REBEL
Reconfigurable Block Encryption Logic

Mahadevan Gomathisankaran
Department of Electrical Engineering, Princeton University, Princeton, New Jersey, U.S.A.

Ka-Ming Keung, Akhilesh Tyagi
Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, U.S.A.

Keywords: Block Cipher Function.

Abstract: REBEL is a fiestel network based block encryption function which uses reconfigurable gates instead of substitution boxes. This novel design approach has many advantages such as the key size can be much greater than the block size, security can be reduced to boolean square root problem (Kutz, 2004) and resistant to known cryptanalytic attacks. The implementation results show that our proposed design can better AES in every design parameter at the same time providing much higher security.

1 INTRODUCTION

Block cipher function is the fundamental building block of the encryption systems. The security of block cipher functions is directly related to its key size. This is one of the primary reasons for the NIST’s AES proposal to replace DES. The key size of DES (56 bits) was becoming too weak compared the contemporary computing power. The trend of increase in the computing power is not going to change. The transistor size reduction together with multi-core approach will keep the rate of this increase approximately constant. Thus in the near future we can expect that 128 (or even 256) bits of keys becoming insufficient. Thus we need to research on new block cipher functions which can provide much larger key sizes (for example: 512, 1024 bits). The block size of these algorithms determine the latency of the encryption systems and hence it would be advantageous if the block size can be small (64 bits) compared to the key size.

Conventional block ciphers (National Bureau of Standards, 1999; National Bureau of Standards, 2001; Anderson et al., 2000) derive their security from an embedded secret, more commonly referred to as a key. One of the inputs, key, in each round is secret whereas the round functions themselves are public. The secret, however, is combined with the state in a limited way, as an xor, during a round. We propose a simple yet novel approach wherein the round functions themselves become the secret, while the function schema is a publicly published algorithm. The intuition is to use reconfigurable gates as round functions and define their configurations as the secret (or key). Hence the complexity of such a cryptographic function is derived from the fact that almost all of the round processing is driven by the secret (truth tables).

In a traditional block cipher, the secret is combined with the state with an xor as one of the steps in the round. This xor step is susceptible to linear modeling of the secret and input/output relationship. When the secret is used as a Boolean gate truth table, it is inherently non-linear.

The key advantages of our design approach are:
1. Key size is much greater than the block length. This allows to higher security guarantees without having to increase latency of cipher operation.
2. Smaller block lengths suite well for instruction level encryption when placed in-line into a processor pipeline (Lie et al., 2000; Suh et al., 2003).
3. Area and time efficient hardware implementation reduces the security processing overhead drastically.

Reconfigurable S-boxes have been proposed and used in GOST (GOS, 970 ) and TREYFER (TRE, 1997) encryption algorithms. GOST 28147-89 is a Soviet and Russian government standard symmetric
key block cipher. GOST defines the S-Boxes to be secret but does not use the key bits to choose the S-Boxes. The GOST philosophy is to pre-determine S-Boxes between communicating parties. TREYFER is a block cipher/MAC designed in 1997 by Gideon Yuval. TREYFER has single 8x8 S-Box which is defined by the secret key. Due to the simplicity of its key schedule, using the same 8 key bytes in each round, Treyfer was one of the first ciphers shown to be susceptible to a slide attack (Biryukov and Wagner, 1999). This cryptanalysis is independent of the number of rounds and the choice of S-box.

Results. Following are the key contributions of this paper.

- A novel block encryption algorithm whose security is reducible to Boolean Matrix Square root problem
- Performance characterization of the algorithm in Software, ASIC and FPGA

2 INTUITIVE DESIGN

Pseudorandom functions form the fundamental building block of a fiestel network based encryption function. Pseudorandom function (PRF) should exhibit two fundamental properties namely efficient evaluation and effective similarity. Efficient evaluation requires that the PRF be realizable with a poly sized circuit (both time and size) and effective similarity requires that the PRF should exhibit similar characteristics as a truly random function for any poly sized (both time and space) observed. So the first step is to design a PRF.

