DUAL-ENERGY X-RAY ABSORPTIOMETRY AS AN INDICATOR FOR FRAGILITY FRACTURE RISKS OF THE FEMORAL NECK

Alexander Tsouknidas, Nikolaos Michailidis, Kleovoulos Anagnostidis, Antonios Lontos

2012

Abstract

Osteoporosis is a clinically silent bone pathology usually manifesting in the form of fragility bone fractures. Due to the high morbidity of the disease, the association of noninvasive imaging techniques to the implicated risk factors, could serve as a valuable indicator for surgeons. In the present investigations, the evaluation of 30 patients femurs' bone mineral density was performed in vivo by Dual-energy X-ray absorptiometry (DXA), while the strength characteristics of the examined specimens were determined ex-vivo using uniaxial compression experiments. The obtained stress strain curves, reflect the mechanical properties of the femur while facilitating their correlation to the obtained DXA measurements. FEM simulations revealed critical stress values within the femoral neck, indicating which DXA values represent abnormal high fragility fracture risks and thus should be considered for surgical intervention.

References

  1. Melton 3rd, L. J., Chrischilles, E. A., Cooper, C., Lane, A. W., Riggs, B. L., 1992. Perspective. How many women have osteoporosis? Journal of Bone and Mineral Research 7, 1005-10.
  2. Ettinger, B., 2008. A personal perspective on fracture risk assessment tools. Menopause: The Journal of The North American Menopause Society 15(5), 1023-26 Rockwood, P. R., Horne, J. G., Cryer. C., 1990. Hip Fractures: a future epidemic? Journal of Orthopaedic Trauma 4, 388-96.
  3. Cooper, C., Campion, G., Melton, L.J., 1992. Hip fractures in the elderly: A word- wide projection. Osteoporosis International 2, 285-9.
  4. Ray, N. F, Chan, J. K, Thamer, M., Melton, L. J., 1997. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: Report from the National Osteoporosis Foundation. Journal of Bone and Mineral Research 12, 24-35.
  5. Frost, H. M., Thomas, C. C., 1963. Bone Remodeling Dynamics. Springfield, IL.
  6. Raisz, L., 2005. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. Journal of Clinical Investigation 115 (12), 3318-25.
  7. Hackett, E. S., MacLeay, J. M., Green, M., Enns, R. M., Pechey, C. L., Les, C. M., Turner, A. S., 2009. Femoral Cortical Bone Mineral Density and Biomechanical. Properties in Sheep Consuming an Acidifying Diet. Nutrition and Metabolic Insights 1, 11-6.
  8. Minaire, P., 1989. Immobilization osteoporosis: a review, Clinical Rheumatology 8 (2), 95-103 .
  9. Dupree, K., Dobs, A., 2004. Osteopenia and Male Hypogonadism. Reviews in Urology 6(6), S30-4.
  10. Holick, M. F., 2004. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. American Journal of Clinical Nutrition 79 (3), 362-71.
  11. Parfitt, A. M., Villanueva, A. R., Foldes, J., Rao, D. S., 1995. Relations between histologic indices of bone formation: implications for the pathogenesis of spinal osteoporosis. Journal of Bone and Mineral Research 10(3), 466-73.
  12. Black, D. M., Greenspan, S. L., Ensrud, K. E., Palermo, L., McGowan, J. A., Lang, T. F., Garnero, P., Bouxsein, M. L., Bilezikian, J. P., Rosen, C. J., 2003. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. The New England Journal of Medicine 349(13), 1207-15.
  13. Newton-John, H. F., Morgan, D. B., 1970. The loss of bone with age, osteoporosis, and fractures. Clinical Orthopaedics and Related Research 71, 229-52.
  14. Bohr, H., Schaadt, O., 1985. Bone mineral content of the femoral neck and shaft: relation between cortical and trabecular bone. Calcified Tissue International 37, 340-4.
  15. Old, J. L., Calvert, M., 2004. Vertebral compression fractures in the elderly. American Family Physician 69(1), 111-6.
  16. Dempster, D. W., 2011. Osteoporosis and the burden of osteoporosis-related fractures. American Journal of Managed Care 17(6), S164-9.
  17. World Health Organisation. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical Report Series. Geneva: WHO, 1994.
  18. Genant, H. K., Engelke, K., Fuerst, T., Gluer, C. C., Gramp, S., Harris, S. T., et al., 1996. Noninvasive assessment of bone mineral and structure: State of the art. Journal of Bone and Mineral Research 11, 707-30.
  19. Braun, M. J., Meta, M. D., Schneider, P., Reiners, C., 1998. Clinical evaluation of a high-resolution new peripheral quantitative computerized tomography (pQCT) scanner for the bone densitometry at the lower limb. Physics in Medicine and Biology 43, 2279-94.
  20. Augat, P., Reeb, H., Claes, L. E., 1996. Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell. Journal of Bone and Mineral Research 11, 1356-63.
  21. Augat, P., Fan, B., Lane, N.E, Lang, T. F, LeHir, P., Lu, Y., Uffmann, M., Genant, H. K., 1998. Assesment of bone mineral at appendicular sites in females with fractures of the proximal femur. Bone 22, 395-402.
  22. St-Onge, M. P., Wang, J., Shen, W., Wang, Z., Allison, D. B., Heshka, S., Pierson, R. N., Heymsfield, S. B., 2004. Dual-Energy X-Ray Absorptiometry-Measured Lean Soft Tissue Mass: Differing Relation to Body Cell Mass Across the Adult Life Span. Journals of Gerontology Series A: Biological Sciences and Medical Sciences 59(8), 796-800.
  23. Lochmuller, E. M., Miller, P., Burklein, D., Wehr, U., Rambeck, W., Eckstein, F., 2000. In situ femoral DXA related to ash weight, bone size and density and its relationship with mechanical failure loads of the proximal femur. Osteoporosis International 11, 361-7.
  24. Turner, C. H., Burr, D. B., 1993. Basic biomechanical measurements of bone: a tutorial. Bone 14, 595-608.
  25. Jacobs, C. R., Simo, J. C., Beaupre, G. S., Carter, D. R., 1997. Adaptive bone remodeling incorporating simountaneous density and anisotropy considerations. Journal of Biomechanics 30(6), 603-13.
  26. Keller, T. S., Mao, Z., Spengler, D. M., 1990. Young's modulus, bending strength and tissue physical properties of human compact bone. Journal of Orthopaedic Research 8, 592-603.
  27. Reilly, D. T., Burstein, A. H., 1997. The elastic and ultimate properties of compact bone tissue. Journal of Biomechanics 8, 393-405.
  28. Lu, Y. M., Hutton, W. C., Gharpuray, V. M., 1996. Do bending, twisting and diurnal fluid change in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine 21, 2570-9.
  29. Smit, T. H., Odgaard, A., Schneider, E., 1997. Structure and function of vertebral trabecular bone. Spine, 22, 2823-33.
  30. Sarikat, M., Yildiz, H., 2011. Determination of bone density distribution in proximal femur by using the 3D orthotropic bone adaption model. Proceedings of the institute of Mechanical Engineering, Part H: Journal of Engineering in Medicine 225, 365-75.
  31. Stankewich, C. L., Chapman, J., Muthusamy, R., 1996. Relationship of mechanical factors to the strength of proximal femur fractures fixed with cancellous screws. Journal of Orthopaedic Trauma 10, 248-57.
  32. Solomon, L., Schnitzler, C. M., Browett, J. P., 1982. Osteoarthritis of the hip: the patient behind the disease. Annals of the Rheumatic Diseases 41, 118-25.
  33. Cooper, C., Cook, P. L., Osmond, C., Cawley, M. I. D., 1991. Osteoarthritis of the hip and osteoporosis of the proximal femur. Annals of the Rheumatic Diseases 50, 540-2.
  34. Li, B., Aspden, R. M., 1997. Material properties of bone from the femoral neck and calcarfemorale of patients with osteoporosis or osteoarthritis. Osteoporosis International 7, 450-6.
  35. Lotz, J. C., Cheal, E. J., Hayes, W. C., 1995. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporosis International 5, 252-61.
  36. Melton, L. J., Riggs, B. L., 1985. Risk factors for injury after a fall. Symposium on falls in the elderly: biological and behavioral aspects. Clinics in Geriatric Medicine 1, 525-39.
  37. Greenspan, S. L., Myers, E. R., Maitland, L. A., Resnick, N. M., Hayes, W. C., 1994. Fall severity and bone mineral density as risk factor for hip fracture in ambulatory elderly. Journal of the American Medical Association 271, 128-33.
Download


