A COMPREHENSIVE EVALUATION MODEL AND INTELLIGENT PREDICTION METHOD OF WATER BLOOM

Zaiwen Liu, Xiaoyi Wang and Wei Wei

College of Computer and Information Engineering, Beijing Technology and Business University
No.33 Fucheng Road, 100048, Beijing, China

Keywords: Modelling, Integrated nutritional index, Evaluation method, Rough set, Water Bloom Prediction, Least squares Support Vector Machine.

Abstract: An integrated evaluative function and intelligent prediction model for water bloom in lakes based on least squares support vector machine (LSSVM) is proposed in this paper, in which main influence factor of outbreak of water bloom is analyzed by rough set theory. First the study of the function involves three aspects: algal average activation energy of photosynthesis, integrated nutritional status index, and transparency, which are considered from the microscopic level, the macroscopic level and the intuitionistic level respectively. The values of the function are classified properly. At the meantime, the weight value of each evaluative parameter is determined objectively, via the theory of multiple criteria decision making. By analyzing and calculating the experimental data, the obtained values of the function and the classification results can be verified using the data of the samples. Good agreement is obtained between the results and the fact. The results of simulation and application show that: LSSVM improves the algorithm of support vector machine (SVM); it has long-term prediction period, strong generalization ability, high prediction accuracy; and needs a small amount of sample and this model provides an efficient new way for medium-term water bloom prediction.

1 INTRODUCTION

A global environmental and economic problem caused by water bloom is paid more and more attention by the public (Jin Xiangcan, 2004). Many studies about eutrophication in inland lakes exist at present, and all of these studies are relatively mature with great achievement. However, the occurrence of water bloom and its evaluation system is rarely studied. Some scholars have made a research about the phenomenon of water bloom and have established exploratory water bloom outbreak evaluative function. However, geographical differences of water quality and algal growth must be drew proper attention. Moreover, the weight of each evaluative factor in the mathematic model mentioned above is analyzed experiences and calculated on the basis of the original data. As a result, no mathematical model of water bloom evaluation has been reported by far (Van Gestel T., 2004).

This paper adopts the characteristics of the lake, and it could determine the algal average activation energy of photosynthesis (E), status index of nutritional (TLI (Σ)), and transparency (SD) are the parameters of evaluation function for water bloom, and the model for evaluation function of water bloom F is established utilizing the weights of those parameters determined objectively by multiple attribute decision making. The obtained experimental data is used to calculate the evaluative function value of water bloom and the function values are properly classified. The verification results of the samples are in line with the true fact. In this way, the evaluative function of water bloom offers a significant theoretical basis for the water bloom intelligent prediction of lakes.
2 INTEGRATED EV ALUATIVE FUNCTION OF WATER BLOOM

2.1 The Construction of Integrated Evaluative Function of Water Bloom

Because water eutrophication provides nutrition for the water bloom, and algal average activation energy of photosynthesis $E_{\text{microcosmic level}}$, integrated nutritional status index which serves as basic parameter, and transparency are introduced to construct water bloom evaluative function, whose mathematical model is as follows:

$$F = \sum_{i=1}^{n} W_i T_i$$ \hspace{1cm} (1)

Where F is the evaluative function of the water bloom and W_i is the weight coefficient of each evaluative parameter. Since the unit of each evaluative factor might be different, every evaluative factor should be normalized and represented by T. The normalization formula is as follows:

$$r_i = \frac{R_i}{\sqrt{\sum_{i=1}^{n} R^2_i}}$$ \hspace{1cm} (2)

2.2 Algal Average Activation Energy of Photosynthesis E

Supposing v is photosynthesis rate, T is thermodynamic temperature and R is the gas constant. According to the literature, photosynthesis is defined as:

$$\frac{d \ln v}{dT} = \frac{E}{RT^2}$$ \hspace{1cm} (3)

$$v = \frac{dc_a}{dt}$$ \hspace{1cm} (4)

Where dc_a is algal biomass concentration, C_a is the value of phytoplankton biomass (mg/L) and C_3 is chlorophyll a concentration (μg/L). According to the features of lakes, the equation of chlorophyll a can be represented as follows, which is the mathematical model of algal growth mentioned in the reference:

$$\frac{dc_a}{dt} = \frac{G_{\text{max}} \cdot 1.06T^{-293}}{2T_1} \cdot \frac{TP}{TP+K_p} \cdot \frac{1}{1+D_{T_1} \cdot 1.08T^{-293}} \cdot m \cdot \varepsilon$$ \hspace{1cm} (5)

Via above equations, algal average activation energy of photosynthesis E can be expressed as:

$$E = \int \frac{R d \ln v}{RT^2}$$ \hspace{1cm} (6)

Since water bloom usually breaks out during a period when water temperature is relatively stable and normally, temperature difference is a constant value. To make calculation easy, we assume $T_2 - T_1 = 1$, so

$$E = RT_2 \ln \frac{R_1}{R_2}$$ \hspace{1cm} (7)

2.3 Multiple Attribute Decision Making Accessing to the Weight of Each Parameter of Water Bloom Evaluation

In the problems of Multiple Attribute Decision Making, a great number of objective methods in terms of attribute evaluation exist, and this paper utilizes the method for ensuring attribute weights proposed in the literature [10] to get access the weight of each factor in the water bloom evaluation, the model is as follow:

$$\min F(W) = \sum_{i=1}^{n} \sum_{j=1}^{m} D_j(W) = \sum_{i=1}^{n} \sum_{j=1}^{m} d^2 (r_j, r_i) W_j$$ \hspace{1cm} (8)

s.t. $W_j \geq 0, j = 1, 2, \cdots m$, \sum_{j=1}^{m} W_j = 1$

In the model, r_i is the value of each attribute in the matrix of standardization, r_i is the ideal value of each attribute, d_i is the norm between the value and ideal value of each attribute, known as the proximity. Specific calculation steps are as follows:

Determining the matrix of attribute:

$A = [a_{ij}]_{n \times m}, i = 1, 2, \cdots, n, j = 1, 2, 3$

◆ The standardization for the decision-making matrix.

