Faults Analysis in Distributed Systems
Quantitative Estimation of Reliability and Resource Requirements

Christian Dauer Thorenfeldt Sellberg
IBM Denmark A/S, Nymoellevej 91, 2800 Kgs. Lyngby, Denmark

Michael R. Hansen, Paul Fischer
Institute of Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads, DTU - Building 321, 2800 Kgs. Lyngby, Denmark

Keywords: Fault tolerance, Dependable systems, Distributed systems, Process Algebra, Pi-calculus.

Abstract: We live in a time where we become ever more dependent on distributed computing. Predictable quantitative properties of reliability and resource requirements of these systems are of utmost importance. But today quantitative properties of these systems can only be established after the systems are implemented and released for test, at which point problems can be costly and time consuming to solve. We present a new method, a process algebra and simulation tool for estimating quantitative properties of reliability and resource requirements of a distributed system with complex behaviour hereunder complex fault-tolerance behaviour. The simulation tool allows tailored fault injection e.g. random failure and attacks. The method is based upon \(\pi \)-calculus (Milner, 1999) to which it adds a stochastic fail-able process group construct. Performance is quantitatively estimated using reaction rates (Priami, 1995). We show how to model and estimate quantitative properties of a CPU scavenging grid with fault-tolerance. To emphasize the expressiveness of our language called \(\mathcal{G} \pi \) we provide design patterns for encoding higher-order functions, object-oriented classes, process translocation, conditional loops and conditional control flow. The design patterns are used to implement linked lists, higher-order list functions and binary algebra. The focus of the paper is on practical application.

1 INTRODUCTION

Failure (faults) happens. The computational resources of distributed systems are unreliable; as every human made thing is and they will eventually fail either because of random failure, because of limited longevity or because of malicious attacks. To be reliable then dependable systems need to be robust against these different causes of failure. Robustness against failures can e.g. be achieved via fault-tolerance techniques.

Analysis of reliability and resource requirements (such as performance) is usually delayed (or not done at all) until a distributed system is implemented and deployed, where the analysis is based on data collected via load and stress testing, LST, of the deployed system via LST tools. The reason for this delay is that reliability and resource requirements of a system are not easily deduced in the planning and modelling phases. We need a method which allows quantitative estimation of reliability and quantitative estimation of predictive statistics (mean, standard deviation, minimum, median, maximum) of resource requirements in space and time (e.g. memory, network size, workload, performance) based on a model of the system. The method should be able to account for location failure (e.g. server crash) and fault-tolerance (fault detection, fault confinement, fault recovery) techniques. The method should be able to express component based job distribution to a computational resource. Our thesis is that \(\pi \)-calculus (Milner, 1999) could be extended for this purpose and the results presented in this paper are a summary of the results from the master thesis (Sellberg, 2008).

Why a new process algebra? There exists process algebras based on \(\pi \)-calculus (Milner, 1999) with location failure; examples are asynchronous \(\pi \),
(Amadio, 1997) and DrπLoc, (Francalanza, 2006). But these process algebras have no means for expressing quantitative aspects of reliability and resource requirements in time and space. One extension of π-calculus with quantitative properties is Stochastic π-calculus, Sπ, (Priami, 1995). Sπ can via its stochastic reaction rate extension to π-calculus quantify system performance but Sπ has no notion of failure.

We have considered whether we should extend e.g. πl or DrπLoc with quantitative properties but have abandoned doing this for the following reasons. πl and DrπLoc have fault detection logic, FD, a ping “are you alive” construct, as a part of the syntax. FD in πl and DrπLoc cannot fail, unlike FD in real systems (see Section 2), so we cannot use πl and DrπLoc to study fault detection. Another issue is that πl and DrπLoc have syntactical fault injection constructs. We prefer for clarity reasons that a model is defining a system’s functional specification, which does not include fault injection logic.