Efficient Evaluation. Let N be the block size of the PRF. Let \( S^N \) be the set of all \( N \times N \) functions (gates), then \( |S^N| = 2^{N^2} \). In order to satisfy the efficient evaluation criteria we need to form a subset \( G^N \) such that every gate \( g \in G^N \) is realizable in poly-time and poly-space of \( N \). Let \( m \) be such that \( n = O(\log N) \) and \( q = \frac{N}{m} \). Then any gate \( g \in S^m \), the set of all \( n \times n \) gates, is representable with \( n2^n \) bits. If we design the set \( G^N \) with \( q \) gates chosen from \( S^N \) then every gate \( g \in G^N \) is representable with \( N2^n = O(N) \) bits.

Effective Similarity. Effective similarity requirement can be further broken down into symmetry and similarity.

- Symmetry requires that every output bit is influenced by every input bit uniformly.

- Similarity requires that any differential input causes output differential effectively similar to the universal set. In other words the output bits should switch with a probability very close to \( \frac{1}{2} \).

Let \( f \) represent the \( N \times N \) gate realized by the \( q \), \( n \times n \) gates. Let \( \gamma_i \) represent the \( i^{th} \) \( n \times n \) gate where \( 0 \leq i \leq q - 1 \). There are \( q \) gates and each of these gates are chosen independently (remember key bits are chosen uniformly at random and key bits form the configuration bits for these \( q \) gates). Let \( X \) and \( Y \) be the input and output to \( f \). Let \( x_i \) and \( y_i \) be the \( i^{th} \) group of \( n \) bits of \( X \) and \( Y \) respectively, i.e., \( x_i = \) bits \( i \times n \) to \( i \times n + n - 1 \) of \( X \) and \( y_i = \) bits \( i \times n \) to \( i \times n + n - 1 \) of \( Y \).

The first design goal is to achieve symmetry. The simplest way to achieve this goal is by passing every input group through every one of the \( q \) gates. So we define \( y_i \) as follows,

\[ y_i = \bigoplus_{j=1}^{q} \gamma_{(i+j)q}(x_j) \]

Figure 1 shows this construction diagrammatically. In this figure every circle represents the \( n \rightarrow n \) gate. All the gates in the \( j^{th} \) row are fed with the input \( X^j \). The outputs of all the gates in the \( j^{th} \) column are XORed to produce the output \( Y^j \).

This structure ensures the symmetry property with respect to both input and the key bits. Also the use of XOR gate ensures that the influence of every \( \gamma_i \) and \( x_i \) on the output is equal. Such a gate \( f \) has some nice properties. It can produce all \( N \) bit symbols with equal probability. The collision probability, that is two different inputs producing the same output symbol, is equal to that of the universal set. In other words,

\[ P[\tilde{f}(x) = \tilde{f}(x') | x \neq x'] = \frac{1}{2^N}. \]

Security. We want to base the security of our design on a hard problem. The problem that is of interest to
us is the Boolean Matrix Square Root problem which is proven to be NP-Complete by Martin Kutz (Kutz, 2004). Kutz (Kutz, 2004) refers to this problem as digraph root problem for the kth root for k ≥ 2. Given a graph G, the problem is to find its factors such that G(X) = F(F(X)) or to determine that such a factor F (square root) exists. Kutz shows that this problem is NP-complete (Theorem 1, (Kutz, 2004)).

We can model the function \( \hat{f} \) as a \( 2^N \times 2^N \) boolean matrix where a bit in the \( i \)th row and \( j \)th column \( (b_{i,j}) \) is set to 1 if \( \hat{f}(i) = j \). If we compose \( \hat{f} \) twice and use this composition \( \hat{f}^2 \) as the round function in LR-network then any security question related to construction could be answered only if a solution to the Boolean Matrix Square Root of \( \hat{f}^2 \) can be found.

