Keywords: Optimization of layout, User interface, Genetic algorithm, Search based software engineering.

Abstract: Digital contents are often designed having desktop applications as target in mind. As Mobile Web is becoming a common means to access internet services, there is a need for adapting content to smaller displays of mobile devices. Adaptation of web pages should be in accordance with aesthetics and usability requirements. In this paper we propose a tool, based on genetic algorithm, able to assist designers in delivering content adapted to mobile devices. In particular the tool, starting from a given page, searches for alternative layouts in order to best fit the content to reduced target screen size. The result is a set of adapted web pages. Experimental results show this approach is feasible and can compete with design made by humans.

1 INTRODUCTION

Pervasiveness of Internet in everyday life is leading to the introduction of new means for accessing digital contents. Nowadays we have new devices such as smart phones, PDAs and netbooks by which we get access to Mobile Internet by wireless networks. A remarkable difference in using this class of devices regards the screen size. As digital content is generally designed with respect to standard desktop and laptop displays, it is badly rendered when delivered to mobile devices. In some cases, a version specific for mobile devices is made available by the content providers. For example, designers usually provide a reduced version of content suitable for being accessed by hand-held devices, generally referring to screen resolution of 240×320 pixels. However, this is still prerogative of larger corporations.

Main issues arise from usability due to the small physical size of the mobile form factor, that is related to limited resolution screens and user input/operating limitations. Generally, users are demanded to scroll the screen in both vertical and horizontal directions to find the desired portion of content, in contrast with W3C recommendations. There are different strategies to deal with mobile devices. One option entails the optimization of page in order to fit specific displays and user requirements. This is a challenging task as many constraints must be taken into consideration at a time. Among them we consider: (i) the specific features of content element being included, (ii) which elements to include and which not, (iii) where to dispose the elements, and (iv) the number of pages in which to split the content.

In this paper we propose a tool for supporting the page layout rearrangement by delegating this task to an evolutionary algorithm which acts keeping into account designer’s preferences, target display and device constraints. In particular we introduce an interactive software application able to assist a web interface designer in adapting an existing web page to mobile devices. The algorithm presented in this paper has been tested in order to asses performances and quality of solutions. This contribution is organized as follows: in Section 2 we briefly overview issues related to the design of mobile user interfaces; in Section 3 we outline the proposed genetic algorithm focusing on representation and fitness of solutions, then providing experimental results regarding convergence and performances; Section 4 is aimed at presenting
the tool, describing an example of application and reporting experimental results; in Section 5 we discuss conclusions and future work.

2 RELATED WORKS

Over the years we assisted to an increasing availability of screen size. Even considering only the most popular ones, size of modern devices ranges from 320×200 (CGA, adopted for smartphones and PDAs) to 1024×600 (WSVGA, for netbooks). In addition legacy displays (e.g. 128×128, 128×160, 176×220) still represent a significant share of available devices. With such a variety of displays differing in size, the task of adapting existing web content becomes challenging. Many different techniques have been developed over the time. A survey is given by Stormer (Stormer, 2006) who overviews different strategies to adapt web pages to mobile devices, and provides a classification in three main categories: (i) Rewrite the page in a suitable way for mobile devices; (ii) Adapt the pages automatically choosing a different CSS; (iii) Use XML to transform the pages.

Ahmadi and Kong (Ahmadi and Kong, 2008) propose a novel method to automatically adapt a desktop presentation to mobile, in order to overcome the frustrating task of users in scrolling the screen both vertically and horizontally. Their approach integrates structural analysis of the HTML source and visual layout detection to identify closely related content and then to generate an adapted layout.

An alternative approach is based on segmenting web pages, choosing informative sections and relaying these sections into a compact form, as proposed by Sengamedu, Mehta, and Madaan (Sengamedu et al., 2008). In their work, they present a system that, leveraging structural, content and visual information, learns the page template, assigns relevance to each section, and scales them according to their score.

Lethonen et al. (Lehtonen et al., 2006) introduce a proxy based platform able to render web pages and to extract only the necessary information to be sent to the mobile client. Novelty of this approach resides in resembling a view similar to that available by a desktop browser but smaller. Baluja (Baluja, 2006) proposes to present the user a thumbnail image of the full web page, allowing the user to zoom into regions.

All solutions above and others (e.g. Olivera (De Oliveira, 2008)) attempt to identify heuristics for solving the problem. More recently, another direction being investigated regards the page layout as an optimization problem aimed at maximizing usability criteria and user preferences, meeting as much as possible dimensional constraints.