Paper Citation


in Harvard Style

Tsouknidas A., Michailidis N., Anagnostidis K. and Lontos A. (2012). DUAL-ENERGY X-RAY ABSORPTIOMETRY AS AN INDICATOR FOR FRAGILITY FRACTURE RISKS OF THE FEMORAL NECK . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012) ISBN 978-989-8425-90-4, pages 96-101. DOI: 10.5220/0003770000960101


in Bibtex Style

@conference{bioinformatics12,
author={Alexander Tsouknidas and Nikolaos Michailidis and Kleovoulos Anagnostidis and Antonios Lontos},
title={DUAL-ENERGY X-RAY ABSORPTIOMETRY AS AN INDICATOR FOR FRAGILITY FRACTURE RISKS OF THE FEMORAL NECK},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012)},
year={2012},
pages={96-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003770000960101},
isbn={978-989-8425-90-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2012)
TI - DUAL-ENERGY X-RAY ABSORPTIOMETRY AS AN INDICATOR FOR FRAGILITY FRACTURE RISKS OF THE FEMORAL NECK
SN - 978-989-8425-90-4
AU - Tsouknidas A.
AU - Michailidis N.
AU - Anagnostidis K.
AU - Lontos A.
PY - 2012
SP - 96
EP - 101
DO - 10.5220/0003770000960101