Therefore we introduce a new (π-calculus based) process algebra which is able to express “location failure” and quantitative properties of reliability and resource requirements in time and space. Our process algebra, named Gπ-calculus, adds to π-calculus a stochastic fail-able process group construct for location failure. We adapt reaction rates from (Priami, 1995) in the form of transition time labels (see section 3) for quantitative estimation of performance. Component based job distribution is expressed via a distribution rule. The semantics of Gπ is given in the form of a structural operational semantics (Plotkin, 1981). The emphasis will, however, be on practical applications.

The paper has the following outline. In Section 2, we present a motivating example and give a flavour of how the method quantitatively can estimate reliability and descriptive statistics of resource requirements in time and space of a simple CPU scavenging grid. Technical details are left to Section 6. In Section 3, we give an informal introduction to Gπ-calculus. In Section 4 we stress the expressiveness of Gπ by presenting design patterns for how to use it to implement advanced behaviour. In Section 5, we present the simulator tool which can estimate descriptive statistics of quantitative properties of models. In Section 6 we introduce how to model fault-tolerance techniques by elaborating on the example from Section 2. The paper ends with a conclusion.

2 A MOTIVATING EXAMPLE

Dependability on a system requires that the system has predictable reliability and predictable quantitative resource requirements in time, (performance), and space, e.g. network size (here defined as the number of concurrent computers which simultaneously is having a job assigned), number of job distributions (the number of assignments of a computational problem to a new computational resource) and workload (here defined as the number of computations/reductions). With predictable we understand that standard deviation is relatively low in respect to the mean and that min and max is relatively close to the mean. We define reliability of a system as the probability that a system service will answer an arbitrary request in accordance with its system specification.

We shall consider an example, a volunteering CPU grid, CPU-GRID, from High Performance Computing. High Performance Computing, HPC, is today applied in solving complex computation intensive problems. One way to achieve HPC is via a CPU-GRID. Examples of CPU-GRIDs are: folding@home, seti@home and world, community grid which respectively have the following urls:

http://folding.stanford.edu/
http://setiathome.berkeley.edu/
http://www.worldcommunitygrid.org

A CPU-GRID is in its simplest form based on a central computer, a grid master, which has a set of volunteering computers, CPUs, to which it can delegate/schedule computational problems. Volunteering computers can usually join the grid by downloading and installing a screensaver which will connect the volunteering computer to the grid. When a grid master receives a job request by a grid user it will usually break the job request into sub-problems which it will delegate to volunteering CPUs. When a sub-problem is solved the volunteer CPU will return the sub-result to the grid master. The grid master will assemble all sub-results into one final result and return it to the user. The owner of a volunteer CPU can at any time chose to (temporarily or indefinitely) disconnect his CPU from the grid. From the point of view of the grid master then this disconnection can be considered as the failure of the sub-problem delegated to that CPU. To insure that the CPU-GRID can achieve reliable computing with such unreliable computational resources it needs a fault-tolerance strategy for handling the failure of volunteering CPUs.
Fault-tolerance is about fault detection, fault isolation/error assessment and fault recovery/error correction (Tanenbaum, 2006). Fault detection in distributed processes is achieved by timed processes, usually called watchdogs, triggering timed e.g. “are-you-alive” signals to a heart-beat process located at a component under fault surveillance, e.g. a volunteering CPU. If a timed heart-beat is missed then a watchdog will handle it as the failure of the volunteering CPU. The watchdog will then trigger fault recovery by rescheduling the failed sub-problem. This is the fault-tolerance approach followed in our example below. Notice that race conditions can cause a heart-beat to be missed. This will falsely trigger fault recovery and reschedule an already ongoing job.

The architecture of the CPU-GRID example is shown in Figure 1.

The CPU-GRID consists of a grid master and an unlimited amount of volunteering CPUs. The user entrance to the grid is via the grid master. The grid master can receive a job request from a user which it will split into two sub-problems A and B which it will schedule to volunteering CPUs. A CPU which has been assigned a job of type A or B will be named CpuA and CpuB respectively. The grid master will apply passive task replication as its fault-tolerance strategy, i.e. it will apply watchdogs at the grid master and heart-beat listening processes at CpuA and CpuB for fault detection and fault recovery. The failure probability of CpuA and CpuB is 0.5, i.e. they are very unreliable. We consider the grid master to have failure probability 0, i.e. it cannot fail.