Ahmad, Basir and Hassanein (Ahmad et al., 2003) pursue a different approach. They suggest fuzzy logic rules as means for trading-off between different, often conflictive, requirements and user preferences, still meeting the standard usability guidelines at the same time.

In another work, Ahmad et al. (Ahmad et al., 2004) regard the page layout as a bin packing problem. They address the problem by optimization strategies based on heuristic rules for placing content modules (shaped as rectangles) in sequence. The strategy outcome depends on the order by which modules are placed. In particular the strategy fitness is function of module position and dimension. A genetic algorithm is introduced in order to find the module sequence that maximize the strategy outcome.

Gajos, Weld and Wobbrock (Gajos et al., 2008) solve the problem of finding an appropriate trade-off among device constraints and user preferences by adopting a decision-theoretic optimization.

Usability becomes a key element in mobile devices. A usable interface brings many benefits: users are able and willing to use the various features and services supplied by the operators, the need for customer support decreases, and above all, user satisfaction improves (Jokela et al., 2006). Given the typical input limitations of a mobile device, Mobile Web Best Practices (W3C, 2008) suggest to limit scrolling to one direction and to split pages into more but usable parts. According to Nielsen (Nielsen, 1994) usability is associated to five attributes: learnability, efficiency, memorability, error and satisfaction. These attributes must be prioritized according to user and task analysis, and then operationalized and expressed in a measurable way. A related study led by Google (Baluja, 2006) analyzes the problem of browsing web pages on small screens. In particular they adopt a Machine Learning Framework for segmenting a target front page. They segment the page into 9 equally sized regions, each able to be enlarged using the phone keypad.

Generative approach can be employed in page adaptation (Russo et al., 2008). Troiano, Birtolo, Armenise and Cirillo (Troiano et al., 2008) investigate the application of genetic algorithms as a viable approach to optimize structural elements such as menu layouts. More recently, they propose genetic algorithms as means for re-arranging Web form fields in a sequence of pages according to some constraints (Troiano et al., 2009). The paper is focused on a predefined page layout (i.e. vertical flow in mobile devices) which allows only to determine the sequence of
fields on each page. By this way horizontal scrolling is automatically avoided but it is not possible to reorganize the page layout. In this paper, instead, we arrange page elements (e.g. images, text areas, buttons, etc.) in new and unforeseen layouts.

3 ALGORITHM

The algorithm is inspired to the GA given by Goldberg and its structure is outlined in Fig.1. The algorithm breeding is based on the following stages:

- **Evaluation**: a fitness score is assigned to each population individual.
- **Genetic Processing**: here individuals are genetically processed by selection, single-point crossover and mutation.

In particular, the algorithm adopts elitism with a random selection of individual to be substituted by the best ones. Tournament is implemented by selecting the best individual after t pairwise comparisons, as described in (Goldberg, 1989).

![Figure 1: Algorithm structure.](image)

3.1 Chromosome

Page content is structured in a hierarchy of elements, organized in a tree, whose leaves are terminal elements and non-leaves are containers of elements. Each node is described by a set of parameters which are targets of search. In particular we have:

- **Container specific parameters**: *flow*, provides the vertical/horizontal layout of contained elements and sub-containers.
- **Element specific parameters**: *font-size*, controls the text typeface size; *resizeH* and *resizeV*, represent the element resizing factors.
- **Common parameters**: *weight*, provides the importance of node compared to siblings sharing the same container, in order to control the percentage of area reserved to the node; *split*, available only for nodes directly held by the top-level page container, makes possible to organize the content in different pages if necessary.

In order to reduce the search space, parameter values are indexed, that is parameters are not free to assume any value; possible values are enumerated. For instance, *weight* can assume 11 possible values ranging from 0% to 100%, namely 0%, 1%, ..., 90%, 100%. Font-size and resize factors are expressed in terms of ratios of values taken directly from the starting page if available, or of default values if not. Boolean parameters are instead coded as 0 for true and 1 for false.

In order to keep the page consistent, elements can be grouped in classes (i.e. categories). Each category refers to specific parameters, so that optimization is able to control the rendering of several elements at once.

The procedure to map page to chromosome follows. The tree-structure of the page is inspected and each parameter of each node becomes a gene. Genes assume as allele the index among a set of admissible values for that parameter. Parameters belonging to a category are coded and appended to the chromosome structure. In other words, an individual represents a particular set of parameter values for rendering the page in a modified layout. The chromosome mapping is depicted in Fig.2.

![Figure 2: Chromosome.](image)

3.2 Fitness

The fitness function for an individual x is aimed at assessing a resulting layout in order to limit scrolling in both vertical and horizontal direction. As said, an individual is a set of parameters ruling the page layout. The actual page size is determined by rendering elements layout according to parameters as expressed by the chromosome. The resulting page size is compared to the target display size, providing the score to the individual.

