Algorithms for Acceptance in Argument Systems

Samer Nofal, Paul Dunne and Katie Atkinson

Computer Science Department, University of Liverpool, Liverpool, U.K.

Keywords: Argumentation Frameworks, Preferred Extensions, Credulous Acceptance, Skeptical Acceptance.

Abstract: We introduce algorithms that decide arguments’ acceptance in Dung’s system of argumentation. Under preferred semantics, there might be various extensions of acceptable arguments, and hence, the acceptance problem is concerned with deciding whether a given argument is in an extension or in all extensions. The new algorithms decide the acceptance without truly enumerating all extensions. This is of interest in situations where the acceptance problem is confined to a specific argument while the underlying argument system changes frequently such as in a dialog setting. We analyze our algorithms in contrast to existing algorithms. Consistent with experimental results, we argue that the new algorithms are more efficient with respect to running time.

1 INTRODUCTION

An argument system is a reasoning model that is likely to be a mainstay for the study of diverse areas such as decision support systems (see e.g. (Angoud and Prade, 2009)), machine learning (see e.g. (Mozina et al., 2007)), and agents interaction in multi agent systems (see e.g. (McBurney and Parsons, 2009)). Following (Dung, 1995), an argument system consists of a set of arguments and a binary relation that represents the conflicting arguments. Then, a resolution to an argument system is captured by deciding the acceptable arguments. Several argumentation semantics have been proposed to characterize the acceptable arguments (Baroni et al., 2011). Under preferred semantics (defined in section 2), there might be multiple extensions of acceptable arguments. Accordingly, if an argument is in all preferred extensions then the argument is skeptically accepted. On the other hand, if an argument is in a preferred extension then the argument is credulously accepted. The acceptance problem might be simply decided by enumerating all preferred extensions. However, in situations where the problem is around deciding the acceptance of a specific argument then it is more efficient to not faithfully compute the preferred extensions especially when the underlying argument system is dynamic (i.e. changes frequently such as in a dialog setting).

In this paper we aim at engineering algorithms for the acceptance decision problem under preferred semantics. After recalling the definition of argument systems in section 2, we present in section 3 the new algorithms that outperform, with respect to running time, the algorithms of (Cayrol et al., 2003; Thang et al., 2009; Verheij, 2007). To show the efficiency gain we compare our algorithms with existing algorithms analytically in section 4 while further experimental evaluation is described in section 5. Lastly, we discuss further related works and conclude the paper in section 6.

2 PRELIMINARIES

We recall the definition of argument systems (Dung, 1995). An argument system is a pair \((A, R)\) where \(A\) is a set of arguments and \(R \subseteq A \times A\) is a binary relation. We refer to \((x, y) \in R\) as \(x\) attacks \(y\) (or \(y\) is attacked by \(x\)). An argument \(x\) is acceptable w.r.t. \(S \subseteq A\) iff \(\forall (y, x) \in R, \exists z \in S : (z, y) \in R\). \(S \subseteq A\) is conflict free iff \(\forall x, y \in S : (x, y) \notin R\). \(S \subseteq A\) is an admissible set iff it is conflict free and \(\forall x \in S : x\) is acceptable w.r.t. \(S\). A preferred extension is a maximal (w.r.t. \(\subseteq\)) admissible set. An argument \(x\) is skeptically accepted iff \(x\) is in every preferred extension, while \(x\) is credulously accepted iff \(x\) is in a preferred extension. For example, consider the argument system depicted by the directed graph in figure 1 where the nodes are the arguments \(A = \{u, v, w, x, y, z\}\) while the arcs are the attacks between arguments \(R = \{(u, w), (v, u), (v, z), (z, x), (x, y), (y, x)\}\). Thus, the preferred extensions are \(\{v, w, x\}\) and \(\{v, w, y\}\) and therefore \(v\) and \(w\) are skeptically accepted while \(x\) and \(y\) are credulously accepted.
3 THE NEW ALGORITHMS

In deciding the acceptance, it might be desirable to produce some kind of proof (i.e. explanation) as to why an argument is credulously accepted. In order to define what makes up a proof for the credulous acceptance let us recall a helpful term. We say that an argument x is reachable from an argument y if there is a directed path from y to x. For example, in figure 1 x is reachable from u through the directed path $((u, w), (w, z), (z, x))$ while u is not reachable from x. Thus, a credulous proof of an argument that is MUST-OUT is made up of two sets, an admissible set containing the argument and the set of all counter arguments as formalized in the following.