We have modelled this example in Gt and experimented with the simulator tool. Table 1 shows the results.

Reliability and performance are two system properties being perceived by the grid user. The model has high reliability but its performance is unpredictable (standard deviation, std.dev Table 1, is large compared to the mean) and from the point of view of the grid user this unpredictability makes the grid undependable.

“Network size”, “Number of job distributions” and “System workload” are parts of the system resources which need to be available for the CPU-GRID for it to deliver the estimated reliability and performance. The results show that these resource requirements are unpredictable, but whether this unpredictability indicates a dependability problem depends on the actual resources available to the CPU-GRID. If the CPU-GRID had access to e.g. 600000 volunteering computers then the resource requirement unpredictability would probably be of no concern but if the CPU-GRID had access to only 100 computers then it would be of concern.

The statistics for network size (Table 1) give us an indication of the “quality” of the fault-tolerance strategy. We can derive that fault detection wrongly triggers fault recovery of non-failed components because network size would be no larger than 4 (1 user, 1 grid master, 1 CpuA, 1 CpuB) if fault detection did not fail but network size (Table 1, Network size) is on average 7.75 and can be as large as 16 concurrent computers.

Faults, is the number of failed volunteering computers and can be interpreted as the “hostility” of the environment. It seems fair to say that the environment is relatively hostile.

Table 1: CPU scaveng. grid with passive task replication.
Table 2: Structural Operational Semantics of Gπ-calculus.

Failure rules
1. \([...+x!y.P]_i \theta i \rightarrow \sigma_{i}(1-\sigma_j), \rho_0 \)
2. \([...+x?y.P]_i \theta i \rightarrow \sigma_{i}(1-\sigma_j), \rho_0 \)
3. \([...+x!y.P]_i \theta i \rightarrow \sigma_{i}, \rho_0 \)
4. \([...+x?y.P]_i \theta i \rightarrow \sigma_{i}, \rho_0 \)
5. \([...+x!y.P]_i \theta i \rightarrow \sigma_{i}, \rho_0 \)
6. \([...+x?y.P]_i \theta i \rightarrow \sigma_{i}, \rho_0 \)

Communication rules
1. \([...+x!y.P]_i \theta i \rightarrow (1-\sigma_{i})(1-\sigma_{j}), \rho [P]_i \theta i \rightarrow [R{y/z}]_j \theta j \)
2. \([...+x!y.P]_i \theta i \rightarrow (1-\sigma_{i}), \rho [P]_i \theta i \rightarrow [R{y/z}]_j \theta j \)
3. \([...+x!y.P]_i \theta i \rightarrow (1-\sigma_{i}), \rho [P{z/y}]_i \theta i \rightarrow [R]_j \theta j \)
4. \([...+x!y.P]_i \theta i \rightarrow (1-\sigma_{i}), \rho [P]_i \theta i \rightarrow [R{z/y}]_j \theta j \)

Distribution rule
\(([\text{new } a_1\ldots a_n](Q \mid [P])_i \theta i) \rightarrow_{\sigma, \rho} ([\text{new } a_1\ldots a_n](Q)_i \theta i \mid [P]_j \theta j) \) where \(\sigma = 1 \) and \(\rho = 0 \)

3 INTRODUCTION TO Gπ-CALCULUS

The calculus Gπ is based on the π-calculus introduced in (Milner, 1999) for modelling and analysing concurrent, communicating and mobile processes. For a comprehensive introduction to π-calculus we refer to (Milner, 1999) or (Sangiorgi, 2001). The syntax of π-calculus is shown in Table 3.