The fitness function we adopted is

\[
\text{fitness}(x) = \left(\prod_{i=1}^{n} (w_h.S_h(x) + w_v.S_v(x)) \right)^{\frac{1}{n}}
\] (1)
where n is the number of pages obtained by splitting the content, S_h is the contribution due to avoiding horizontal scrolling and S_v the contribution for vertical scrolling, weighted respectively by w_h and w_v (with $w_h + w_v = 1$). The two scrolling components are expressed as

$$S(x) = \begin{cases}
1 - (1 - \left(\frac{d}{t}\right)^3) & d < t \\
\exp(-(d-t)) & d \geq t
\end{cases} \quad (2)$$

where d is the size of resulting page and t is the size of target display. We note, that penalization occurs in both cases the available size is not met. Indeed, exceeding the size entails a scrolling that should be avoided to improve usability, while being below the available size entails a waste of space that could be instead devoted to enlarge elements. Obviously, the first is more penalized than the latter.

The fitness function ranges in $[0, 1]$, being 0 the worst result and 1 the best, i.e. each page is exactly fitted by assigned elements. Being below 1 at each page contributes to get a lower overall score, due to the product of scores obtained by each single page. Each page is scored by the quality of tradeoff between horizontal and vertical size penalization.

3.3 Experimentation

Experiments were carried out on Intel Pentium IV machine with 2 GB of RAM running Windows XP Professional Edition Service Pack 2. We gave higher penalization to horizontal scrolling, as generally considered more tedious than vertical. In particular we set $w_h = 0.7$ and $w_v = 0.3$. Genetic operators are the single-point crossover and simple mutation. Selection is a 3-way tournament, in order to make the algorithm less sensitive to the distribution of fitness values; elitism is 1. Parameters are summarized in Tab.1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crossover rate</td>
<td>0.8</td>
</tr>
<tr>
<td>Mutation rate</td>
<td>0.1</td>
</tr>
<tr>
<td>Elitism</td>
<td>1</td>
</tr>
<tr>
<td>w_h</td>
<td>0.7</td>
</tr>
<tr>
<td>w_v</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Table 1: Algorithm parameters.

These parameters have been chosen by a preliminary qualitative analysis, proving to be a good trade-off between exploration and exploitation behavior. In particular, a higher rate of mutation helped to keep the genetic diversity high due to the chromosome length (65 genes1).

In addition, as the algorithm was aimed at evolving an existing solution, the initial population was provided with clones of the initial reference page together a number of randomly generated solutions. Randomization rate is the portion of individuals that was generated. Higher values of randomization enrich the genetic variety of population but evolution can slightly diverge from the original sample.

We repeated 5 runs for different problem configurations and we observed how the fitness profiles at different population size (i.e. 100, 200, 500 and 1000 individuals) and randomization rate (i.e. 0.5, 0.8 and 1.0) as depicted respectively in Fig.3 and Fig.4 by plotting the fitness average of best individuals. As expected, population size has an impact on discovery of optimal solutions and best results occur when population size is 1000 (0.9972). Instead adopting 100 individuals the algorithm reaches solutions with lower fitness on average (0.7031). Observing the effect of randomization rate of the initial population, best performance is obtained with a rate of 0.8, whilst rate 1.0 (meaning a completely random initial population) leads to worst results.

![Figure 3: Fitness average of best individuals by varying population size.](image1)

![Figure 4: Fitness average of best individuals by varying randomization rate.](image2)
4 A TOOL FOR AUTOMATIC ADAPTATION

In order to assist the designer, we developed a tool able to optimize web pages employing the algorithm described above.

The tool interface (see Fig.6) is organized in three main panels. The central panel contains the web page being adapted. The page can be retrieved by the url navigation bar, similar to that available in web browsers. After the page is loaded, elements we wish to have in the adapted page can be selected by clicking on them. The panel on the right shows the starting page DOM structure. Elements can be selected also by this panel in a finer way. Right-clicking on DOM tags opens a pop-up menu that makes available some actions, such as selecting an entire branch of DOM. Selected elements are highlighted by a surrounding blue sketched border. The panel on the left regards the desired structure of resulting page (on top). Elements can be arranged in the resulting page structure by drag&drop. On bottom, there are settings controlling the genetic algorithm (i.e. population size, generation limit, cross-over probability, etc.), whose implementation uses an open source optimized library for genetic algorithms written in Java (Troiano and De Pasquale, 2009). Besides controls to run the page adaptation, the user is able to perform a quantitative test of the algorithm in order to check performances and convergence.