3 THEORY

3.1 Notations

In the following definitions \( x \) and \( y \) are binary strings of arbitrary but equal lengths, \( i \) and \( j \) are non-negative integers.

- \( \% \) represents the modulus operator
- Let \( I_n \) be the set of all \( n \) bit binary strings i.e., \( I_n = \{0,1\}^n \)
- Let \( \text{BIT}(x,i) \) be the \( i \)th bit of \( x \) counting from left (wlog)
- Let \( \text{BITS}(x,i,j) = (\text{BIT}(x,i), \text{BIT}(x,i+1), \ldots, \text{BIT}(x,j)) \) where \( j \geq i \)
- Let \( \text{GRP}(x,i,n) = \text{BITS}(x,i,n,i+n-1) \) i.e., the \( i \)th group (from left end) of \( n \) bits of \( x \) (wlog)
- Let \( \chi_i \) be the \( i \)th reconfigurable gate
- Let \( \chi_i^\delta \) be the truth table bits of \( \chi_i^\delta \) and \( |\delta| = 1 \cdot 2^k \)

3.2 Function \( \hat{f} \)

Construction 1. \( \hat{f} : X \times K \rightarrow Y \) where \( X,Y \in I_N \) and \( K \in I_{(N+n)^2} \)

\( \hat{f} \) is constructed from \( \frac{N}{2} + 1 \), \( \gamma^\kappa \), component gates, where \( n = O(\log N) \). Let \( q = \frac{N}{2} \). Let \( \gamma_i^\kappa \) be the \( i \)th reconfigurable gate, where \( 0 \leq i \leq q \) and the truth table is assigned as \( \gamma_i^\kappa |\delta| = \text{GRP}(\kappa,i,n^2) \). Let \( X^i = \text{GRP}(X,i,n) \) and \( Y^i = \text{GRP}(Y,i,n) \). Let \( \hat{f}_\kappa \) represent the function realized by configuring the reconfigurable gates with the key bits \( \kappa \). Then the output \( Y^i \) is defined as follows.

Then,

\[
Y^i = \bigoplus_{j=0}^{q-1} \gamma_i^{\kappa \oplus (q-1)}(X^i)
\]

Note that the construction of \( \hat{f} \) defined above differs from the intuitive construction given in Section 2. In Section 2 we had used only \( q \), \( \gamma^\kappa \), gates, whereas in Construction 1 we have used \( q+1 \) gates. This ensures that every \( Y^i \) differs from every other \( Y^j \) \((i \neq j)\) by at least one gate \( \gamma^\kappa \), thereby making \( Y^i \) and \( Y^j \) independent.

In the following discussions the properties of the function \( \hat{f} \) refers to the properties of the set of all the gates realized over the universe of configuration bits \( \kappa \).

3.2.1 Properties of \( \hat{f} \)

Two important relevant properties of any Boolean function including \( \hat{f} \) are controllability and observability. These are similar to the notion of controllability & observability in VLSI testing. In plain terms, given the ability to control the input to \( \hat{f} \) what properties of the output can be controlled. Similarly, given the ability to observe the output what properties of the input can be inferred. These two properties are essential building blocks of any cipher function. The distinction between controllability and observability exists only when the internal nodes of a function block are considered. In the context of \( \hat{f} \), we assume that the adversary can directly access only the primary input \( X \) and primary output \( Y \). In such a case, both notions become identical.

Definition 3.1 (Controllability/Observability). Controllability/Observability refers to the maximum probability with which any output bit can be controlled by controlling the inputs to a gate. Formally, Controllability/Observability \( \hat{f} \)

\[
\text{Controllability/Observability}(\hat{f}) = \max_{0 \leq i,j < N} \left( \frac{\gamma_i^\delta}{\text{GRP}(\kappa,i,n^2)} \right)
\]

The Boolean derivative \( \frac{\gamma_i^\delta}{\text{GRP}(\kappa,i,n^2)} \) is defined in the standard way as \( (Y_i)_{x_i} \oplus (Y_i)_{\overline{x_i}} \) where \( (Y_i)_{x_i} \) and \( (Y_i)_{\overline{x_i}} \) denote the Shannon cofactors of \( Y_i \) with respect to \( X_i \) and its complement.