Definition 1. Let (A, R) be an argument system, $S \subseteq A$ be an admissible set containing x s.t. $\forall z \in S : x$ is reachable from z and let $Q = \{ y \in A | \exists z \in S : (y, z) \in R \}$. Then, $S \cup Q$ is a credulous proof for x.

It follows directly that our definition of credulous proof is compatible with the definition of credulous acceptance. Note that a given argument x is credulously accepted iff the argument is in an admissible set, which is explicitly expressed in definition 1. Algorithm 1 decides a credulous proof of an argument by basically making use of five labels: PRO (short for proponent), OPP (short for opponent), IGNQ (short for ignored), OUT and MUST-OUT. An argument x is labeled PRO to indicate that x might be in an admissible set and the argument in question is reachable from x. An argument y is labeled OUT if y is attacked by a PRO argument. The MUST-OUT label identifies arguments that attack PRO arguments. An argument y is labeled OPP if y is attacked by a PRO argument and y attacks a PRO argument. An argument y is labeled IGNQ to signal that y cannot be in an admissible set with the current PRO arguments. The formal usage of these labels is defined in algorithm 1. The basic notion of algorithm 1 is to change arguments’ labels iteratively according to the labels’ usage outlined earlier until there does not exist an argument that is MUST-OUT. At this point, PRO/OPP arguments make up a credulous proof for the argument in question such that PRO arguments represent the admissible part of the proof. Referring to the argument system in figure 1, $\{v, x, y, z\}$ is a credulous proof for x where $\{v, x\}$ is admissible, see figure 2 that demonstrates how algorithm 1 works. Although figure 2 does not reflect every aspect of algorithm 1, the figure might help the reader to capture the general idea. To prove algorithm 1, it is essential to show that PRO arguments make up an admissible set.

Proposition 1. Let (A, R) be an argument system and $x \in A$. Then:

1. If algorithm 1 decides that x is credulously proved by $\{ y \in A | y$ is PRO or OPP $\}$ then $\exists S \subseteq A : S$ is admissible $\land S = \{ y \in A | y$ is PRO $\}$.
2. If x is credulously accepted then algorithm 1 decides that x is credulously proved by $\{ y \in A | y$ is PRO or OPP $\}$.

Proof: To prove both parts, we need to show that $\{ y \in A | y$ is PRO $\}$, denoted by SS, is admissible. To establish that SS is conflict free, assume that $\exists z, y \in SS : (z, y) \in R$, and so, y is OUT or OPP according to algorithm 1, see lines 3-9 and 28-34. This contradicts with the fact that $y \in SS$ is PRO. To show that $\forall y \in SS : y$ is acceptable to SS, suppose that $\exists y \in SS : \exists (z, y) \in R \land \exists w \in SS : (w, z) \in R$, and subsequently, z is MUST-OUT according to lines 12 and 37. This contradicts with the fact that SS is reported as a credulous proof iff $\exists w \in SS : w$ is MUST-OUT, see line 25 and 47.

Referring to figure 1, x can be credulously proved by either $\{v, x, y, z\}$ or $\{u, v, w, x, y, z\}$. To decide more credulous proofs for a given argument we define algorithm 2 which is a slightly modified version of algorithm 1 such that algorithm 2 continues searching for further credulous proofs while algorithm 1 stops as soon as a credulous proof is found. See figure 3 that demonstrates how algorithm 2 finds the two credulous proofs of the argument x in the argument system.
of figure 1. Since it would be similar to the proof of algorithm 1, we omit the soundness proof of algorithm 2 to avoid redundancy. However, there is no guarantee that algorithm 2 will return all credulous proofs.

Regarding the decision problem of skeptical acceptance, the proof for a skeptically accepted argu-

Algorithm 1: Deciding a credulous proof of an argument x in an argument system (A, R).

1. let C ∈ {true, false};
2. C ← true;
3. label x ∈ A PRO;
4. foreach (x, y) ∈ R do
5. if y ∈ A is MUST-OUT then
6. label y ∈ A OPP;
7. else
8. if y ∈ A is not OPP then
9. label y ∈ A OUT;
10. foreach (z, x) ∈ R do
11. if z ∈ A is IGNQ or unlabeled then
12. label z ∈ A MUST-OUT;
13. C ← false;
14. else
15. if z ∈ A is OUT then
16. label z ∈ A OPP;
17. if C = true then
18. x is proved by {y ∈ A | y is PRO or OPP};
19. else
20. if is-accepted(A) = true then
21. x is proved by {y ∈ A | y is PRO or OPP};
22. else
23. x is not credulously acceptable;
24. procedure is-accepted(A)
25. foreach y ∈ A : y is MUST-OUT do
26. foreach (z, y) ∈ R : z ∈ A is unlabeled do
27. A′ ← A;
28. label z ∈ A′ PRO;
29. foreach (z, u) ∈ R do
30. if u ∈ A′ is MUST-OUT then
31. label u ∈ A′ OPP;
32. else
33. if u ∈ A′ is not OPP then
34. label u ∈ A′ OUT;
35. foreach (v, z) ∈ R do
36. if v ∈ A′ is IGNQ or unlabeled then
37. label v ∈ A′ MUST-OUT;
38. else
39. if v ∈ A′ is OUT then
40. label v ∈ A′ OPP;
41. if is-accepted(A′) = true then
42. A ← A′;
43. return true;
44. else
45. label z ∈ A IGNQ;
46. return false;
47. return true;
48. end procedure

