EXTRACTING TOPOLOGICAL INFORMATION FROM GRID MAPS FOR ROBOT NAVIGATION

David Portugal, Rui P. Rocha

2012

Abstract

In many robotic navigation-related tasks, abstracting the environment where mobile robots carry out some mission can be of a great benefit. In particular, extracting a simple topological graph-like representation from a more complex and detailed metric map is often required for path-planning and navigation. In this work, an approach to perform such extraction in grid maps is presented. The focus is not only on obtaining a diagram or visual representation of possible paths, but also to propose a new way to obtain graph data information related to the connectivity of the environment that can be passed to robots or to a centralized planner, in order to assist the navigation task. The approach proposed is based on image processing techniques. Simulation results prove its simplicity, accuracy and efficiency.

References

  1. Beeson, P., Jong, N., and Kuiper, B. (2005). Towards autonomous topological place detection using the extended voronoi graph. In Int. Conf. on Robotics and Automation (ICRA'05), pages 4373-4379, Barcelona.
  2. Delaunay, B. (1934). Sur la sphére vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7(6):793-800.
  3. Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. (1997). Map validation and robot self-location in a graph-like world. Robotics and Autonomous Systems, 22(2):159- 178. Elsevier, Ltd.
  4. Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer, 22(6):46-57.
  5. Fazli, P., Davoodi, A., Pasquier, P., and Mackworth, A. (2010). Fault-tolerant multi-robot area coverage with limited visibility. In 2010 IEEE Int. Conf. on Robotics and Automation (ICRA'10), Anchorage, Alaska, USA.
  6. Ferreira, F., Davim, L., Rocha, R., Dias, J., and Santos, V. (2007). Presenting a technique for registering images and range data using a topological representation of a path within an environment. J. of Automation, Mobile Robotics & Intelligent Systems, 1(3):47-55.
  7. Katsilieris, F., Lindhé, M., Dimarogonas, D., O gren, P., and Johansson, K. (2010). Demonstration of multi-robot search and secure. In Int. Conf. on Robotics and Automation (ICRA'10), Anchorage, Alaska, USA.
  8. Ko, B., Song, J., and Lee, S. (2004). Realtime building of thinning-based topological map. In lnt. Conf. on Intelligent Robots and Systems, Sandal, Japan.
  9. Kolling, A. and Carpin, S. (2008). Extracting surveillance graphs from robot maps. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'08), pages 2323-2328, Nice, France.
  10. Lozano-Pérez, T. and Wesley, M. (1979). An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM, 22(10):560-570.
  11. Machado, A. (2002). Patrulha multiagente: Uma análise empírica e sistemática. Master's thesis, Centro de Informática, Universidade Federal de Pernambuco (UFPE), Recife, Brasil.
  12. Portugal, D. and Rocha, R. (2010). Msp algorithm: Multirobot patrolling based on territory allocation using balanced graph partitioning. In 25th ACM Symposium on Applied Computing (SAC'2010), pages 1271- 1276, Sierre, Switzerland.
  13. Reinhard, D. (2010). Graph Theory. Springer-Verlag Heidelberg, New York, electronic edition.
  14. Szabó, R. (2004). Topological navigation of simulated robots using occupancy grid. Int. J. of Advanced Robotic Systems, 1(3):201-206.
  15. Thrun, S. (1998). Learning maps for indoor mobile robot navigation. Artificial Intelligence, 99:21-71. Elsevier Science Ltd.
  16. Thrun, S., Bugard, W., and Fox, D. (2000). A real-time algorithm for mobile robot mapping with applications to multi-robot and 3d mapping. In Int. Conf. on Robotics and Automation, pages 321-328, San Francisco.
  17. Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik, 134:198- 287.
  18. Wallgrün, J. (2004). Hierarchical voronoi-based route graph representations for planning, spatial reasoning, and communication. In 4th Int. Cognitive Robotics Workshop (CogRob-2004), pages 64-69.
  19. Zimmer, U., Fischer, C., and Puttkamer, E. V. (1994). Navigation on topologic feature-maps. In 3rd International Conference on Fuzzy Logic, Neural Nets and Soft Computing, pages 131-132, Fukuoka, Japan.
Download


Paper Citation


in Harvard Style

Portugal D. and P. Rocha R. (2012). EXTRACTING TOPOLOGICAL INFORMATION FROM GRID MAPS FOR ROBOT NAVIGATION . In Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8425-95-9, pages 137-143. DOI: 10.5220/0003746401370143


in Bibtex Style

@conference{icaart12,
author={David Portugal and Rui P. Rocha},
title={EXTRACTING TOPOLOGICAL INFORMATION FROM GRID MAPS FOR ROBOT NAVIGATION},
booktitle={Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2012},
pages={137-143},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003746401370143},
isbn={978-989-8425-95-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - EXTRACTING TOPOLOGICAL INFORMATION FROM GRID MAPS FOR ROBOT NAVIGATION
SN - 978-989-8425-95-9
AU - Portugal D.
AU - P. Rocha R.
PY - 2012
SP - 137
EP - 143
DO - 10.5220/0003746401370143