Symmetry. \( \hat{f} \) exhibits the following symmetry. Every output bit is equally probable to switch for any differential input pair. This property is easy to observe as every input bit has the same level of influence on every output bit. More formally, the controllability of each input/output bit pair is the same averaged over the entire gate space: \( \Sigma_{\kappa \in I_{(N+n)^2}} \left( \frac{\gamma_i^\delta}{\text{GRP}(\kappa,i,n^2)} \right) \) is the same for all \( 0 \leq i,j < N \).

Strength of \( \hat{f}^2 \). In \( \hat{f}^2 \), let \( X \) be the input, \( Y \) be the output, and \( Z \) be the intermediate output, i.e.,
3.3 REBEL Cipher Function

Difficult on average. But we do believe that this problem is a hard problem on the average. This intuition is based on the NP-Completeness of factorization could factor the brute force search. Alternately, if the adversary could factor \( f^2 \) into \( f \cdot \hat{f} \), then a differential controllability/observability attack becomes more feasible. Martin Kutz (Kutz, 2004) shows that such factoring is NP-Complete. NP-Completeness of \( f^2 \) problem does not guarantee that every instance of the problem is hard or even that an average instance of the problem is hard. But we do believe that this problem is a hard problem on the average. This intuition is based on the prevalent belief that prime factoring of an integer is difficult on average.

Z = \( \hat{f}(X) \), \( Y = \hat{f}^2(X) = \hat{f}(Z) \). Due to symmetry property (Property 3.2.1), no static bias model can be developed. Biases, however, do exist in specific instantiated keys \( \kappa \), which an adversary can attempt to model through multiple differential input experiments and their effects on the output. Construction \( f^2 \) takes away that opportunity. The observable output \( Y \) does not provide any information about the switching (or differential state) of any particular bit of \( Z \) (since from the static model, all of them are equally probable). The only means to extract the information about the secret configurations of the gates seems to be the brute force search. Alternately, if the adversary could factor \( f^2 \) into \( f \cdot \hat{f} \), then a differential controllability/observability attack becomes more feasible. Martin Kutz (Kutz, 2004) shows that such factoring is NP-Complete. NP-Completeness of \( f^2 \) problem does not guarantee that every instance of the problem is hard or even that an average instance of the problem is hard. But we do believe that this problem is a hard problem on the average. This intuition is based on the prevalent belief that prime factoring of an integer is difficult on average.

3.3 REBEL Cipher Function \( \mathcal{R} \)

\[ \mathcal{R} : \mathcal{X} \times \kappa \rightarrow \mathcal{Y} \text{ where } \mathcal{X}, \mathcal{Y} \in I_{2N} \text{ and } \kappa \in I_{(N+n)2^n} \]  

\( \mathcal{R} \) is a LR-network with four levels as shown in Figure 2. Let \( \mathcal{R}_K \) represent the REBEL cipher function whose key is \( \kappa \). \( \mathcal{R}_K \) has four levels. The pseudorandom function associated with first and last levels is \( \hat{f}_1 \). The middle level pseudorandom function is \( f^2 \). This design choice ensures that every internal node is neither observable nor controllable by the adversary. In REBEL encryption and decryption algorithms are the same.

3.3.1 Key Space

The key \( \kappa \) of \( \mathcal{R} \) is nothing but \( q + 1 \rightarrow n \) gates chosen at random from the universal set. Each \( n \rightarrow n \) gate can be further considered as \( n \rightarrow 1 \) gates thus making the key comprising of \( N + n \rightarrow 1 \) gates.