Algorithm 2: Deciding a set of credulous proofs of an argument x in an argument system (A, R).

1. let prfs denote a set of credulous proofs for x;
2. prfs ← φ;
3. let C1 ∈ {true, false};
4. C1 ← true;
5. label x ∈ A PRO;
6. foreach (x, y) ∈ R do
7. if y ∈ A is MUST-OUT then
8. label y ∈ A OPP;
9. else
10. if y ∈ A is not OPP then
11. label y ∈ A OUT;
12. foreach (z, x) ∈ R do
13. if z ∈ A is IGNQ or not labeled then
14. label z ∈ A MUST-OUT;
15. C1 ← false;
16. else
17. if z ∈ A is OUT then
18. label z ∈ A OPP;
19. if C1 = true then
20. prfs ← prfs ∪ {y ∈ A | y is PRO or OPP};
21. else
22. call is-accepted(A);
23. if prfs ≠ φ then
24. x is credulously proved by prfs;
25. else
26. x is not credulously acceptable;
27. procedure is-accepted(A)
28. let C2 ∈ {true, false};
29. foreach y ∈ A : y is MUST-OUT do
30. C2 ← false;
31. foreach (z, y) ∈ R : z ∈ A is unlabeled do
32. A′ ← A;
33. label z ∈ A′ PRO;
34. foreach (z, u) ∈ R do
35. if u ∈ A′ is MUST-OUT then
36. label u ∈ A′ OPP;
37. else
38. if u ∈ A′ is not OPP then
39. label u ∈ A′ OUT;
40. foreach (v, z) ∈ R do
41. if v ∈ A′ is IGNQ or unlabeled then
42. label v ∈ A′ MUST-OUT;
43. else
44. if v ∈ A′ is OUT then
45. label v ∈ A′ OPP;
46. if is-accepted(A′) = true then
47. C2 ← true;
48. else
49. label z ∈ A IGNQ;
50. if C2 = false then
51. return false;
52. if ∃y ∈ A : y is MUST-OUT then
53. prfs ← prfs ∪ {y ∈ A | y is PRO or OPP};
54. return true;
55. return false;
56. end procedure
Figure 3: Deciding the credulous proofs for the argument \(x \) by using algorithm 2.

An argument \(x \) can be fulfilled by any admissible set containing \(x \) provided that there does not exist a preferred extension that does not contain \(x \). Algorithm 3 decides the skeptical acceptance of an argument \(x \). Firstly, algorithm 3 looks for a credulously accepted argument that attacks \(x \). If there exists such attacker then algorithm 3 concludes that \(x \) is not skeptically accepted. Otherwise, algorithm 3 searches for a preferred extension that expels \(x \). If such an extension is found then \(x \) is not skeptically accepted, or else \(x \) is skeptically accepted provided that \(x \) is in an admissible set \(S \), and subsequently, \(S \) forms the skeptical proof of \(x \). In more details, algorithm 3 uses four labels: IN, OUT, MUST-OUT and IGNO (short for IGNORED). An argument \(y \) is labeled IN to indicate that \(y \) might be in an admissible set. An argument \(y \) is labeled OUT iff \(y \) is attacked by an IN argument. An argument \(y \) is labeled MUST-OUT iff \(y \) attacks an IN argument. The IGNO label designates arguments which might not be included in a preferred extension because they might not be defended by any IN argument. The precise usage is formalised in algorithm 3. Basically, algorithm 3 repeatedly labels arguments by using the four labels until no argument is unlabeled. Next, if there does not exist a MUST-OUT argument then the IN arguments make up an admissible set \(S \). Thereafter, \(S \) represents a preferred extension iff \(S \) is not a subset of any previously decided preferred extension. At this stage if the argument in question is not IN then the argument is not skeptically accepted. Algorithm 3 is somewhat self-explanatory. However, see figure 4 that shows how the algorithm works in deciding the skeptically accepted argument \(w \) in the argument system depicted in figure 1. To prove algorithm 3 we have to show three issues. Firstly, the IN arguments make up an admissible set iff no argument is MUST-OUT. Secondly, a decided admissible set is a preferred extension iff the set is not a subset of any previously decided preferred extension. Thirdly, if the algorithm decides that the argument in question is skeptically accepted then the algorithm have definitely examined all preferred extensions.

