developed algorithms and processes to detect and characterize anomalies on the airport surface and estimate the effect of these anomalies on airport efficiency using the ASDE-X surveillance feed (Waldron, 2009 and Borener, 2011). The algorithms used in this study extracted three categories of potentially anomalous behavior on the airport surface: 1) sudden stops, 2) irregular turns and 3) route excursions.

For this study the anomaly algorithms discussed in the previous paragraph were applied to several months of operations during calendar year 2010 at two airports: Atlanta Hartsfield-Jackson International Airport (ATL) and Memphis International Airport (MEM).

2.2 Pilot Effectiveness Data

GRA, Inc. provided pilot effectiveness data produced by CrewPairings, Inc. for the same airports (ATL and MEM) as were used in the surface anomaly study. The effectiveness values were simulated values created using historical data over three years (2008-2010) sent by six carriers to the FAA for use in the January 2012 Flightcrew Member Duty and Rest Requirements Rulemaking (FAA, APO, 2012). The database provides information on individual flight performance and information on airport efficiency.

The pilot effectiveness score is a measure of cognitive speed that indicates ability to perform a given task. The scale is from 0 to 100. An effectiveness score of 77 is roughly equivalent to performance with a blood alcohol concentration (BAC) of 0.05 and an effectiveness score of 100 is equivalent to being completely rested. In certain cases the effectiveness scores exceed 100, such as in the case of a person receiving an afternoon nap prior to the peak of the circadian rhythm.

In the following analyses, the data were compiled to find mean and median effectiveness values in 15-minute bins throughout the day for arrivals and departures separately.

2.3 ASPM Operational Data

The Aviation System Performance Metrics (ASPM) database is an online archive of operational data compiled by the FAA Office of Policy and Plans (FAA, APO, 2012). The database provides information on individual flight performance and information on airport efficiency.

ASPM creates a record for each commercial flight that includes a gate out (Out) time, a takeoff (Off) time, a landing (On) time and a gate in (In) time. Some of these times are gathered automatically by ARINC using the automated Aircraft Communications Addressing and Reporting System (ACARS). The non-ACARS takeoff and landing times in ASPM are estimates based on actual flight track data and are quite accurate. However, the gate in and out times for non-ACARS flights are based on historical averages and may be incorrect by several minutes for a particular flight (Howell, 2005). For analyses involving taxi times, we do not use all the ASPM taxi times recorded in the database, only those that have verified ARINC OOOI data.

3 DATA ASSIMILATION AND ANALYSIS

Data from the three sources described in Section 2 came in different formats and time intervals. Construction of a useful data set for analysis involved creation of variables that combine the available data.

In the following analyses we start with the ASPM individual flight records (as described in Section 2.3) and modify the other data sources to form additional information for each flight.

3.1 Binning Pilot Effectiveness

The Pilot Effectiveness data was isolated by values for arrival and departure pilots and also binned into
15-minute periods. The median and mean values per bin were calculated and associated with the Out time for departures and the On time for arrivals. The Pilot Effectiveness values represent an average over multiple days in different years, not a record of individual days during one year. The result is that the pilot effectiveness scores are assumed to be the same for each 15-minute period on each day in the analysis. This is obviously a large simplification; however, the SSMT program believes that it is reasonable to use the entire dataset because it is likely that pilot work schedules have been consistent during the dataset time period.

As mentioned in Section 2.1, the anomaly data used in our study did not have specific flight information attached, so we did not attempt to attribute anomalies to specific flights in the following analyses. Instead we counted and recorded the number of departure and arrival anomalies that the airport experienced during either the taxi-out time (from Out to Off) or taxi-in time (from On to In) for each flight. Using this method we are examining the system impact of an anomaly as opposed to the impact of an anomaly on an individual flight.

3.2 Surface Demand Estimation

A 2002 study (Idris, 2002) found the main factor determining taxi-out time was queue length. Using the ASPM individual flight data we do not have enough information to determine specific runway queue lengths over the time spans involved. However, if we define a more general “Surface Demand Out” for an aircraft to be the number of takeoffs between an aircraft’s pushback and takeoff, we can have a general measure that should relate to runway queues.

We can also define a “Surface Demand In” as the number of gate arrivals between an aircraft’s landing and gate arrival as a measure related to congestion an aircraft may experience as it approaches the gate.

The results section displays many graphs associated with trends in Surface Demand In and Out. The data shown in the graphs is limited to values below the 95th percentile because many of the larger surface demand values do not have enough data to show a stable mean.

3.3 Relationship between Taxi Times and Surface Demand

Previous studies have shown the trend in taxi time with surface demand (Howell 2005 and 2007). Because surface demand is a major predictor for both taxi-out and taxi-in time, most of the analyses presented in Section 4 are shown as variations in the trend with surface demand.

4 RESULTS

The wealth of data described in Sections 2 and 3 suggest numerous different avenues for exploration and several possible analysis techniques. As a first step, we focus on using the data to answer the following questions:

- Can we detect a relation between anomalies and taxi time?
- Can we detect a relation between pilot effectiveness and anomalies?

4.1 Anomalies and Taxi Time

To look at this question, we examine the trend in taxi time vs. surface demand but segregate the data between flights where the total anomalies experienced during taxiing was above or below a median value. Table 1 displays the median values for the number of total anomalies (arrival + departure) that occur per flight at each of the airports during taxi-out and taxi-in.

Table 1: Median number of total anomalies that occur during taxi-out and taxi-in.

<table>
<thead>
<tr>
<th>Airport</th>
<th>During Taxi-out</th>
<th>During Taxi-in</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>MEM</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 1 presents plots of the average taxi time vs. the surface demand segregated by number of anomalies. The error bars represent the 95 percent confidence interval around the mean.

