A BOTTOM-UP APPROACH FOR THE REPRESENTATION AND CONTINUOUS UPDATE OF TECHNOLOGY ARCHITECTURES IN PUBLIC ADMINISTRATION

Position Paper

João Soares, José Tribolet and André Vasconcelos
Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Keywords: Information systems architecture, Technology architecture, Public administration, Bottom-up, Continuous update, Autodiscovery.

Abstract: In organizations where there are not any concerns about updating Information Systems Architecture (ISA) models in a strict and automatic fashion, business requirements and pressures frequently lead to an increasing gap between current Information Systems and the latest version of their ISA and, in particular, their Technology Architecture (TA) models, when they exist. One of the causes for the lack of “investment” in TA models is the considerable effort required to “discover” infrastructural features that serve as input to the development of architectures. This work is focused on devising a bottom up approach for the representation and continuous update of TAs in Public Administration (PA) using tools to automatize the discovery of architectural evidences (such as logs or network events) and a process based on the annotation mechanism to enable interaction contexts that allow actors to make explicit their knowledge about their activities through graphic representations.

1 INTRODUCTION

As result of a crescent globalization, competition among organizations is becoming more and more driven by its capacity and flexibility of reorganization and redesign of business processes and business strategies (Vasconcelos, 2007).

Some of the implications that arise from the need to reorganize and redesign business processes and business strategies reflect themselves on the demand for IT able to support those new requirements.

Enterprise Architecture (EA) (and by association, ISA and TA) is considered an essential piece to the resolution of the challenges that emerge as a result from the organization’s need quickly readapt themselves and their Information Systems (ISs) (Land, Martin Op’t, et al, 2008). Thus, the explicitness of an ISA has a key role in the construction of ISs that aim to contribute proactively to the alignment between business realities and IT realities, to define technology strategies, to control and manage more efficiently ISs, to ensure durable, flexible and adaptable to business needs ISs, and finally to increase the portability of applications and ease the development and alignment of ITs with (changing) business strategies.

This investigation will be focused in a more restrict problematic inside EA - the reality regarding technologies managed by organizations to support their processes. At a first glance, this work will cover three great issues: the capture of that reality, the mapping between the results of the capture and architectural models and finally, the continuous update of those models.

This document is divided in 5 sections. Section 2 establishes the objectives and motivations of this work. Section 3 is about the State of the Art regarding the areas of interest that intersect with this work. In section 4 there is a description of the solution. Finally, section 5 has conclusions over the work developed until now.

2 CLARIFICATION OF THE PROBLEM AND OBJECTIVES

Considering the previously identified issues related to the benefits of a general IT awareness in an organization, it is possible to conclude that, although there is
3 RELATED WORK

3.1 EA Methods and Frameworks

An enterprise architecture framework collects together tools, techniques, artifact descriptions, process models, reference models and guidance (methods) used by architects in the production of enterprise-specific architectural descriptions. A framework can also define views that are representations of systems from the perspective of a related set of concerns (e.g., top management or operational), and have a dedicated modeling language or extend existing ones.

3.1.1 Zachman Framework

Zachman Framework was introduced by John Zachman in 1987. It was the first EA framework and it is used in numerous domains, providing a view of the subjects and models needed to develop a complete enterprise architecture. In a "big picture", this framework is a logical structure (matrix) for classifying and organizing the descriptive representations of an enterprise: on a vertical axis it provides multiple perspectives of overall architecture, and on a horizontal axis, a classification of the various artifacts of the architecture (Zachman, 2008) (Lankhorst and et al., 2009a).

The purpose of this framework is to provide a basic structure which supports the organization, access, integration, interpretation, development, management and changing of a set of architectural representations (artifacts) of the organization’s ISs.

As a contribution to this work, the Zachman Framework can be quite useful as a tool for organizing and classifying relevant architectural artifacts that will be developed during this investigation. The intersection between the last two rows of the matrix (Detailed Representations and Technology Model) and the three first columns (Data, Function and Network) can be assumed as a repository of representations about a technical infrastructure that can serve as a baseline for the construction of an ISA.

3.1.2 TOGAF

The Open Group Architecture Framework (TOGAF), a framework developed and maintained by The Open Group Architecture Forum and its members, is a global standard for assisting in the acceptance, production, use and maintenance of architectures based on an iterative process (Josey, 2009) (The Open Group, 2009).
TOGAF covers the development of four related types of architecture, subsets of a global EA: Business Architecture, Data Architecture, Application Architecture and TA.

There are two important components of TOGAF according to the scope of this project (The Open Group, 2009):

- The Architecture Development Method (ADM) plays a central role in TOGAF and describes cyclically how to develop a complete enterprise architecture, providing guidance on a number of levels (Lankhorst and et al., 2009b):
 - The Enterprise Continuum comprises a number of reference models and methods, such as the Technical Reference Model, The Open Group’s Standards Information Base and the Building Blocks Information Base, for classifying architecture and solution artifacts, showing how they evolve and correlate to each other.

The Technical Reference Model (TRM), which provides a model and taxonomy of generic platform services, can be used in this work to structure a coherent description of the components that are part of the TA of an IS.