Proposition 2. Let \((A, R)\) be an argument system and \(x \in A \). Then algorithm 3 decides that \(x \) is skeptically accepted iff \(x \) is in every preferred extension.

Proof: Firstly, we demonstrate the admissibility of \(t \) (see line 37). To establish that \(t \) is conflict free, assume that \(\exists z, y \in t : (z, y) \in R \), and thus, \(y \) is \(\text{OUT} \) according to algorithm 3, see line 23. This contradicts with the fact that \(\forall y \in t : y \in \text{IN}, \) see line 37. To show that \(\forall y \in t : y \) is acceptable to \(t \), suppose that \(\exists y \in t : \exists (z, y) \in R \wedge \exists w \in t : (w, z) \in R \), and so, \(z \) is \(\text{MUST-OUT} \) according to line 29. This contradicts with the fact that \(t \) is reported as admissible iff \(\exists w \in A : w \) is \(\text{MUST-OUT}, \) see line 36. Secondly we
need to prove the maximality (w.r.t \(\subseteq \)) of the decided preferred extensions, i.e. members of \(E \), see lines 38 and 39. Assume that \(\exists y \notin E : S_1 \) is not maximal, and so, there exists an admissible set \(S_2 \not\subseteq E \) and \(S_2 \supseteq S_1 \), i.e. \(\exists y \in S_2 : y \notin S_1 \). This contradicts with the fact that algorithm 3 firstly labels \(y \) IN (line 21) and then later IGNO (line 33), and therefore, \(S_2 \) will be discovered first and subsequently \(S_2 \) must be added to \(E \) before \(S_1 \) according to lines 38 and 39. Lastly, it follows directly that algorithm 3 considers all preferred extensions in deciding the skeptical acceptance. Note that algorithm 3 examines all subsets of \(A \) by labeling every argument \(y \) IN (line 21) and afterwards IGNO (line 33) which reflects the exploration of all subsets that include, respectively exclude, \(y \).

4 THE ADVANTAGE

4.1 Over the Algorithms of Cayrol et al.

We start by highlighting the main reason behind the speedup attained by algorithm 1 in contrast to the algorithm of (Cayrol et al., 2003) (abbreviated by CAYCred) for the decision problem of credulous acceptance. Notice that CAYCred makes use of three labels: PRO, OPP and OUT. We use PRO/OPP in the same way CAYCred does. However, CAYCred labels an argument \(x \) OUT on three occasions. First, if \(x \) is attacked by a PRO argument. Second, if \(x \) attacks a PRO argument. Third, if \(x \) cannot be in an admissible set with the current PRO arguments. As we demonstrate, it is more efficient to use a different label on each distinct occasion. This is exactly what our approach does where we put in service OUT on the first occasion, MUST-OUT on the second occasion and IGNO on the third occasion. To see the profit of our labeling scheme consider the following.

CAYCred decides that the argument in question is not credulously accepted iff three conditions altogether hold. First, there is an argument \(x \) that attacks a PRO argument. Second, \(x \) is not attacked by a PRO argument. Third, for every argument \(z \) that attacks \(x \), \(z \) is OUT. Conversely, algorithm 1 decides that the argument in question is not credulously accepted iff there exists a MUST-OUT argument \(y \) s.t. for every argument \(w \) that attacks \(y \), \(w \) is OPP, IGNO, OUT or MUST-OUT. Therefore, the burden of work incurred by algorithm 1 is lighter than of that induced by CAYCred. In particular, the use of the MUST-OUT label eliminates the need to look into the first condition, recall that by definition a MUST-OUT argument attacks a PRO argument. Also, the labels OUT and OPP cut off the validation of the second condition since they both identify an argument that is attacked by a PRO argument. Observe that the objective of the IGNO label is to discriminate, and subsequently to avoid, those arguments that previously failed to be in an admissible set with the current PRO arguments. Indeed, the merit of the IGNO label is also captured by CAYCred through the OUT label.

Concerning the decision problem of skeptical acceptance, the idea of the algorithm of (Cayrol et al., 2003) (CAYSkep for short) is based on an argument \(x \)

Algorithm 3: Deciding the skeptical proof of an argument \(x \) in an argument system \((A,R)\).