In order to strengthen the key space we remove linear and the constant gates from the universal set. Let \( K^n \) be the set of valid \( n \rightarrow 1 \) gates then \( |K^n| = 2^{2^n} - 2^{n+1} - 2 \). Let \( \mathcal{X} \) be the set of valid keys for \( \mathcal{R} \) then \( \mathcal{X} = \{K^n\}^{N+n} \).

4 CRYPTANALYSIS

In this section we investigate the resilience of REBEL toward the well known cryptanalysis methods. First we will show the class of attacks which use the invariance property of system, i.e., the idea of these attacks is to find the properties of the system which are not dependent or least dependent either on the secret or the input.

4.1 Linear Cryptanalysis

Linear cryptanalysis is a general form of cryptanalysis based on finding affine approximations to the cipher function. The technique (Matsui, 1993) has been applied to attack ciphers like FEAL (Miyaguchi, 1990) and DES (National Bureau of Standards, 1999). Linear cryptanalysis exploits the high probability of occurrences of linear expressions involving plaintext, ciphertext, and sub-key bits. This attack becomes possible on the conventional cipher function design as the key bits are primarily XOR’ed with round inputs. The linear approximations of known components (S-boxes) in the system further aid the analysis. In the case of REBEL none of these required conditions are present. Every \( \tau^{e_n} \) gate is chosen randomly from the set of nonlinear gates.

4.2 Differential Cryptanalysis

Differential cryptanalysis (Biham and Shamir, 1991) exploits the property of difference being propagated from input to the output of the cipher function. This attack again requires the properties of the known components in the system (S-boxes) in order to estimate the difference propagation probabilities. In REBEL such an analysis is not possible as there are no known components in the system. A variant to this attack is impossible difference attack (Biham et al., 2005) which again uses the principle of identifying differences that do not propagate from input to output.

4.3 Boomerang Attack

This attack (Wagner, 1999) relies on the difference analysis of round function properties and existence of some block in the system which is independent of the
input to cipher function. This can be thought of as meet-in-the-middle version of differential cryptanalysis. Again REBEL is resistant as there are no blocks (gates) in the system that is either independent of key or the input.

### 4.4 Sliding Attack

This attack (Biryukov and Wagner, 1999) exploits the weakness of the round functions. It assumes that given two pairs \( P, C \) and \( P', C' \) such that \( P = f(P) \) and \( C' = f(C) \), the round function can be deciphered or at least a significant fraction of key bits can be extracted. These attacks once again use the property of round functions being built using some known components (S-boxes) and key bits being used only in XOR operations.

In REBEL first and last round functions are \( f^2 \). Section 3.2.1 argues why such round function cannot be deciphered given a polynomially many input output pairs. Hence sliding attack is also ineffective against REBEL.

### 5 IMPLEMENTATION

In this section we discuss the REBEL cipher function \( \kappa \) implementation for \( N = 32 \) bits. The major advantage of REBEL is that the block size can be much smaller than the key size. We choose \( n = 4 \) as it satisfies the requirement that \( n \leq \log N \). Also, reconfigurable gates of \( n > 4 \) are impractical. Thus we get \( 576(\log 2^n) = (N + n)2^n \) key bits or configuration bits for the function \( f \). We implemented the REBEL cipher function \( \kappa \) with a block size of 64 bits and key size of 576 bits both in software and hardware.

#### 5.1 Software

We implemented the software version in C language. Our optimization goal was performance. Hence we traded area or in software memory space to increase the performance. In \( f \) every 4 bits of input is operated on by 8 4x4 LUTs. So we created 64 such LUTs so that each input group can be operated on independently. Thus we require a memory space of 512 bytes. This is less than 0.025% of a L2 cache of 2MB which is very common in contemporary processors.