Table 3: π-calculus syntax.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P, Q ::= S \mid *P \mid (\text{new } x) P \mid P \mid Q \mid 0)</td>
<td>Processes are composed of actions, summation, and termination.</td>
</tr>
<tr>
<td>(S, T ::= \alpha.P \mid S + T)</td>
<td>Actions are prefixes of processes.</td>
</tr>
<tr>
<td>(\alpha ::= a?b \mid a!b)</td>
<td>Communication actions.</td>
</tr>
</tbody>
</table>

See Table 4 for an explanation of terms used.

Table 4: Gπ-calculus syntax.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P, Q ::= S \mid *P \mid (\text{new } x) P \mid P \mid Q \mid 0 \mid [P]_0)</td>
<td>Processes are composed of actions, summation, and termination.</td>
</tr>
<tr>
<td>(S, T ::= \alpha.P \mid S + T)</td>
<td>Actions are prefixes of processes.</td>
</tr>
<tr>
<td>(\alpha ::= a?b \mid a!b)</td>
<td>Communication actions.</td>
</tr>
<tr>
<td>(\theta ::= \varepsilon \mid @\text{name}=value \mid \varepsilon \theta)</td>
<td>Tags are used to add meta information.</td>
</tr>
</tbody>
</table>

Where \(\varepsilon \) is the empty string, \(P \) and \(Q \) are processes, \(S \) and \(T \) are summations and \(\alpha \) is an action. The syntactic constructs have the following meaning.

π-calculus is Turing complete and therefore allows the modelling of arbitrarily complex behaviour, but π-calculus cannot express quantitative properties as reliability and resource requirements in time and space or grouped process failure and therefore primitives to express that is added to π-calculus.

The syntax of Gπ is given in Table 4 and the operational semantics is sketched in Table 2.

Composition: \(P \mid Q \) means that \(P \) and \(Q \) are two concurrent processes.

Prefix: \(\alpha.P \) means sequencing of behaviour. The process can engage in an \(\alpha \) action and then it behaves as \(P \).

Action: \(a?b \) and \(a!b \) are symbolizing communication points. \(a?b \) is an input action and \(a!b \) is output action. The name, \(a \) in \(a?b \) and \(a!b \) is called the subject and \(b \) is called the object. When an input- and output-action have the same subject-name they can engage in communication (Table 2, communication rules).

Summation: \(S + T \) means choice of process behaviour where only one alternative i.e. either \(S \) or \(T \) but nor both will evaluate, the other alternative is discarded.

Replication: \(*P \) represents an infinite set of process \(P \) occurrences. We have the following structural congruence rule \(*P \equiv P \mid *P \).

Restriction: (new \(x) P \) means that \(x \) is bounded in \(P \). In the following example (new \(x)(P) \mid (\text{new } x)(Q) \) then the \(x \)’s in \(P \) and \(Q \) represents two different names.

Termination: \(0 \) means a terminated process, a process that takes no action.

Grouping: \([P]_0 \) means process grouping. The process group can evaluate to the null process, \([P]_0 \rightarrow 0 \) (Table 2, failure rules). The tagging \(\theta \) is a convenient way of adding meta information to process groupings. We use the tag @pf=0.5; for example to indicate the failure probability of a process group. We shall se other kinds of tags for type in section 6.
We will now briefly explain the reason for our failure modelling approach. The processes deployed on a computational resource are un-reliable because a computational resource always can fail given some probability. The processes, so-to-speak, “inherit” this unreliability from their computational resource, because they cease to exist with the computational resource. We model a computational resource by a process group construct, \([P]\), which we add as an extension to the \(\pi\)-calculus syntax (Table 4). We model the unreliability of the computational resource by extending the reduction rules of \(\pi\)-calculus with reduction rules of failure (Table 2). Notice that failure is only defined for process groups, \([\]\), having processes which can react; this insures that we are only studying interesting failures which affects behaviour.