1. let \(E \) denote a set of preferred extensions of \((A,R)\);
2. \(E \leftarrow \emptyset \);
3. if \(\neg \exists \phi \in R \) then
4. \(x \) is skeptically proved by \(\{x\} \);
5. exit;
6. foreach \((y,x) \in R\) do
7. \(A' \leftarrow A \);
8. invoke algorithm 1 on \(A', R \) and \(y \);
9. if algorithm 1 decided that \(y \) is accepted then
10. \(x \) is not skeptically accepted;
11. exit;
12. call decide-skeptical-acceptance\((A,x)\);
13. if \(E \neq \emptyset \) then
14. \(x \) is skeptically proved by \(E \);
15. exit;
16. procedure decide-skeptical-acceptance\((A,x)\);
17. let \(C \in \{\text{true, false}\} \);
18. foreach \(y \in A : y \) is unlabeled do
19. \(C \leftarrow \text{true} \);
20. \(A' \leftarrow A \);
21. label \(y \in A' \);
22. foreach \((y,z) \in R\) do
23. label \(z \in A' \);
24. foreach \((z,x) \in R\) do
25. if \((y,z) \in R\) then
26. \(C \leftarrow \text{false} \);
27. else
28. if \(z \in A' \) is IGNO or unlabeled then
29. label \(z \in A' \);\ MUST-OUT;
30. \(C \leftarrow \text{false} \);
31. call decide-skeptical-acceptance\((A',x)\);
32. if \(C = \text{false} \) then
33. label \(y \in A \) IGNO;
34. else
35. \(A \leftarrow A' \);
36. if \(\exists \phi \in A : \phi \) is MUST-OUT then
37. \(t \leftarrow \{ y \in A : y \) is IN\};
38. if \(\exists \phi \in E : \phi \subseteq t \) then
39. \(E \leftarrow E \cup \{t\} \);
40. if \(x \in A \) is not IN then
41. \(E \leftarrow \emptyset \);
42. \(x \) is not skeptically accepted;
43. terminate and exit;
44. end procedure
not being skeptically accepted if (1) \(x \) is attacked by a credulously accepted argument \(z \) (where \(z \) is decided by using CAYCred), or (2) there exists an admissible set that does not contain \(x \) and cannot be expanded into one that contains it. Otherwise, \(x \) is skeptically accepted iff there exists an admissible set that contains \(x \). Regarding (1), we commented earlier about the efficiency of CAYCred in comparison with algorithm 1. In deciding (2), CAYSkep uses two labels IN and OUT, and so, an argument \(y \) is labeled IN to indicate that \(y \) might be in an admissible set. The usage of the OUT label is described earlier in the discussion on CAYCred. To check whether \(S \subseteq A \) is an admissible set that can be expanded into one that contains the argument in question or not, CAYSkep verifies that \(S \) is maximally admissible w.r.t. all IN/OUT arguments. Such verification is relatively expensive, and thus, it is completely avoided by algorithm 3. Recall that algorithm 3 decides that an admissible set is maximal iff the set is not a subset of any previously decided preferred extension.

4.2 Over the Algorithms of Thang et al.

The algorithm of (Thang et al., 2009) (abbreviated by ThCred) for the decision problem of credulous acceptance is based on classifying arguments into four sets: \(P, O, SP \) and \(SO \). As an initial step, the argument in question is added to \(SP \) and \(P \) while \(O \) and \(SO \) are empty. Next, the following three operations are applied iteratively s.t. in every iteration one or more tuples of \((P, O, SP, SO) \) might be generated. First operation, if \(\exists x \in P \text{ s.t. } \exists z \in SP : z \text{ attacks } x \) then \(x \) is dropped from \(P \) and \(\forall (y, x) \in R : y \text{ is added to } O \text{ iff } y \notin SO \). Second operation, an argument \(x \) is added to \(SP \) and \(P \text{ iff } \exists y \in O : x \text{ attacks } y, x \notin O \text{ and } x \notin SO \). Third operation, an argument \(y \) is moved from \(O \) to \(SO \) indicating that there exists an argument \(x \in SP \text{ s.t. } x \text{ attacks } y \). Hence, ThCred at any time might have more than one tuple of \((P, O, SP, SO) \). This reflects that ThCred explores the admissibility of different subsets of \(A \). ThCred reports that the argument in question has credulous acceptance iff there exists a tuple \((P, O, SP, SO) \) s.t. \(P \) and \(O \) are both empty. Otherwise, the argument is not credulously accepted. To compare with algorithm 1, we stress two issues.