The configuration table in memory is laid out as a two dimensional array of 16 rows and 8 columns of 32 bits. The column signifies the input group (input to \( f \)). The action of choosing \( i^{th} \) row in a \( j^{th} \) column is equivalent to the operation of passing the \( X^j \) through eight 4x4 LUTs. Thus the function \( f \) is implemented with 8 memory lookups and 7 XOR operations of 32 bits. In total \( \kappa \) takes 94 operations to produce the result of 8 bytes. Thus we can achieve a rate of 11.75 cycles per byte assuming one operation per cycle.

We simulated the algorithm in a x86-64 Intel Pentium D CPU 3.20GHz machine with a 2MB L2 cache. The program was compiled with gcc-4.1.0 with optimization level 3. We did 1 Billion encryptions (or decipherments) to estimate the performance. On the average it took 36.08 seconds to perform 1 Billion encryptions. Thus REBEL can achieve a rate of 1.77 Gbps or 14.432 cycles per byte. This is very close the theoretical minimum of 11.75 cycles per byte. The fastest known implementation of AES takes 15 cycles per byte. The eStream (eStream, a) project lists AES performance as an random number generator in counter mode. The Pentium 4 figures (eStream, b) of AES show that it takes 17.81 cycles per byte. REBEL outperforms AES-128 even though the key size is 4.5 times that of AES.

#### 5.1.1 Heuristic Testing

<table>
<thead>
<tr>
<th>Test Suite</th>
<th>Parameters</th>
<th># Statistics</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Crush</td>
<td>Standard</td>
<td>15</td>
<td>PASS</td>
</tr>
<tr>
<td>Crush</td>
<td>Standard</td>
<td>144</td>
<td>PASS</td>
</tr>
<tr>
<td>Big Crush</td>
<td>Standard</td>
<td>160</td>
<td>PASS</td>
</tr>
<tr>
<td>Alphabit</td>
<td>210 bits</td>
<td>17</td>
<td>PASS</td>
</tr>
<tr>
<td>Rabbit</td>
<td>210 bits</td>
<td>40</td>
<td>PASS</td>
</tr>
<tr>
<td>FIPS-140-2</td>
<td>20000 bits</td>
<td></td>
<td>PASS</td>
</tr>
</tbody>
</table>

Any Encryption function can be used as a Random Number generator in counter mode. We can heuristically test the encryption algorithm by testing for randomness in the output stream. We used the TestU01 (L’Ecuyer and Simard, 2007) to test the randomness of the bit-stream generated by REBEL in counter mode. We tested for p-values within the boundary \([10^{-4}, 1 - 10^{-6}]\). We considered any p-value lying outside this boundary as a failure. Table 1 lists the test suites and the results. Standard parameters in Table 1 refers to inbuilt test parameters of test suites. In all, 376 statistical tests were performed and REBEL counter mode passed all of them. We repeated all these tests 10 times (except for Big Crush) to increase the confidence level of the test results and all of them passed. This heuristically proves the fact that the \( f \) is a pseudo-random function and \( \kappa \) is a pseudo-random permutation function.
5.2 Hardware Implementation and Result

We implement REBEL in ASIC and FPGA to measure its area, power, and throughput. There are two ASIC REBEL designs. REBEL(reg) uses registers to store the key while REBEL(sram) uses SRAM to store the key. The REBEL is implemented in VHDL, synthesized by Cadence Physically Knowledgeable Synthesis and placed and routed by Cadence Encounter with TSMC 130nm and 65nm technologies.

The design of \( \hat{f}(N=32, n=4) \) is shown in Figure 3. The 576-bit configuration bit memory stores the REBEL’s key. REBEL takes 18 cycles to store a new key. The memory provides 512 configuration bits for each function \( F \). Function \( F \) implements 8, 64-to-4 multiplexers signifying 8 \( \rightarrow \) 4 LUTs. Thus 64 bits of configuration signifies a 4x4 LUT. The configuration bits are rotated by 64 bits and fed to the multiple instances of \( F \). The XOR unit XORs the outputs from all function \( F \) units and produces output \( Y \). The SRAM version is pretty similar to the software version. The SRAM has 8 blocks. Each block has 16 rows and 32 bits. All these blocks are accessed parallelly. We used CACTI to estimate the delay, area, and energy parameters of the SRAM.

