HEART-RATE ADAPTIVE MATCH FILTER BASED PROCEDURE FOR AUTOMATIC DETECTION OF T-WAVE ALTERNANS FROM 24-HOUR ECG RECORDINGS - Issues Related to Filter Implementation

Laura Burattini, Silvia Bini, Roberto Burattini

2010

Abstract

Twenty-four hour T-wave alternans (TWA) analysis is a promising approach for risk stratification, which still remains unpractical because TWA identification algorithms are complex and require long computation time (CT). The aim of the present study was to test the applicability to 24-hour ECG recordings of our heart-rate adaptive match filter (AMF) which allows TWA detection by submitting ECG data to a band-pass filter centered at the TWA fundamental frequency fTWA, equal to a half heart rate. Two implementations are possible: 1) the passing-band is adapted to a varying fTWA value (FA_AMF), and 2) the filter band is fixed while conditioning the ECG data (SA_AMF). Simulated ECG tracings, characterized by no TWA or by different kinds of TWA, and 24-hour ECG recordings from healthy subjects and coronary artery disease patients were used to identify the fastest of these two implementations. Our results yielded the conclusions that the CT of our AMF-based procedure is independent of the amount of TWA present in the tracing, but depends on ECG sample length and filter implementation. If filter-design tools are available while performing ECG analysis, the FA_AMF implementation is to be preferred because its CT is about one third of SA_AMF CT.

