AUTOMATIC APPROACH FOR ONTOLOGY EVOLUTION BASED ON STABILITY EVALUATION

Karim Kamoun and Sadok Ben Yahia
Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia

Keywords: Ontology Enrichment, Ontology Evolution, Ontology Stability, Semantic Similarity Measure, Ontology Quality Evaluation.

Abstract: The life time of ontology exploitation depends on the right way of making their evolution. So, in this paper, we present a new approach of ontology enrichment. According to the stability describing the cohesion between concepts, our proposal selects automatically the appropriate position for inserting new concepts to ontology.

1 INTRODUCTION

Ontology is going to become the major factor to represent knowledge on the Semantic Web. It is often defined as an explicit specification of conceptualization (Gruber, 1993), is necessary for knowledge representation and knowledge exchange. Usually this implies that ontology describes concepts and relations that exist in a domain. However, domain knowledge evolves continually in dynamic environments, requiring regular updates of the underlying ontologies.

The ontology evolve throw the time and can become a huge one. So, manual trait with expert intervention on the ontology enrichment will be difficult. Thus, in this paper, we try to give an automatic approach for ontology enrichment. From evolution, ontology can become unstructured and disorganised with low cohesion between their concepts. In order to tackle this problem, we consider in our approach that the stability is a strong feature to ensure the right manner of enrichment.

The remainder of the paper is organized as follows. Section 2 positions this paper within the related work and motivates our proposed approach. Section 3 introduces stability notion and however we assess quality of enriched ontology based on its stability. In section 4, we describe the different steps of our automatic ontology enrichment approach. This is followed in section 5 by an application sample to better explain different steps. Section 6 briefly recalls our contributions and sketches avenues for future work.

2 RELATED WORKS

In this section, we scrutinize the related work that in snugness to our work. This state of the art is focused on two parts: the ontology evolution and semantic similarity measures.

2.1 Ontology Evolution

Ontology evolution, first termed by Klein et al. (Klein et al., 2002), is a process which adapts the contents of a pre-defined ontology used in practical applications based on the environment in which the applications are deployed. Many techniques are proposed in literature for ontology evolution. The authors in (Blundell and Pettifer 2004) use conceptual graphs combined with ontology editor tool such as “Protégé”. (Flouris et al, 2005) adapting the principle of Belief Changes for ontology evolution. They distinguish four operations changes: Review and contraction for the changes associated with the conceptualization, and update and delete for domain changes. The methodology Boemie (Castano et al, 2006), it uses the results of the extract information in order to enrich and coordinate multimedia ontologies.

Most of proposed techniques on ontology evolution heavily rely on manual methods. Thus, ontology evolution becomes a tedious and complex task, especially when representing large-scaled and in-depth domain knowledge.
2.2 Similarity Measures

Ontology is described by the structure of concepts which the relation of subsumption (subClassOf) is the primary relationship. This structure defines the semantics of these concepts. The measures that exploit this structure are called semantic measures of concepts. Thus, Semantic measures can be used to assess a link between two concepts of the same ontology by exploiting their relationship.

Blanchard et al (Blanchard et al, 2008a) classified semantic similarity measure in to three types: measures that focus in the characteristic of ontology’s entities, semantic relationship measures and informational content measures.

For the first, the similarity between two concepts is defined based on both common and different characteristics of those two concepts (Dice, 1945).

For the second, metric are proposed to measure conceptual distance between two concepts of the same ontology which is computed based on the number of edges separating these two concepts (Rada, 1989) or based on $mscc(C_i; C_j)$ which refers to the most specific subsume (the lowest common ancestor in the tree) of both concepts C_i and C_j (Wu and Palmer, 1994), or else improving measurement accuracy by considering other semantic links in addition to subsumption (Ganesan et al, 2003) (Maguitman et al, 2005).

The third type, based on informational content, distinguishes between two categories of measures. The first one is based on textual corpus which associate a probability P with concepts in a “is-a” hierarchy to denote the likelihood of encountering an instance of a concept c in a textual corpus and others using ontology structure (Resnik, 1999).