Firstly, ThCred algorithm might reconsider an argument \(x \) to be added to \(SP \) and \(P \) although \(x \) already failed to be in an admissible set. Recall that algorithm 1 utilizes the IGNO label to designate an argument \(x \) that is failed to be in an admissible set, and so, \(x \) is avoided in future computations.

Secondly, ThCred might add arguments to \(O \) despite they are attacked by arguments in \(SP \). This eventually might waste time because ThCred unnecessarily might try further arguments to be added to \(SP \) and \(P \) to counter the newly added arguments to \(O \). In algorithm 1, this situation is avoided by using the OUT
4.3 Over the Algorithm of Verheij

(Verheij, 2007) presented an algorithm for the credulous acceptance problem. (Verheij, 2007) classifies arguments into two sets \(J \) and \(D \). Initially, the argument in question is added to \(J \). Then, two functions are repeatedly executed on every pair of \((J, D) \). The first function is \(\text{ExtendByAttack}(J, D) = \{(J', D') \mid D' \text{ is the set } D \text{ extended with all arguments attacking arguments in } J \} \). The second function is \(\text{ExtendByDefence}(J, D) = \{(J', D') \mid J' \text{ is a conflict free, minimal set of arguments } S \subseteq J, \forall S \subseteq D, \exists \sigma \in J^*: \sigma \text{ attacks } \gamma \} \). Next, if there exists \(J' \) such that \(J' = J \) and \(D' = D \) then the argument in question is credulously proved by \(J' \). If no new pair \((J', D') \) is produced from applying the two functions on all pairs of \((J, D) \) then the argument is not accepted. To evaluate the performance of (Verheij, 2007) in contrast to algorithm 1 we consider three efficiency matters.

Firstly, notice the price of finding a minimal defense set \(J' \) in \(\text{ExtendByDefence} \). This is totally bypassed by algorithm 1.

Secondly, (Verheij, 2007) might extend \(D \) by adding superfluously arguments that are attacked by arguments in \(J \). This might worsen the efficiency of computing \(J' \) where more arguments in \(D \) might lead to more possible defense sets, and consequently, finding a minimal defense set \(J' \) would be more difficult. In algorithm 1 this situation is handled by using the OUT label designating arguments that attacked by PRO arguments, and thus no further action is taken regarding the OUT arguments.

Thirdly, (Verheij, 2007) might extend \(J \) by adding arguments that already failed to form an admissible set with the same arguments in \(J \). Perceive that algorithm 1 takes advantage of the IGNO label to characterize the arguments that can not make up an admissible set with the PRO arguments. Consequently, IGNO arguments will not be re-examined later.

5 EMPIRICAL EVALUATION

We conducted experiments to show the efficiency of the new algorithms in comparison with the existing algorithms of (Cayrol et al., 2003; Thang et al., 2009; Verheij, 2007). All algorithms, new and previous ones, were implemented in C++ on a Fedora (release 13) based machine with 4 processors (Intel core i5-750 2.67GHz) and 16GB of memory. We tested all implementations on 100,000 synthesized argument systems. Algorithm 4 describes how we generated instances of \((A, R)\).

Algorithm 4: Synthesizing an instance of \((A, R)\).

```java
let A be \( \{a_1, a_2, ..., a_n\}\) while R is initially empty;
foreach \( 1 \leq i \leq n \) do
  pick a random integer \( \gamma \) between 1 and \( n \);
  foreach \( 1 \leq i \leq \gamma - 1 \) do
    pick a random integer \( \epsilon \) between 0 and \( \gamma - 1 \);
    foreach \( 1 \leq k \leq \epsilon \) do
      pick a random integer \( j \) between 1 and \( n \) such that \( j \neq i \) and \( (a_i, a_j) \notin R \);
      R ← R ∪ \{\( (a_i, a_j) \)\};
```

To compare between algorithms we tracked the average of elapsed time in milliseconds, denoted by \(\alpha_{\text{time}} \). The elapsed time was obtained by using the `time` command of Linux. In addition, we reported the average of the processed attacks, denoted by \(\alpha_{\text{attacks}} \). Each measurement of \(\alpha_{\text{time}} \) or \(\alpha_{\text{attacks}} \) represents the average for 100 synthesized argument systems where each system might have a different \(|R| \). Coming to the results of our experiments, tables 1, 2, 3, 4 and 5 suggest that our algorithms are more efficient than the algorithms of (Cayrol et al., 2003), (Thang et al., 2009) and (Verheij, 2007).