![Figure 3: ASIC implementation of \( \hat{f} \) (Register)).](image)

The FPGA REBEL is shown in Figure 4. The configuration bits are stored in the LUT group. The 32-bit input \( X \) selects a 32-bit wide output \( R \) from the eight LUT groups. Each LUT group contains 32 LUTs. The 32-bit wide \( X \) is divided into 8 groups(\( X[3:0], X[7:4], \ldots \)). Each group is used to select 4 output bit \( R \) from 4, 4-LUTs respectively. Finally an XOR unit XORs all 32-bit LUT groups’ output and produces output \( Y \).

![Figure 4: FPGA Implementation of \( \hat{f} \).](image)

We compare REBEL with the AES-128 IP from OpenCores (OpenCores, ). Tables 2 shows that when REBEL uses SRAM as key storage, the area decreases and the throughput increases. Compared with AES, REBEL is more compact. REBEL consumes lower power and chip area and has higher throughput. As hardware implementation is a multi-dimensional design which considers power, area and frequency, we derived the measurements in Table 2 into four data which are commonly used in cryptography hardware comparison. The derived data are energy consumed per bit, area time product, throughput per area and triple product of power/area/time (PAT). These data can show the efficiency of the cryptography implementation. The data is shown in Table 3. We can see that REBEL has lower PAT, AT, energy/bit and higher throughput/area compared with AES.

![Table 2: Data Table A.](image)

![Table 3: Data Table B.](image)

![Table 4: FPGA Results.](image)
plies lesser slices and LUTs compared with AES. REBEL has higher frequency, throughput and lower power consumption compared with AES. In addition REBEL has higher Throughput per LUT compared with other AES implementations (Feldhofer et al., 2005) as shown in Table 5.

<table>
<thead>
<tr>
<th>Type</th>
<th>LUTs</th>
<th>Gbps</th>
<th>Gbps/LUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>REBEL</td>
<td>352</td>
<td>3.24</td>
<td>9.2</td>
</tr>
<tr>
<td>AES (Opencore)</td>
<td>3417</td>
<td>2.31</td>
<td>0.68</td>
</tr>
<tr>
<td>AES (Chodowiec, 2001)</td>
<td>2507</td>
<td>0.41</td>
<td>0.17</td>
</tr>
<tr>
<td>AES (Hodjat, 2004)</td>
<td>9446</td>
<td>21.64</td>
<td>2.29</td>
</tr>
<tr>
<td>AES (Zambreno, 2004)</td>
<td>16938</td>
<td>23.57</td>
<td>1.39</td>
</tr>
<tr>
<td>AES (Zhang, 2004)</td>
<td>11022</td>
<td>21.56</td>
<td>1.96</td>
</tr>
</tbody>
</table>

6 CONCLUSIONS

Two of the desirable characteristics of a symmetric block cipher are larger key size to avoid key collision attacks, and high throughputs. We have presented a new block encryption algorithm - REBEL, with these two attributes. It is able to support significantly larger key space for the same block size (576 key bits for 32-bit block size for instance). Moreover, the increased key space can be supported with the throughputs slightly higher than that of AES-128 both in software and hardware implementations.

The REBEL function uses the gate truth-tables as the secret keys directly. These gates naturally have desirable attribute of nonlinearity. Linear cryptanalysis is less likely to succeed due to this. We use the square of a Boolean function as the underlying 1-way function within an LR-network. This takes away differential controllability and observability making differential cryptanalysis impractical. This also lends some provable security to the REBEL construction.

REFERENCES


eStream. The estream project. http://www.ecrypt.eu.org/stream/.