In the operational semantics, each transition arrow, \(\rightarrow_{\sigma,\rho}\) has two labels. The first label, \(\sigma\), is the transition probability and the second, \(\rho\), is the transition time. The symbols \(\sigma_i\) and \(\sigma_j\) (Table 2) are the probabilities that respectively the process group marked \(i\) and \(j\) will fail during reaction. The transition probability \(\sigma_i(1-\sigma_j)\) is the probability for the event that the process group marked \(i\) but not the process group marked \(j\) will fail during reaction (Table 2) etc. Using these transition labels we can deduce transition path probabilities and transition path times, to estimate reliability and performance figures.

The semantic reduction rules for communication trivially specify that communication will take place when none of the involved process groups fails and the transition probabilities are reflecting this. Job distribution or assignment to computational resources is specified by the distribution.

Different aspects of process size are used to estimate resource requirements in e.g. memory and network size. The number of times the different reduction rules are applied is used to estimate different aspects of work load, e.g. network traffic and CPU load.

4 EXPRESSIVENESS

To make \(\mathcal{G}\)\(\pi\) useable by a wide audience we have presented six design patterns, \(\mathcal{G}\)-patterns (Table 5), for how \(\mathcal{G}\)-calculus can be used to implement complex behaviour via concepts familiar from the functional or object oriented world.

The design patterns have been heavily inspired by both (Milner, 1999) and (Sangiorgi, 2003). Each design pattern has a name for reference, it defines a problem or problem context where it is useful, it defines a set of terms to be used as a vocabulary for talking about the pattern and most importantly it defines a \(\mathcal{G}\)\(\pi\) process structure as a solution to the problem. The intention is that these process structures are to be used as coding templates which can be modified to fit a concrete problem. We will, for space reasons, not go into details about how these high-level constructs can be expressed in \(\mathcal{G}\)\(\pi\).

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Problem context</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{G})-Function</td>
<td>Need for an implementation of a function as known from functional programming</td>
</tr>
<tr>
<td>(\mathcal{G})-Conditional-Loop</td>
<td>Need for conditional loop e.g. do-while</td>
</tr>
<tr>
<td>(\mathcal{G})-If-Equals-Then-Else</td>
<td>Need for conditional control flow</td>
</tr>
<tr>
<td>(\mathcal{G})-Higher-Order-Function</td>
<td>Need for higher order functions or subroutines.</td>
</tr>
<tr>
<td>(\mathcal{G})-Class-Object</td>
<td>Need for an object oriented approach</td>
</tr>
<tr>
<td>(\mathcal{G})-Process-Group-Handle</td>
<td>Need for process translocation between process groups</td>
</tr>
</tbody>
</table>

To demonstrate the usefulness of the \(\mathcal{G}\)-patterns we have used them to implement \(\mathcal{G}\)\(\pi\) functionality on a representation of 7 bit binary numbers. All \(\mathcal{G}\)\(\pi\) implementations have been tested via the simulator tool. We have implemented binary algebraic functionality where e.g. the implementation of binary addition makes use of the \(\mathcal{G}\)-Function, \(\mathcal{G}\)-Conditional-Loop and \(\mathcal{G}\)-Conditional-Control-Flow patterns. Our \(\mathcal{G}\)\(\pi\) implementation of binary multiplication makes among others use of the binary addition implementation via the \(\mathcal{G}\)-Higher-Order-Function pattern.

We have implemented linked list of binary numbers, where each list node is implemented as an instance of the \(\mathcal{G}\)-Class-Object pattern. The implementation of the linked list implements object functionality (methods) for traversing the list and for updating the value of a specific node and for adding new elements to the list. We have implemented higher-order linked list function which can apply a function to each element in the list.

The implemented \(\mathcal{G}\)\(\pi\) functions can be considered as the beginning of a reusable \(\mathcal{G}\)\(\pi\)-API.
5 SIMULATOR TOOL

The simulator tool is written in Java. It has a graphical user interface, GUI, and a command line interface. The simulator has two main functions. It has an interface for studying the behaviour of a G\(\pi\)-model; A G\(\pi\)-model can be loaded into the simulator and the user can study the behaviour of the model by observing structural changes in the model by applying one reduction rule at the time. The other function is that it can be used to quantitatively estimate reliability and descriptive statistics of resource requirements in time and space of a G\(\pi\)-model.