6 CONCLUSIONS

We presented novel algorithms that decide credulous and skeptical acceptance in argument systems under preferred semantics. An added feature of the developed algorithms is the production of proofs as to why an argument is accepted. We have shown, analytically and empirically, that our algorithms are more efficient.
Table 1: Algorithm of Cayrol et al. for credulous acceptance versus algorithm 1.

| $|A|$ | range of $|R|$ | Algorithm of Cayrol et al. | Algorithm 1 |
|---|---|---|---|
| 55 | 0-1628 | α_{time} | $\alpha_{attacks}$ |
| 60 | 0-1806 | 52.73 | 1,063,995.77 |
| 70 | 29-2684 | 65.90 | 1,706,162.51 |
| 75 | 35-2985 | 94.90 | 2,999,254.36 |
| 80 | 71-3340 | 124.00 | 4,644,323.04 |
| 85 | 0-4010 | 166.40 | 6,962,249.29 |
| 90 | 0-4225 | 238.60 | 10,876,566.62 |
| 95 | 0-4396 | 238.60 | 10,876,566.62 |
| 100 | 0-5247 | 354.40 | 16,348,586.35 |

Table 2: Algorithm of Cayrol et al. for skeptical acceptance versus algorithm 3.

| $|A|$ | range of $|R|$ | Algorithm of Cayrol et al. | Algorithm 3 |
|---|---|---|---|
| 16 | 0-136 | α_{time} | $\alpha_{attacks}$ |
| 17 | 0-149 | 31.92 | 360,511.44 |
| 18 | 0-198 | 107.70 | 1,803,479.38 |
| 19 | 0-225 | 228.20 | 4,819,617.69 |
| 20 | 0-227 | 659.40 | 14,253,964.92 |
| 21 | 0-258 | 1,759.50 | 38,644,605.11 |
| 22 | 0-293 | 3,063.20 | 64,765,760.79 |
| 23 | 0-341 | 19,186.50 | 467,335,689.25 |
| 24 | 0-347 | 26,175.80 | 629,941,785.57 |
| 25 | 0-377 | 69.60 | 96,267.14 |
| 26 | 0-414 | 89.90 | 143,211.54 |
| 27 | 0-457 | 252.70 | 535,866.66 |
| 28 | 0-508 | 469.30 | 900,005.01 |
| 29 | 0-528 | 264.00 | 401,924.72 |
| 30 | 0-519 | 506.30 | 790,854.54 |
| 31 | 0-575 | 613.80 | 943,706.04 |
| 32 | 0-605 | 1,124.00 | 1,699,251.47 |
| 33 | 0-612 | 1,947.90 | 2,647,033.75 |
| 34 | 0-656 | 2,737.30 | 3,703,646.87 |

Table 3: Algorithm of Thang et al. for credulous acceptance versus algorithm 1.

| $|A|$ | range of $|R|$ | Algorithm of Thang et al. | Algorithm 1 |
|---|---|---|---|
| 26 | 0-377 | α_{time} | $\alpha_{attacks}$ |
| 27 | 0-414 | 69.60 | 96,267.14 |
| 28 | 0-457 | 89.90 | 143,211.54 |
| 29 | 0-508 | 252.70 | 535,866.66 |
| 30 | 0-519 | 506.30 | 790,854.54 |
| 31 | 0-575 | 613.80 | 943,706.04 |
| 32 | 0-605 | 1,124.00 | 1,699,251.47 |
| 33 | 0-612 | 1,947.90 | 2,647,033.75 |
| 34 | 0-656 | 2,737.30 | 3,703,646.87 |

Table 4: Algorithm of Thang et al. for skeptical acceptance versus algorithm 3.

| $|A|$ | range of $|R|$ | Algorithm of Thang et al. | Algorithm 3 |
|---|---|---|---|
| 16 | 0-136 | α_{time} | $\alpha_{attacks}$ |
| 17 | 0-149 | 366.77 | 19,897.94 |
| 18 | 0-170 | 1,595.40 | 35,397.57 |
| 19 | 0-201 | 3105.70 | 61,145.07 |
| 20 | 0-215 | 663.20 | 99,240.08 |
| 21 | 0-213 | 12,999.10 | 113,917.80 |
| 22 | 0-250 | 28,275.80 | 176,637.44 |
| 23 | 0-303 | 64,740.90 | 273,146.76 |
| 24 | 0-318 | 135,746.90 | 397,537.12 |
| 25 | 0-339 | 335,508.50 | 718,562.22 |
than the existing algorithms of (Cayrol et al., 2003; Thang et al., 2009; Verheij, 2007). We plan to invest our algorithms in extended models of Dung’s system such as the value based argument systems of (Bench-Capon, 2003) and varied strength attacks systems of (Martínez et al., 2008). Likewise, our work could be expanded to handle other argumentation semantics such as the ideal semantics (Dung et al., 2007) and the stage semantics (Verheij, 1996). A further perspective of this work is to examine heuristics that boosts the efficiency of the developed algorithms. Particularly, recall that the algorithms arbitrarily select unlabeled arguments for labeling, and hence, we intend to study different criteria for argument selection.