For each node in the resulting page, it is possible to set the parameters as described in Section 3 (i.e. weight, flow, split, font-size, etc.). Parameter initial values are obtained from the original web page, as the tool is able to capture both in-line HTML attributes and CSS style-rules. If one parameter value is missing, a default value is assumed. Initial values can be changed in order to provide an initial solution to the algorithm. After the algorithm is run, parameters can be changed in order to refine the resulting page(s). The initial solution and output can be previewed. As we said before, in order to keep the page aspect consistent, elements can be grouped in categories. The tool makes possible to create categories and to assign them to nodes.

In summary, adapting web pages by the tool entails four steps:

1. Building a hierarchical structure of the target web page.
2. Running the Genetic Algorithm with a specific set of parameters.
4. Repeat from Step 2 until a satisfactory solution is reached.

In the first step, the user can use the browser and the DOM structure on right to select the content to be included. The resulting page layout is structured by organizing the tree on the left panel, describing the hierarchy of containers. In the second step, the user runs the Genetic Algorithm with the given settings, searching for optimal alternatives. After the search process is complete, an optimal solution is made available to the user. In the third step, the user can further refine the solution acting on node parameters. This step is required in order to better meet aesthetics and user preferences, thus improving the page look. If the result is not satisfactory, a further search can be performed starting from the partial result obtained or from scratch (step 4). The output can be exported into a set of HTML files, each representing one of the web pages obtained. This is in accordance to a broader definition of Interactive Evolutionary Computation (IEC) (Takagi, 2001).

4.1 Examples of Application

As an example of application we can consider a web page of Poste Italiane. The target page provides access to some postal products such as letters, parcels and e-services, in order to find the best means for sending postage. Although the page is accessible by mobile devices, it is characterized by a two-dimensional scrolling thus limiting the usability of page (see Fig.5).

First, we prepare the search according to instructions described above (see Fig.6). The target structure
is chosen ensuring the semantic relations among information and guaranteeing a splitting in usable parts.

In addition we define the genetic algorithm settings and the target device size. In particular we choose: generation limit = 100, population = 1000, crossover probability = 0.8, mutation probability = 0.1, elitism = 1 and a screen resolution of 240 × 320 pixels. After 10 generations we reach the fitness value of 0.9981 and we stop the evolution. Best individual obtained so far is shown in Fig.7. As the solution is satisfactory, there is no need to further search better solutions.

4.2 Experimental Results

For the experimentation we enrolled 20 participants. All participants employed a Personal Computer during daily work and possessed at least the basic level of computer literacy. They usually navigate web-site by means of their PC even if all of them have a mobile device. The average age of the participants was 42, ranging from 28 to 55 years old. Experiments were conducted at Research and Development Centre of Poste Italiane in Naples. Three participants designed a solution in order to adapt a source page to mobile device. The chosen target page was the url: http://www.poste.it/postali (see Fig.5). Among designers, two of them adopted a tool in order to edit the page and to adapt it to the mobile device, one of them adopted the proposed tool (see Fig.6) for automatic page adaptation. The solution proposed by first designer is depicted in Fig.8 (namely Solution 1), while the solution of the second designer is shown in Fig.9 (namely Solution 3). Solution obtained by the tool is reported in Fig.7 (namely Solution 2). In these pictures, page exceeding the display height of PDA means that vertical scrolling occurs. One participant trained and assigned tasks to a focus tester group made by the remaining 16 participants. The group was aimed at evaluating the three different solutions regarding quality and usability by means of a questionnaire made by the following 12 questions:

• Question 1: The contents were well organized and were easy to find. (Strongly disagree 1.2.3.4.5 Strongly agree).
• Question 2: Screens have the right amount of information. (Strongly disagree 1.2.3.4.5 Strongly agree).
• Question 3: The site has characteristics that make it especially appealing. (Strongly disagree 1.2.3.4.5 Strongly agree).
• Question 4: It is easy to remember where to find things. (Strongly disagree 1.2.3.4.5 Strongly agree).
• Question 5: Information is easy to read. (Very difficult 1.2.3.4.5 Very easy).
• Question 6: Information is written in a style that suits me. (Strongly disagree 1.2.3.4.5 Strongly agree).
• Question 7: I immediately understood the function of each page. (Strongly disagree 1.2.3.4.5 Strongly agree).
• Question 8: All of the functions I expected to find in the different pages were present. (Strongly disagree 1.2.3.4.5 Strongly agree).
• Question 9: The site is well-suited to first-time visitors. (Strongly disagree 1.2.3.4.5 Strongly agree).
• **Question 10**: The site is well-suited to frequent visitors.
 (Strongly disagree 1.2.3.4.5 Strongly agree).