The simulator is an interpreter of the structural operational semantics of G\(\pi\). It reduces a G\(\pi\) model one reduction rule at the time. After each reduction step it collects and updates quantitative properties of the G\(\pi\) model.

We call one execution of the simulator algorithm on a G\(\pi\)-model for a simulation experiment. For each simulation experiment we collect quantitative properties. We can specify to the simulator (not shown here, please assist (Sellberg, 2008)) what a successful outcome is, so the simulator can decide whether a simulation experiment was a success or not (step number 07 in the simulator algorithm below). This is used to estimate reliability. The estimator part of the simulator tool will run a simulation experiment a specified number of times and collect quantitative properties and calculate descriptive statistics. Reliability is estimated as the fraction of successful simulation experiments.

Pseudo code for the simulator algorithm is given below where the symbol \(\Gamma\) symbolizes the G\(\pi\)-model to be executed.

\[
\text{simulate}(\Gamma) \\
01: \text{distribute (un-nest) all nested process groups in } \Gamma \\
02: \text{randomly find matching process pair in } \Gamma \text{ which can react} \\
03: \text{if no match is found then stop else continue} \\
04: \text{apply fault injection logic} \\
05: \text{if faults were injected then goto step 01 else continue} \\
06: \text{apply reaction for found matching process pair in } \Gamma \\
07: \text{test if a functional test evaluated with success. If true then stop else goto step 01}
\]

The fault injection logic and reaction rate logic is delegated to interfaces which can be implemented to fit specific failure and reaction rate scenarios. A G\(\pi\) model is given as ASCII text to the simulator.

The purpose of Figure 2 and Figure 3 is to give the reader an impression of the estimator part of the simulators GUI.

Figure 2 shows the G\(\pi\)-model of the CPU scavenging grid loaded from an ASCII file into the simulator GUI. We can edit the model (and save changes) via the black editor screen (Figure 2).

![Figure 2: G\(\pi\)-model loaded into the simulator tool.](image1)

Figure 2: G\(\pi\)-model loaded into the simulator tool.

We can enter the number of simulation experiments we want to base our estimation results on and initiate our estimation process by pressing the button “run estimation”. Estimation results are presented as shown in Figure 3 and show the estimated statistics of reliability and resource requirements in time and space. The results have the form presented in Table 1.

![Figure 3: Result of executing a simulation.](image2)

Figure 3: Result of executing a simulation.
6 FAULT-TOLERANCE

In (Sellberg, 2008) we sketch how we can use π to model relevant and interesting fault and fault-tolerance behaviour. We show how to model location failure, link failure and lost messages. We sketch how we can model the failure scenarios random failure, limited longevity and failures caused by attacks. We show how we can model hot task replication, passive task replication and voting based fault-tolerance (Tanenbaum, 2006). We apply the techniques to model and estimate quantitative properties of a CPU scavenging grid with hot task replication and passive task replication (the example presented in Section 2) using fault detection, timers, observer/watchdog, heart-beats etc.

The architecture (see Figure 1) of the system in Section 2 has the following basic and concurrent process group (for the user, the grid master and the two CPUs) structure in π.

π-tree:

π-node:

The dots, ... , represents the business logic specified in Section 2 including fault-tolerance logic.

We here just give a flavour of how we have modelled fault-tolerance techniques in π. The complete model of the CPU scavenging grid of Section 2 is in (Sellberg, 2008). We show how we have implemented fault detection (via watchdogs, heart-beats) and fault recover.

Timers are crucial so first we will show how we can implement timers.