Some authors call the algorithms that yield proofs ‘dialectical proof procedures’ referring to the fact that a proof of an accepted argument might be, roughly, defined by the arguments put forward during a dialog between two parties. In fact, argumentation semantics can be defined by using the dialog notion (see e.g. (Jakobovits and Vermeir, 1999; Vreeswijk and Prakken, 2000; Dunne and Bench-Capon, 2003; Modgil, 2009)). Hence, (Cayrol et al., 2003) describe dialogs for preferred semantics as a means for presenting their algorithms. However, (Thang et al., 2009) make use of so called ‘dispute trees’ to pave the way for introducing their algorithms, while (Verheij, 2007) presented his algorithm by employing the notion of ‘labellings’ rather than specifying formal dialogs. Furthermore, argument-based dialogs have been extensively studied as a backbone for interactions between agents in multi-agent systems, see e.g. (McBurney and Parsons, 2009) for an overview.

Broadly, there are several works on computing decision problems in argument systems. To the best of our knowledge the algorithms of (Cayrol et al., 2003; Thang et al., 2009; Verheij, 2007) are the only related ones to the algorithms presented in this paper where all of them, including our algorithms, are identified by two characteristics. Firstly, all of the algorithms decide acceptance without literally enumerating all preferred extensions. Secondly, all of the algorithms produce proofs for the accepted arguments. However, in this context it is noteworthy to mention that (Vreeswijk, 2006) showed algorithmically how importance to decide all minimally admissible sets while (Doutre and Mengin, 2004) specify dialogs for skeptical proofs under preferred semantics. For the problem of extension enumeration, the algorithms of (Doutre and Mengin, 2001; Modgil and Caminada, 2009; Dvorak et al., 2012; Nofal et al., 2012) are dedicated to finding all preferred extensions while the algorithms of (Caminada, 2007; Caminada, 2010) find semi stable, respectively stage, extensions. Another line of research concerns encoding decision problems of argument systems into other formalisms and then solving them by using a respective solver see for example (Besnard and Doutre, 2004; Nieves et al., 2008; Egly et al., 2008; Amgoud and Devred, 2011; Dvorak et al., 2012). The work of (Li et al., 2011) examines approximation versus exact computations in the context of argument systems, whereas the experiments of (Baumann et al., 2011) evaluate the effect of splitting an argument system on the computation of preferred extensions. The work of (Liao et al., 2011) shows how to partially reevaluate the status of arguments if A or R change. From a computational theoretical perspective, the decision problems of skeptical and credulous acceptance under preferred semantics are likely to be intractable, see e.g. (Dimopoulos et al., 2000; Dunne, 2007; Or dyniak and Szeider, 2011). Finally, there are several implemented tools in the context of argument systems such as (Gaertner and Toni, 2007; South et al., 2008).

Table 5: Algorithm of Verheij for credulous acceptance versus algorithm 1.

| $|A|$ range of $|R|$ | Algorithm of Verheij α_{time} | $\alpha_{attacks}$ | Algorithm 1 α_{time} | $\alpha_{attacks}$ |
|---|---|---|---|---|
| 21 | 0-235 | 47.58 | 197,363.02 | 10.81 | 1,344.26 |
| 22 | 0-278 | 60.20 | 278,843.87 | 10.00 | 1,359.26 |
| 23 | 0-278 | 109.70 | 525,903.56 | 10.20 | 1,806.13 |
| 24 | 0-341 | 166.90 | 835,953.03 | 10.30 | 2,190.61 |
| 25 | 0-386 | 222.10 | 1,121,707.65 | 10.20 | 2,469.70 |
| 26 | 0-391 | 465.00 | 2,323,284.54 | 10.20 | 3,027.14 |
| 27 | 0-403 | 567.30 | 2,790,416.39 | 16.80 | 3,143.34 |
| 28 | 0-447 | 822.00 | 4,121,119.53 | 16.60 | 3,818.31 |
| 29 | 0-471 | 1,757.70 | 8,299,326.73 | 13.50 | 4,223.32 |
| 30 | 0-469 | 2,597.50 | 4,1,474,687.66 | 17.60 | 4,843.17 |

REFERENCES