◆ Ensuring the ideal value of each attribute.

◆ Resolving the model (13) to obtain the optimal weight vector of attributes: $W_j, (j = 1, 2, 3)$.

NCTA 2011 - International Conference on Neural Computation Theory and Applications
3 COMPREHENSIVE EVALUATION FUNCTION FOR WATER BLOOM

3.1 Calculation of Comprehensive Evaluation Function for Water Bloom

Calculate the data selected from No. 2, 4 and 5 pools of second group, and select a value respectively in morning and afternoon everyday as the data to be calculated.

3.2 Calculation Result Analysis of Water Bloom Evaluation Function

Via the analysis of experiment data to each pool, it could indicate that the quality of water was at a good state and all of the average activation energy of algae, integrated nutritional status index and the function value of water bloom evaluation water relatively low.

4 WATER BLOOM PREDICTION METHOD BASED ON LSSVM

4.1 Determination of Prediction Model Parameters

Rough set theory is a mathematical instrument which is used to describe incomplete and uncertain information. Under the precondition of maintain key information, it will simplify data so as to lead its property to be minimum conciseness and to obtain knowledge minimum expression. Result of rough set analysis of water bloom prediction index is as follow:

From Table 1, the highest contribution ratio factors are TP, TN, T. The high contribution ratio factors are illumination intensity and DO. Chl_a is used to be output variable of prediction model. Considering the occurrence of water bloom has its accumulated characteristic which will progress as time going, former-moment characterization factor, which closely relates to water body eutrophication factor, also contains partial information of occurrence of the next moment.

4.2 Data Pretreatment and Modeling

4.2.1 Data Pretreatment

\[
T = 2 \left(X - X_{\text{min}} \right) / \left(X_{\text{max}} - X_{\text{min}} \right) - 1
\]

(9)

In this formula, X is initial data, T is data after transformation.

4.2.2 Core Functions and Model Parameters

Polynomial core function, radial basis function and multi-layer Sigmoid core function are frequently used core functions. Compared with the abilities of other kinds of core functions, the ability of RBF core function is proved to be best among all core functions [14]. Thus, RBF core function is used.

\[
K(x_i, x) = \frac{||x_i - x||^2}{2\sigma^2}
\]

(10)

In the formula,

\[
||x_i - x||^2 = \sum_{i=1}^{n} (x_i - x_i)^2
\]

(11)

Here σ is core width.

LSSVM prediction model based on RBF core function contains two important parameters: regularization parameter γ and RBF core function parameter σ^2. For the regression prediction problem, cellular search method is usually used to determine parameters [12]. In cellular search method, M values and N values are selected respectively from γ and σ^2 in a certain appropriate range. Then after combining $M \times N$ (γ, σ^2) sets, different LSSVMs are trained respectively so as to gain a set which has minimum mean absolute error in those $M \times N$ (γ, σ^2) sets. This set could be used as optimized parameter. The result of optimized parameters is as follow:

<p>| I | Total phosphorus (TP) | Total nitrogen (TN) | Temperature (T) |
| | 95% | 90% | 85% |
| II | illumination intensity | dissolved oxygen (DO) | 75% | 70% |
| III | pH value | transparency (SD) | electrical conductivity | 55% | 45% | 30% |</p>
<table>
<thead>
<tr>
<th>Prediction parameters</th>
<th>Two days later</th>
<th>One week later</th>
</tr>
</thead>
<tbody>
<tr>
<td>gam</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>Sig2</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

4.3 Establishment of Prediction Model

The structure of LSSVM prediction model is as follow: 6 input variables: temperature \(T \), dissolved oxygen \(DO \), illumination intensity, total phosphorus \(TP \), total nitrogen \(TN \) and chlorophyll \(Chl_a \). One output variable is \(Chl_a \);

4.4 Analysis of Prediction Result

100 groups of water quality monitor data which have been normalized are substituted in LSSVM water bloom prediction model. Prediction result is as Fig. 1.

Initially, the data of test Second group, as the training data of network, is trained by neural network function which is provided by MATLAB and its error is controlled in the range of 0.0001. Then, SIM emulational function is used for interpolation emulational output. Comparing the diagrams of prediction result with real measurement result until proper interpolation value is generated. Interpolation graphs of some partial parameters are as above.

![Figure 1: Chl_a value in LSSVM prediction model.](image)

5 CONCLUSIONS

Study comprehensively the synthesis effects of the photosynthesis of algae for average activation energy, comprehensive integrated nutritional status index, and the transparency, establish the model of water bloom evaluation function, and utilize the Multiple Attribute Decision Making theory to ensure the attribute weights for all evaluated parameters impersonally. The results, concluded by the analysis and calculation of the experiment data, indicate that should be discussed and verified further.

Rough set theory is used firstly to analyze the main influence factor of water bloom. Water bloom prediction model for lakes based on LSSVM is established and this model is compared with other artificial neural network prediction model. Prediction model result shows: LSSVM improves the algorithm of SVM; it needs a small amount of samples, has long-term prediction period, strong generalization ability and high prediction accuracy; it can better predict the medium-term change rule of chlorophyll and provide a new efficient way for water bloom medium-term prediction.

ACKNOWLEDGEMENTS

This supported by the Beijing Natural Science Foundation (8101003), and the Beijing Municipal Commission of Education (PHR201007123, PHR201008238) and its Science and Technology Foundation Project. Those supports are gratefully acknowledged.

REFERENCES