For the second category, (Blanchard et al, 2008b) present new method for computing the information content of concept by considering only the taxonomic structure of the ontology. Otherwise, (Blanchard et al, 2008b) proposes four hypothesis of instance distributions which used to compute the informational content of a concept.

The same authors (Blanchard et al, 2008b) propose a new measure PSS “the Proportion of Shared Specificity” which takes into account the density of links in the graph between two concepts. This measure is based on one of the hypothesis described above and called Ps. This hypothesis implies an uniform distribution among the set of sons of each concept, the informational content of a concept depends on the number of sibling of the subsuming concepts.

The enrichment approach based on stability assessment we that we are going to propose can apply various similarity measures in particular the PSS measure.

3 STABILITY EVALUATION

There many approaches for ontology assessment, a survey is described in (Brank et al, 2005). We think that the most useful approach of ontology quality evaluation is the one based on the use of the ontology in real world application. The user, who interacts with ontology based system, is interested in the response to their request queries. So, we look for the stability of the results regarding ontology evolution with evaluating the semantic and structural change between initial ontology and its enrichment.

It is evaluated based on semantic relation between concepts of ontology. Thus, when the stability is reached, the ontology will still with the same semantic structure. This will lead to the same response to user queries through enrichment.

The ontology stability according to the enrichment is considered as semantic difference between initial ontology and enriched one. The semantic difference can be computed relatively to similarity between concepts which evaluate its cohesion. The stability is computed using the average of the similarities between the concepts of different ontologies (O_1 as initial ontology and O_2 is the enrichment of O_1).

$$Stability(O_1, O_2) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{|\text{Sim}(C_i^{O_1}, C_j^{O_2}) - \text{Sim}(C_i^{O_1}, C_j^{O_2})|}{n^2}$$

where n is the cardinality or the number of concepts contained in O_1 and O_2 is the enrichment result of O_1 ($O_1 \subset O_2$). $C_i^{O_1}$ represents the concept C_i in ontology O_1 and Sim is the semantic similarity measure between two concepts. We choose the information content PSS (Proportion of shared specificity) as similarity measure (Blanchard et al, 2008b). If the function of stability tends to 0, the ontology evolution will be considered to be perfect and don’t affect the stability of the ontology.

4 ENRICHMENT APPROACH

We propose a new approach for adding new concepts to ontology. It should consider the stability and semantic relation to get the right way for enrichment. Indeed, adding new concepts must be with minimizing the affect on the structure and the semantic of ontology. It is made by the following
4.1 Enrichment Procedure

Our enrichment approach is based on three steps which try to select the suitable inserting position of new concepts to the ontology. Furthermore, we look for the better semantic insertion and the ontology stability.

- Step 1: Extract the positions in ontology to insert new concepts. These positions are considered to be super-classes for inserting new concepts and will be selected with regard to semantic similarity. For that, we chose WordNet similarity measure (called \(\text{sim}_{\text{WordNet}} \)) to get the set of candidate super-classes concepts (called: \(E_{\text{superClass}} \)) for insertion.

\[
E_{\text{superClass}} = \{ C/ \text{sim}_{\text{WordNet}}(C,C_{\text{new}}) > \delta \} \tag{2}
\]

Where \(C_{\text{new}} \) is the concept to insert in the ontology and \(\delta \) is the threshold to get better similarity.

- Step 2: From the selected inserting positions of the super-class set \(E_{\text{superClass}} \), we select the super-class concept which maximize ontology stability:

\[
C_{\text{superClass}} = \max_i(\text{stability}(O, O_i)) \tag{3}
\]

Where \(O \) is the initial ontology and \(O_i \) is one possible enrichment ontology with selected inserting super-class \(C_i \) (i.e. \(C_i \in E_{\text{superClass}} \)).

- Step 3: Construction of the new ontology with adding new concepts as subclass to the selected super-class \(C_{\text{superClass}} \) from the previous step.

