Keywords: Fuzzy Neural Networks, Feature Selection, Principal Component Analysis, KOSPI.

Abstract: This paper proposes stock forecasting using a principal component analysis (PCA) and a non-overlap area distribution measurement method based on a neural network with weighted fuzzy membership functions (NEWFM). The non-overlap area distribution measurement method selects the minimum number of four input features with the highest performance result from 12 initial input features by removing the worst input features one by one. PCA is a vector space transform often used for reducing multidimensional data sets to lower dimensions for analysis. The seven dimensional data sets with the highest performance result are extracted by PCA. The highest performance results in a non-overlap area distribution measurement method and PCA are 58.35% as the same results.

1 INTRODUCTION

To distinguish good input features and bad input features from many input features is to select the minimized input features with the best performance results. Principal component analysis (PCA) is a vector space transform often used for reducing multidimensional data sets to lower dimensions for analysis. PCA is arranged in descending order according to the significance in contributing to the overall data variations (Sanger, 1989). Therefore, the first principal component explains most of the variation in the given data. The second principal component explains the cause of the next level of variation, and so on. But the number of input features does not change because PCA reduces multidimensional data sets to low dimensions for analysis.

This paper suggests a new feature selection methodology for stock forecasting using the non-overlap area distribution measurement method based on a neural network with weighted fuzzy membership functions (NEWFM) (Lim et al., 2005), (Lim, 2009). The non-overlap area distribution measurement method removes the worst input features one by one and then selects the minimized number of input features, each of which constructs an interpretable fuzzy member-ship function. All features are interpretably formed in weighted fuzzy membership functions preserving the disjunctive fuzzy information and characteristics. All features are selected by the non-overlap area measurement method validated by the wine benchmarking data in University of California, Irvine (UCI) Machine Learning repository (Lim and Gupta, 2004).

This paper compares the forecasting performance of the feature extraction using PCA with the feature selection using the non-overlap area measurement method for the prediction of the higher or lower changes of the daily Korea composite stock price index (KOSPI). In this paper, four and seven input features with the highest forecasting performance are used for forecasting the higher or lower changes of the daily KOSPI using the non-overlap area distribution measurement method (Lim et al., 2005), (Lim, 2009) and PCA, respectively.

This paper uses four minimum input features selected by the non-overlap area distribution measurement method and the seven dimensions extracted by PCA with the highest performance results as input features of NEWFM to forecast the higher or lower changes of the daily KOSPI. NEWFM shows that the highest performance results using the non-overlap area distribution measurement method and PCA are 58.35% as the same results.
Even though the highest performance results using the non-overlap area distribution measurement method and PCA are the same result, there are two merits in the non-overlap area distribution measurement method. The first merit is that it takes the less time to make input features because the number of input features can be reduced. The second merit is that the non-overlap area distribution measurement method can realize real-time stocks system. In case in PCA, if new data comes, new dimensional data that are reduced by PCA are changed, therefore PCA can’t realize real-time stocks system.

2 EXPERIMENTAL DATA

This paper uses 2928 trading days, from January 1989 to December 1998, which are the total number of samples used by Kim, and also 12 technical indicators selected by Kim (Kim, 2003), to forecast changes in the daily Korean composite stock price index (KOSPI). Kim divided the samples into two subsets, training sets and holdout sets, which include 2347 and 581 trading days, respectively. This study aims to forecast changes in the daily KOSPI. Increases and decreases in the KOSPI are classified as “1” and “2,” respectively; “1” means that the next day’s data are lower than today’s data, and “2” means that the next day’s data are higher than today’s data.

3 NEURAL NETWORK WITH WEIGHTED FUZZY MEMBERSHIP FUNCTION (NEWFM)

A neural network with weighted fuzzy membership function (NEWFM) is a supervised classification neuro-fuzzy system using the bounded sum of weighted fuzzy membership functions (BSWFMs) (Lim et al., 2005), (Lim and Gupta, 2004). The structure of the NEWFM, illustrated in Figure 1, comprises three layers namely input, hyperbox, and the class layer. The input layer contains \(n \) input nodes for an \(n \) featured input pattern. The hyperbox layer consists of \(m \) hyperbox nodes. Each hyperbox node \(B_i \) to be connected to a class node contains \(n \) BSWFMs for \(n \) input nodes. The output layer is composed of \(p \) class nodes. Each class node is connected to one or more hyperbox nodes. An \(i \)th input pattern can be recorded as \(I_i = \{ A_i = (a_1, a_2, \ldots, a_n), \text{class} \} \), where class is the result of classification and \(A_i \) is \(n \) features of an input pattern.

The connection weight between a hyperbox node \(B_i \) and a class node \(C_j \) is represented by \(w_{ij} \), which is initially set to 0. From the first input pattern \(I_1 \), the \(w_{ij} \) is set to 1 by the winner hyperbox node \(B_i \) and class \(i \) in \(I_1 \). \(C_i \) should have one or more than one connection to hyperbox nodes, whereas \(B_i \) is restricted to have only one connection to a corresponding class node. The \(B_i \) can be learned only when \(B_i \) is a winner for an input \(I_k \) with class \(i \) and \(w_{ij} = 1 \).