For both airports the average taxi-out time for each value of surface demand out is greater when the total number of anomalies is above the median. Similarly, the average taxi-in time for each value of surface demand in is greater when the total number of anomalies is above the median.

Using the data behind the charts in Figure 1, we can also develop some idea of the overall average taxi time difference between aircraft experiencing more or less anomalies. The average values in Figure 1 are multiplied by the frequency of flights at each surface demand value to find a total time difference over the period of study (right side
of Table 2). Dividing this result by the total number of flights produces an overall average difference per flight (left side of Table 2).

Table 2 shows the average difference in taxi time is between 1.3 and 2.3 minutes for departures and between 1 and 1.5 minutes for arrivals, comparing times when the total anomalies are above and below the median. The difference represents a large opportunity in decreasing annual taxi-time if there is a mechanism to reduce total anomalies.

Table 2: Average difference in taxi times between aircraft when the airport is experiencing above or below the median number of anomalies.

<table>
<thead>
<tr>
<th>Airport</th>
<th>Departure</th>
<th>Arrival</th>
<th>Departure Difference (min)</th>
<th>Arrival Difference (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>2.27</td>
<td>1.01</td>
<td>16,877</td>
<td>7,465</td>
</tr>
<tr>
<td>MEM</td>
<td>1.29</td>
<td>1.45</td>
<td>3,123</td>
<td>2,563</td>
</tr>
</tbody>
</table>

4.2 Pilot Effectiveness and Anomalies

To look at this question, we examine the same trend as was plotted in Figure 4 but segregate the data between flights where the median pilot effectiveness for flights departing or arriving during the same period was above or below the overall median value. Table 3 displays the median values for the overall pilot effectiveness for arrivals and departures separately as reported in the available data. It is interesting to note that the median is greater than 90 at all sites and operations.

Table 3: Median Pilot Effectiveness recorded per operation and airport.

<table>
<thead>
<tr>
<th>Airport</th>
<th>Departures</th>
<th>Arrivals</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>97.17</td>
<td>96.48</td>
</tr>
<tr>
<td>MEM</td>
<td>90.63</td>
<td>92.53</td>
</tr>
</tbody>
</table>

Figure 2 presents plots of the number of departure anomalies vs. the surface demand out and arrival anomalies by surface demand in segregated by pilot effectiveness. The error bars represent the
95 percent confidence interval around the mean. For both airports the average number of departure anomalies for each value of surface demand out is greater when the departure pilot effectiveness is below the median. This is the expected result since lower values of pilot effectiveness relate to greater fatigue.

However, the trend between number of arrival anomalies and arrival pilot effectiveness is not as clear. For ATL, average number of arrival anomalies for each value of surface demand in is greater when the arrival pilot effectiveness is below the median, but no real trend exists for MEM.

It is possible that the median is not a good threshold for segregating the data, but this does not really explain the difference seen between the departure and arrival results. Changes to the threshold and different attempts at binning the data will be attempted in future analyses.

Using the data behind the charts in Figure 2, we can also develop some idea of the overall average difference in number of anomalies seen between aircraft arriving or departing during times of high or low pilot effectiveness. The average values in Figure 2 are multiplied by the frequency of flights at each surface demand value to find an annual difference in the anomalies seen by flights arriving or departing during high and low periods of pilot effectiveness over the period of study (middle of Table 4), the same value as a percentage of the total number of anomalies experienced (right side of Table 4), and an average difference per flight (left side of Table 4).

Table 4 shows the average difference in the number of anomalies is less than 1 per flight, comparing times when the pilot effectiveness is above or below the median. On a per flight basis the difference is not great, but represents a 13 to 26 percent difference in the annual number of departure anomalies seen at these airports. As stated previously, the trend with arrival anomalies is not as clear.

![Figure 2: Number of anomalies vs. Surface Demand segregated by pilot effectiveness scores.](image-url)
Table 4: Average difference in number of anomalies when airport experiencing above or below the median pilot effectiveness scores.

<table>
<thead>
<tr>
<th>Airport</th>
<th>Departures</th>
<th>Arrivals</th>
<th>Departures</th>
<th>Arrivals</th>
<th>Departures</th>
<th>Arrivals</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATL</td>
<td>0.48</td>
<td>0.51</td>
<td>7,707</td>
<td>16,740</td>
<td>13%</td>
<td>14%</td>
</tr>
<tr>
<td>MEM</td>
<td>0.34</td>
<td>0.00</td>
<td>4,327</td>
<td>40</td>
<td>26%</td>
<td>0%</td>
</tr>
</tbody>
</table>

5 CONCLUSIONS

In this report we presented an analysis meant to find evidence for correlations between pilot effectiveness, surface anomalies, and operational efficiency data gathered from three separate data sources. The following conclusions can be stated:

- Aircraft that are taxiing during periods with a higher number surface anomalies experience, on average, a longer taxi time even for the same amount of surface demand (congestion).
- Aircraft that depart during periods of low departure pilot effectiveness experience, on average, more departure anomalies. (Similar results for taxi-in were not as clear).

Correlations like those above can be used to help support safety-related investments using an operational efficiency approach. For example, a surface taxi path conformance program (either based in the Air Traffic Control Tower or in the cockpit) could use the relationship between taxi time and anomalies to hypothesize a taxi time savings if anomalies were reduced. The taxi time savings could then be monetized in terms of reduced aircraft direct operating costs and passenger value of time. Similarly, a project looking at reducing pilot fatigue through new crew rest requirements could use the correlations to claim a reduction in anomalies and associated taxi time in addition to accident risk reduction.

REFERENCES