References

  1. Adam, D.R., Smith, J.M., Akselrod, S., Nyberg, S., Powell, A.O., Cohen, R.J., 1984, Fluctuations in Twave morphology and susceptibility to ventricular fibrillation, J Electrocardiol, 17: 209-218.
  2. Burattini, L., Zareba, W., Moss, A.J., 1999, Correlation method for detection of transient T-wave alternans in digital Holter ECG recordings, Annals of Noninvasive Electrocardiol, 4: 416-424.
  3. Burattini, L., Zareba, W., Burattini, R., 2006, Automatic detection of microvolt T-wave alternans in Holter recordings: effect of baseline wandering, Biomed Signal Process Control, 1: 162-168.
  4. Burattini, L., Zareba, W., Burattini, R., 2008, Adaptive match filter based method for time vs. amplitude characterization of microvolt ECG T-wave alternans, Ann Biomed Eng, 36: 1558-1564.
  5. Burattini, L., Zareba, W., Burattini, R., 2008b, Identification of time-varying T-wave alternans from 20-Minute ECG recordings, In Proceedings of BIOSTEC 2008, International Joint Conference on Biomedical Engineering Systems and Technologies, Funchal, Madeira, Portugal, January 28-31, 186-192.
  6. Burattini, L., Zareba, W., Burattini, R., 2009, Assessment of physiological amplitude, duration and magnitude of ECG T-wave alternans, Ann Noninvasive Electrocardiol, 14: 366-374.
  7. Burattini, L., Bini, S., Burattini, R., 2009b, Comparative analysis of methods for automatic detection and quantification of microvolt T-wave alternans, Med Eng Phys, [Epub ahead of print], doi:10.1016/j.medengphy.2009.08.009.
  8. Estes, N.A. 3rd, Michaud, G., Zipes, D.P., El-Sherif, N., Venditti, F.J., Rosenbaum, D.S., Albrecht, P., Wang, P.J., Cohen, R.J., 1997, Electrical alternans during rest and exercise as predictors of vulnerability to ventricular arrhythmias, Am J Cardiol, 80: 1314- 1318.
  9. Gold, M.R., Bloomfield, D.M., Anderson, K.P., El-Sherif, N.E., Wilber, D.J., Groh, W.J., Estes, N.A. 3rd, Kaufman, E.S., Greenberg, M.L., Rosenbaum, D.S., 2000, A comparison of T-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification, J Am Coll Cardiol, 36: 2247-2253.
  10. Gold, M.R., Ip, J.H., Costantini, O., Poole, J.E., McNulty, S., Mark, D.B., Lee, K.L., Bardy, G.H., 2008, Role of microvolt T-wave alternans in assessment of arrhythmia vulnerability among patients with heart failure and systolic dysfunction: primary results from the T-wave alternans sudden cardiac death in heart failure trial substudy, Circulation, 118: 2022-2028.
  11. Hennersdorf, M.G., Niebch, V., Perings, C., Strauer, B.E., 2001, T wave alternans and ventricular arrhythmias in arterial hypertension, Hypertension, 37: 199-203.
  12. Hohnloser, S.H., Klingenheben, T., Li, Y.G., Zabel, M., Peetermans, J., Cohen, R.J., 1998, T wave alternans as a predictor of recurrent ventricular tachyarrhythmias in ICD recipients: prospective comparison with conventional risk markers, J Cardiovasc Electrophysiol, 9: 1258-1268.
  13. Klingenheben, T., Zabel, M., D'Agostino, R.B., Cohen, R.J., Hohnloser, S.H., 2000, Predictive value of Twave alternans for arrhythmic events in patients with congestive heart failure, Lancet, 356: 651-652.
  14. Martínez, J.P., Olmos, S., 2005, Methodological principles of T wave alternans analysis: a unified framework, IEEE Trans Biomed Eng, 52: 599-613.
  15. Martínez, J.P., Olmos, S., Wagner, G., Laguna, P., 2006, Characterization of repolarization alternans during ischemia: time-course and spatial analysis, IEEE Trans Biomed Eng, 53: 701-711.
  16. Narayan, S.M., 2007, T-wave alternans and human ventricular arrhythmias: what is the link?. J Am Coll Cardiol, 49: 347-349.
  17. Nearing, B.D., Huang, A.H., Verrier, R.L., 1991, Dynamic tracking of cardiac vulnerability by complex demodulation of the T wave, Science, 252: 437-440.
  18. Nearing, B.D., Verrier, R.L., 2002, Modified moving average analysis of T-wave alternans to predict ventricular fibrillation with high accuracy, J Appl Physiol, 92: 541-549.
  19. Rosenbaum, D.S., Jackson, L.E., Smith, J.M., Garan, H., Ruskin, J.N., Cohen, R.J., 1994, Electrical alternans and vulnerability to ventricular arrhythmias, N Engl J Med, 330: 235-241.
  20. Sakaki, K., Ikeda, T., Miwa, Y., Miyakoshi, M., Abe, A., Tsukada, T., Ishiguro, H., Mera, H., Yusu, S., Yoshino, H., 2009, Time-domain T-wave alternans measured from Holter electrocardiograms predicts cardiac mortality in patients with left ventricular dysfunction: a prospective study, Heart Rhythm, 6: 332-337.
  21. Smith, J.M., Clancy, E.A., Valeri, C.R., Ruskin, J.N., Cohen, R.J., 1988, Electrical alternans and cardiac electrical instability, Circulation, 77: 110-121.
  22. Verrier, R.L., Nearing, B.D., 1994, Electrophysiologic basis for T wave alternans as an index of vulnerability to ventricular fibrillation,J Cardiovasc Electrophysiol, 5: 445-461.
  23. Verrier, R.L., Nearing, B.D., La Rovere, M.T., Pinna, G.D., Mittleman, M.A., Bigger, J.T. Jr, Schwartz, P.J., ATRAMI Investigators, 2003, Ambulatory electrocardiogram-based tracking of T wave alternans in postmyocardial infarction patients to assess risk of cardiac arrest or arrhythmic death, J Cardiovasc Electrophysiol, 14: 705-711.
Download


Paper Citation


in Harvard Style

Burattini L., Bini S. and Burattini R. (2010). HEART-RATE ADAPTIVE MATCH FILTER BASED PROCEDURE FOR AUTOMATIC DETECTION OF T-WAVE ALTERNANS FROM 24-HOUR ECG RECORDINGS - Issues Related to Filter Implementation . In Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010) ISBN 978-989-674-018-4, pages 401-408. DOI: 10.5220/0002694604010408


in Bibtex Style

@conference{biosignals10,
author={Laura Burattini and Silvia Bini and Roberto Burattini},
title={HEART-RATE ADAPTIVE MATCH FILTER BASED PROCEDURE FOR AUTOMATIC DETECTION OF T-WAVE ALTERNANS FROM 24-HOUR ECG RECORDINGS - Issues Related to Filter Implementation},
booktitle={Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)},
year={2010},
pages={401-408},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002694604010408},
isbn={978-989-674-018-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2010)
TI - HEART-RATE ADAPTIVE MATCH FILTER BASED PROCEDURE FOR AUTOMATIC DETECTION OF T-WAVE ALTERNANS FROM 24-HOUR ECG RECORDINGS - Issues Related to Filter Implementation
SN - 978-989-674-018-4
AU - Burattini L.
AU - Bini S.
AU - Burattini R.
PY - 2010
SP - 401
EP - 408
DO - 10.5220/0002694604010408