4.2 Case Study

We take an illustrative example of a simple ontology named koala.owl defined by Knublauch in the reference site of Protege-OWL: (http://protege.stanford.edu/plugins/owl/owl-library/koala.owl). The ontology Koala.owl includes 20 concepts except the concept of the virtual root (owl:Thing). It describes the concepts related to humans and marsupials (subclasses of mammals). We have removed from this ontology three concepts in order to obtain an initial ontology koala (vi) that includes 17 concepts which we try to enrich it with 3 concepts to finally reach our pristine ontology koala.owl (figure 1).

In step 1 we try to found candidate super-class concepts using WordNet similarity. We compute the similarity between concept root of the set of new concepts (in our example the concept Student) and the other ones including initial ontology. We obtain the results described in Table 1.

By choosing the threshold of similarity \(\delta = 0.03 \) and according to Table 1 we have three candidate super-classes concepts which are “Person”, “University” and “Degree”.

Those classes are the most similar to “student” concept and can be accordingly chosen to add this concept as a sub-class. From the initial ontology Koala(vi), we generate the enriched ontology Koala(v1), Koala(v2) and Koala(v3) which consider respectively “Person”, “University” and “Degree” as super-class concept for new concepts to add. As a second step, in order to select the appropriate super-class concept from these three candidates, we calculate stability measure for each enriched ontology and the initial one. So, we compute the average of difference (equation 1) between the Matrix similarities (table 2 for initial ontology, Table 3 to table 5 for different possibility of enrichment ontology).

According to different manners of adding new concepts, we chose the resulting ontology which minimize the semantic different for stability (table 6). So, Koala(v1) is the best enrichment resulting ontology which add “student” concept to “person”. It is clearly that this choice is semantically the most appropriate according to Koala ontology.
Table 2: Similarity measure of concepts pairs of ontology Koala(vi).owl.

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Person</th>
<th>University</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1</td>
<td>0,4</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>Person</td>
<td>0,4</td>
<td>1</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>University</td>
<td>0,1</td>
<td>0,2</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>Degree</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3: Similarity measure of concepts pairs of ontology Koala(v1).owl.

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Person</th>
<th>University</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1</td>
<td>0,4</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>Person</td>
<td>0,4</td>
<td>1</td>
<td>0,3</td>
<td>0</td>
</tr>
<tr>
<td>University</td>
<td>0,1</td>
<td>0,3</td>
<td>1</td>
<td>0,5</td>
</tr>
<tr>
<td>Degree</td>
<td>0</td>
<td>0</td>
<td>0,5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4: Similarity measure of concepts pairs of ontology Koala(v2).owl.

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Person</th>
<th>University</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1</td>
<td>0,4</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>Person</td>
<td>0,4</td>
<td>1</td>
<td>0,3</td>
<td>0</td>
</tr>
<tr>
<td>University</td>
<td>0,1</td>
<td>0,3</td>
<td>1</td>
<td>0,67</td>
</tr>
<tr>
<td>Degree</td>
<td>0</td>
<td>0</td>
<td>0,67</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5: Similarity measure of concepts pairs of ontology Koala(v3).owl.

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Person</th>
<th>University</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1</td>
<td>0,4</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>Person</td>
<td>0,4</td>
<td>1</td>
<td>0,3</td>
<td>0</td>
</tr>
<tr>
<td>University</td>
<td>0,1</td>
<td>0,3</td>
<td>1</td>
<td>0,67</td>
</tr>
<tr>
<td>Degree</td>
<td>0</td>
<td>0</td>
<td>0,67</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 6: Stability measure between initial and enriched ontology.

<table>
<thead>
<tr>
<th></th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koala(v1)</td>
<td>0,03</td>
</tr>
<tr>
<td>Koala(v2)</td>
<td>0,08</td>
</tr>
<tr>
<td>Koala(v3)</td>
<td>0,09</td>
</tr>
</tbody>
</table>

5 CONCLUSIONS

Managing the evolution of large ontology is a hard task. For that we propose a new automatic enrichment procedure. This proposal makes the best way of inserting new concepts to ontology. It considers semantic similarity between new concepts and their inserting supper-class. It also allows the structural and semantic stability through ontology evolution. As a first step, we validate our approach with simple case study of the Koala ontology. In further works, we will study the efficiency of our approach for real complete ontology.

REFERENCES