3.1.3 Framework CEO 2007

Proposed by Vasconcelos in (Vasconcelos, 2007) this framework features a taxonomy of concepts used to define a ISA (architectural primitives).

The meta-model of CEO 2007 is organized in the following architectures: Business Architecture, Organizational Architecture and Information Systems Architecture.

This framework will serve as the conceptual basis for the description of TAs and ISAs during this work, because it was developed in the context of the group CODE\(^1\), as this work is.

3.2 Application Discovery and Dependency Mapping

Application discovery is the process of automatically analyzing artifacts of a software application. Dependency Mapping creates visibility between applications and infrastructure dependencies.

The use (and possible extension) of software tools that implement these features could be a major value-adding element in the pursuit of the objectives of this investigation. Leveraging the power of automation, automated application discovery and subsequent dependency mapping, can capture, connect and unveil intricate relationships including the way in which applications behave and relate to the TA on which they rely.

Automated application discovery normally leverages an effective non-agent-based discovery method - passive discovery - to automatically discover the structural and behavioral aspects of applications. Passive discovery operates by watching the network traffic, examining all the applications as they execute, and then identifying relationships based on real business usage. Passive discovery also means that the management burden of maintaining software agents is null.

Passive discovery is just a part of the equation regarding these systems. Some products often use a hybrid approach, where active discovery is also used to enable the collection of deep and fundamental data about configuration details.

3.3 A Dynamic Update Process

The present section is about describing a process to continuously update an enterprise model (Castela et al., 2010). In the process explained in this section, organizational actors act as active updateers of the AS-IS model, through the comparison between the modeled activities and the ongoing real executed activities, becoming key agents in reducing the gap between the organization and its representation. The following text expresses the essence of PROASIS (business process model dynamic updating process): “The “client” of PROASIS (corresponding role of the operational model that detects misalignment between the model and “reality”) wants to update the model, so it makes an annotation (update request). This update request is received by the modeler (which is who actually update the model if the annotation is approved) and by the reviewers. When reviewers receive the annotation, they can begin the revision of the annotation (which is optional). The approval of the annotation is made based on the analysis of the annotation (update request) and reviews. If the annotation (request update) is approved, the model will be updated and delivered to the “client”’. Besides the fact that PROASIS is suited to business processes, it can be adapted in this work in order to map architectural evidences into updated, trustworthy and reliable TA models. The idea of using an extended version of PROASIS in this work enables a collaborative maintenance of the TA models originally incipiently build using mechanisms of autodiscovery. On the other hand, PROASIS and the annotation mechanism could be used in an earlier stage: to ”decide” within an or-

\(^1\)Center for Organizational Design and Engineering - INESC
organization, what would be the most commonly accepted language to represent TAs.

4 SOLUTION’S ARCHITECTURE AND METHODOLOGY

This section is about describing the steps that the solution’s architecture will follow. According to the questions that constitute the problem that drive this investigation, as well as all the related work described earlier, following, there is a description of each stage/landmark of the proposed solution facing the initial motivation to this problem:

- **Contexts.** It is the phase where different relevant contexts (entities that manage IT assets) are analyzed in order to propose a structure of concepts to describe the manifestations of IS and its TA exhibited through architectural evidences, considering terms introduced by TRM and CEO 2007.
- **Analysis & Evaluation.** In this stage, two activities take part:
 - Analysis of CEO 2007 regarding it’s capability of expressing detailed TA aspects (e.g., regarding network connections, firewalls, etc.).
 - Analysis of Application Discovery tools regarding it’s extensibility potential.
- **“Products”.** This is the phase where “visible work” is done regarding tree facets:
 - **CEO 2007:** TA extensions; Mapping between the structure of concepts; Adaptation of the continuous cycle of monitoring and verification of the IS and verification of it’s TA reality to the reality of automatic discover of architectural evidences and continuous collaborative update.
 - **Application discovery tools:** Necessary extensions.
 - **PROASIS:** Adaptation to TA representation and maintenance.

The architecture of the desired bottom up approach can then be described briefly in tree steps:

1. Use PROASIS prior to any representation, to agree, inside an organization, on the notation to represent the TA.
2. Perform Autodiscovery.
3. Use PROASIS as repository to the early representations and tool to support collaborative update.

5 CONCLUSIONS

EA (ISAs and TAs in particular) are regularly relegated to a secondary role in the context of organizations, due to factors such as counterculture; it is not considered as an essential piece regarding the organization’s survival; it is a job that consumes a certain amount of time and requires considerable effort, and the companies, eager to get quick results, tend to see architecture as an effort too high with too many actors involved within the organization.

This last reason has particular relevance in the context of PA due to funding reasons: money from financing is much more easily allocated in areas/project that have the potential to produce “visible” impact.

This work began by the clarification of the problem together with the motivations towards the solution. Regarding the related work, several EA Methods and Frameworks were revisited according to the potential to be used in this investigation as well as Application Discovery tools (to quickly capture the infrastructural reality of an organization) and a process to enable collaborative update of TA models.

The course of this investigation will follow the steps described in the previous section to achieve a bottom up approach.

REFERENCES