![Figure 1: Structure of NEWFM.](image-url)
4.2 Feature Selection based on the Non-overlap Area Distribution Measurement Method

Selecting the number of fuzzy rules and identifying the important input features have received attention in recent literature (Ishibuchi and Nakashima, 1999). In this paper, the minimum number of four input features is selected by the non-overlap area distribution measurement method (Lim and Gupta, 2004) (Lim, 2009) from 12 initial input features. The method measures the degree of salience of the ith feature by non-overlapped areas with the area distribution by the following equation:

\[f(i) = \left(\frac{\text{Area}_U + \text{Area}_L}{2} \right) \left(\frac{1}{1 + e^{-(\text{Area}_U - \text{Area}_L)}} \right) \],

where \(\text{Area}_U \) and \(\text{Area}_L \) are the higher and lower phase superior areas, respectively.

As an example, for the best and worst input features among 12 initial input features, the AreaU and AreaL are shown in Figure 2. The larger the value of \(f(i) \), the more the feature’s characteristic is implied. The worst of the 12 initial input features are removed one by one by the non-overlap area distribution measurement method, and then the minimum number of four input features with the highest performance results is selected for the holdout sets.

This experiment created two hypoboxes for classification. A hyperbox that contains a set of lines (BSWFM) in Figure 2 is a rule for class 1 (the lower phase), and the other hyperbox that contains a set of lines (BSWFM) is another rule for class 2 (the higher phase). The graphs in Figure 2 are obtained from the NEWFM program’s training process, and graphically show the difference between the lower and higher phases for each input feature. The lower phase means that the next day’s data are lower than today’s data. The higher phase means that the next day’s data are higher than today’s data.

Figure 3: Number of Accumulated Counters of the Worst Input Features.

The model this paper describes repeatedly trains the training sets and tests the holdout sets 1000 times to find the worst input feature. The distributed non-overlap area measurement method based on NEWFM finds and counts the worst input feature among the total number of input features using \(f(i) \) in Eq. (2); and then the accumulated results of 1000 tests are shown in Figure 3, which shows that the seventh input feature is the worst input feature among the 12 input features, and then the seventh input feature is removed from the 12 input features in the next experiment.

4.3 Performance Results

The performance results for the holdout sets, which were used in Kim (Kim, 2003) are presented to evaluate the performance result of the proposed NEWFM. Kim used support vector machines (SVMs) for forecasting changes in the daily KOSPI (Kim, 2003). In case of the distributed non-overlap area measurement method, the performance results of NEWFM shown in Table 1 are evaluated by four minimum input features that are selected from twelve initial input features, which are presented in Kim (Kim, 2003). In case of PCA, the performance result for the holdout sets are with seven dimensions. In Table 1, NEWFM outperforms SVM by 0.52% for the holdout data in the experiment that used the...
minimum number of four input features selected by the non-overlap area distribution measurement method (Lim and Gupta, 2004) and seven numbers of dimensional data reduced by PCA. Stochastic %D, Momentum, Disparity 5 days, and Disparity 10 days that are used in Kim (Kim, 2003) are selected as the minimum number of four input features with the highest performance result, and are used to generate the fuzzy rules for forecasting changes in the daily KOSPI. Even though the highest performance results using the non-overlap area distribution measurement method and PCA are the same result, there are two merits in the non-overlap area distribution measurement method. The first merit is that it takes the less time to make input features because the number of input features can be reduced. The second merit is that the non-overlap area distribution measurement method can realize real-time stocks system. In case in PCA, if new data comes, new dimensional data that are reduced by PCA are changed, therefore PCA can’t realize real-time stocks system.

Table 1: Comparisons of Performance Results for Kim with NEWFM Using the Non-overlap Area Distribution Measurement Method and PCA.

<table>
<thead>
<tr>
<th></th>
<th>NEWFM (Non-overlap area distribution measurement)</th>
<th>NEWFM (PCA)</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance (%)</td>
<td>58.35</td>
<td>58.35</td>
<td>57.83</td>
</tr>
</tbody>
</table>

5 CONCLUSIONS

This paper proposes a new feature selection methodology for financial forecasting using the non-overlap area distribution measurement method based on the neural network with weighted fuzzy membership functions (NEWFM). This paper compares the forecasting performance of the feature extraction using PCA with the feature selection using the non-overlap area measurement method. NEWFM is a new model of neural networks to improve forecasting performance results by using self-adaptive weighted fuzzy membership functions. The degree of classification intensity is obtained by the bounded sum of weighted fuzzy membership functions selected by NEWFM.

In this paper, the non-overlap area distribution measurement method selects the minimized number features by removing the worst input features one by one. PCA is used for reducing twelve numbers of initial input features to twelve numbers of dimensions that consist of first principal component to twelfth principal component. Four minimum input features selected by the non-overlap area distribution measurement method (Lim et al., 2005) and seven numbers of dimensional data reduced by PCA are presented to forecast the higher or lower changes of the daily KOSPI. The performance results of the non-overlap area distribution measurement method and PCA are 58.35%.

Even though the highest performance results using the non-overlap area distribution measurement method and PCA are the same result, there are two merits in the non-overlap area distribution measurement method. The first merit is that it takes the less time to make input features because the number of input features can be reduced. The second merit is that the non-overlap area distribution measurement method can realize real-time stocks system. In case in PCA, if new data comes, new dimensional data that are reduced by PCA are changed, therefore PCA can’t realize real-time stocks system.

REFERENCES