π-node:

The timer is a replication, because of the star *, and the timer is initiated by a reaction between init? and init!. The actual timing process is constituted by the process

π-node:

The timing process captures the passing of time via the reductions between c and c?. This will work because our use of reaction rates insures that each reduction takes a well defined amount of time. After three reductions of c and c?, we have the timeout event, timeout!. When the timeout! reacts then it reduces to init! which will initiate a new timing process.

The timer is used to implement fault detection by pushing “are you alive” signals. A process group under failure surveillance is equipped with a heart beat listening process, *areYouAlive?. Part of the fault detection logic of the watchdog process is as follows.

π-node:

Notice that the body of the fault-detection process is a choice (due to the + symbol). I.e. it can either evaluate to areYouAlive! timeout! or faultDetection! but not both. Also notice that the fault detection process is a replication because of the star symbol *. The fault detection process is initiated by the reaction between faultDetection? and faultDetection!.

If the, areYouAlive! timeout! process does not react with the heart beat listening process before the timeout event, then the failure observing process would evaluate to failure!, which can be used to trigger fault recovery. If it does react then it will evaluate to timeout!, faultDetection!, which again on timeout will evaluate to faultDetection! which will restart the fault detection process.

Before we show the fault recovery process we need to show how we implement job distribution. The sketch of a volunteering CPU with a heart-beat listening process is.

π-node:

The three dots is symbolising non-fault detection related logic. The tag, @type=cpuA; is telling us that this process group is modelling a CpuA. The tag, @pf=0.5; is an instruction to the simulator that this process has a probability of failure of 0.5 and will be used by the fault injection logic.

The event failure! from the fault detection process presented previously can trigger fault
recovery via a fault recovery process of the following form

\[*\text{failure}?.[[*\text{areYouAlive}? | ...]@\text{cpu}=a;@\text{pf}=0.5;) \]

Notice that the fault recovering process is a replication symbolized by the star symbol *. When the process above reacts with \text{failure} it will evaluate to \[[*\text{areYouAlive}? | ...]@\text{cpu}=a;@\text{pf}=0.5; \]
which is our notion of job-distribution or job-assignment to a computational resource. I.e. we have recovered our failed CpuA process by redistributing a new CpuA process.

7 CONCLUSIONS

We have presented a new unique process algebra and simulator tool for analytic fault injection and for estimating descriptive statistics of quantifiable properties of reliability and resource requirements of a distributed system with complex behaviour hereunder complex fault-tolerance behaviour. The process algebra and tool have successfully been applied on a number of examples.

\textbf{Perspectives.} The focus of the method is on analysis and design (before implementation) of new dependent distributed systems and could contribute to the emergence of more reliable distributed systems with predictable resource requirements. The method could also be used to model and optimise existing dependable systems.

It is also possible that Gπ-calculus could be applied in the ongoing attempts to apply process algebras in describing the computational potential of biological processes by accounting for the seemingly unreliable computational environment of the living cell.

\textbf{Areas which apply cheap computational resources on large scale where failure is frequent could also potentially benefit from this method by analysing fault-tolerance behaviour which could compensate for the unreliability of the computational resources.}

\textbf{Further Work.} One way to introduce the Gπ-calculus method to a wider audience which are not acquainted with process algebras could be to integrate Gπ-calculus with an existing accepted and widely used method such as UML (Fowler, 2003). It seems useful and trivial to extend the tools to present the executions of Gπ-calculus expressions as sequence diagrams since we just have to draw a UML object box for a process group and then present the Gπ-reactions between the components (process groups) by drawing directed action arrows between the time lines of the UML object boxes. If we model UML components as process groups then Gπ-calculus models could formalise the connection between UML component diagrams and UML sequence diagrams a formalisation which does not exists today.

\textbf{ACKNOWLEDGEMENTS}

This work is partially funded by ARTIST2 (IST-004527), MoDES (Danish Research Council 2106-05-0022) and the Danish National Advanced Technology Foundation under project DaNES.

\textbf{REFERENCES}

Francalanza, Adrian and Hennessy, Matthew, 2006. \textit{A theory for observational fault-tolerance}. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3921 LNCS.