• **Question 11**: My overall impression of the site is
 (Very Negative 1.2.3.4.5 Very positive).

• **Question 12**: I think that the site is developed by
 (Human, Computer, I don’t know).

User group had to give a level of agreement to each question with a score ranging from 1 (Strongly disagree) to 5 (Strongly agree), except of the last question.

We collected the results and analyzed them by Wilcoxon paired test, comparing for each question levels of agreement of Solution 1 vs. Solution 2, Solution 2 vs. Solution 3 and Solution 1 vs. Solution 3. P-values of these comparisons are reported in Tab.2.

<table>
<thead>
<tr>
<th>Questions</th>
<th>S1 vs. S2</th>
<th>S2 vs. S3</th>
<th>S1 vs. S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>1.0000</td>
<td>0.0431</td>
<td>0.0679</td>
</tr>
<tr>
<td>Question 2</td>
<td>0.2489</td>
<td>0.0425</td>
<td>0.1056</td>
</tr>
<tr>
<td>Question 3</td>
<td>0.5930</td>
<td>0.0425</td>
<td>0.0277</td>
</tr>
<tr>
<td>Question 4</td>
<td>0.1797</td>
<td>0.3980</td>
<td>0.8886</td>
</tr>
<tr>
<td>Question 5</td>
<td>0.0935</td>
<td>0.1282</td>
<td>0.0180</td>
</tr>
<tr>
<td>Question 6</td>
<td>0.3454</td>
<td>0.0747</td>
<td>0.0300</td>
</tr>
<tr>
<td>Question 7</td>
<td>0.6858</td>
<td>0.0431</td>
<td>0.0431</td>
</tr>
<tr>
<td>Question 8</td>
<td>0.2012</td>
<td>0.0747</td>
<td>0.3452</td>
</tr>
<tr>
<td>Question 9</td>
<td>0.7353</td>
<td>0.2488</td>
<td>0.5294</td>
</tr>
<tr>
<td>Question 10</td>
<td>0.3454</td>
<td>0.0747</td>
<td>0.1089</td>
</tr>
<tr>
<td>Question 11</td>
<td>0.7794</td>
<td>0.0117</td>
<td>0.0180</td>
</tr>
</tbody>
</table>

As outcome of the questionnaire, users considered Solution 1 (Human) better than Solution 3 (Human). Looking at p-values (assuming < 0.05 to reject test null hypothesis H_0, > 0.50 to accept H_0), we can state:

1. Best human solution and machine solution are equivalent from the point of view of the organization of content (**Question 1, Sol1 vs. Sol2, p-value = 1.0000**);

2. The solution proposed by the machine has an appealing comparable with the best human solution (**Question 3, Sol1 vs. Sol2, p-value = 0.5930**);

3. Also from the point of view of usability, the solution proposed by the tool is statistically comparable with the best human solution (**Question 7, Sol1 vs. Sol2, p-value = 0.6858** and better than the other human solution (**Question 7, Sol2 vs. Sol3, p-value = 0.0431**);

4. Machine page is considered well suited for first time visitors as much as the best human one (**Question 9, Sol1 vs. Sol2, p-value = 0.7353**);

5. In summary, users enjoyed the solution generated by machine as much as the best human one (**Question 11, Sol1 vs. Sol2, p-value = 0.779434528** and more than the other human one (**Question 9, Sol2 vs. Sol3, p-value = 0.011718686**).

Moreover, results of question 12 show that the group was not able to recognize that Solution 2 was generated by a computer (50% said by human). In general nobody was able to correctly distinguish this solution from the others.
5 CONCLUSIONS AND FUTURE WORK

Adapting web pages to mobile devices is sometimes a challenging task for human and automatic tools. Evolutionary algorithms represent a feasible approach to support users in searching alternative layouts for Mobile Web. In this paper we presented a tool enabling genetic algorithms in searching optimal solutions for mobile devices given a webpage designed for desktop application. Experimental results show that interesting results can be obtained even only considering a parameterized layout, as defined by the user. There are two directions we aim at investigating in future work in order to overcome current limitations. In particular, the algorithm implemented so far is not able to deal with multiple conflicting preferences and constraints. This suggests to move to multi-objective evolutionary optimization. In addition, the algorithm is not able to escape from the given layout, as the structure is left unchanged. Genetic Programming offers an interesting direction to investigate. Other limitations refer to computational cost for searching and evaluating solutions. Although this limits the algorithm to be employed in real world problems, the quality of solutions makes this approach already competitive with human abilities. Technology progress will offer unexplored opportunities for the future.

REFERENCES

