A SIMILARITY MEASURE FOR MUSIC SIGNALS

Gonçalo Marques
Instituto Superior de Engenharia de Lisboa, Portugal

Thibault Langlois
Universidade de Lisboa, Faculdade de Ciências, Departamento de Informática, Portugal

Keywords: Music Information Retrieval, Music Similarity Measure, Audio Signal Processing, Feature Extraction.

Abstract: One of the goals in the field of Music Information Retrieval is to obtain a measure of similarity between two musical recordings. Such a measure is at the core of automatic classification, query, and retrieval systems, which have become a necessity due to the ever increasing availability and size of musical databases. This paper proposes a method for calculating a similarity distance between two music signals. The method extracts a set of features from the audio recordings, models the features, and determines the distance between models. While further work is needed, preliminary results show that the proposed method has the potential to be used as a similarity measure for musical signals.

1 INTRODUCTION

Nowadays there is an enormous amount of digital music available online, and users can search through vast databases to select their favorite albums, artists, songs, and create their own databases or playlists. Even at a personal level, one can create fairly large music collections by transferring one's CDs to a computer or an iPod. Nevertheless, with the rapidly increasing amount of digital data it is necessary to have some means of indexing, searching and retrieving music contents. Theses tasks are aided by including some information along with a song (metadata), typically annotated manually by an expert or by the user. Nevertheless, metadata is not always provided or in some cases is erroneous, and with the every increasing number of new songs, the required manual work becomes prohibitive.

Similarity is the core of classification and ranking algorithms, thus, having an automatic way of measuring similarities between two songs would be a valuable tool in the field of Music Information Retrieval. Such a tool would have many applications such as making database queries by user-provided examples (Spevak and Favreau, 2002; Heln and Virtanen, 2007), automatically organizing and classifying digital audio collections (Neumayer et al., 2005), automatic playlist generation (Au Couturier and Pachet, 2002b; Logan and Salomon, 2001), providing personal musical recommendations, etc.

In order to measure the similarity between songs it is necessary to characterize each song with a set of features and to determine a distance between sets. There is an extensive number of features that can be used for this purpose, since the question of similarity can be answered from multiple perspectives. For instance, one could include features that are not directly related to the audio signals, such as lyrical contents, geographical origins, historical periods, artists information, reviews, etc. This type of information is well suited for Web-based methods and a various works exist on this subject - for example (Whitman and Ellis, 2004; Baumann et al., 2004; Pampalk et al., 2005a).

In this paper we are interested in deriving a measure of similarity solely based on the music signal, without any additional information. There are several features that can be extracted directly from the audio signal, and there are many ways of using them to obtain a similarity measure between songs. The most common approach for obtaining the features is to divide the signal into short overlapping frames (typically 10ms to 40ms long) and use each frame to extract time domain information such as the zero crossing rate, or some spectral domain information such as the fast Fourier transform (FFT), or the Mel frequency cepstrum coefficients (MFCCs). These can be directly used as features vectors, or one can be incorporated some additional statistics of each audio segment such as the spectral centroid, spectral flux, histograms, etc. Once the features are extracted, there...
are a few ways of obtaining a similarity measure. A model can be constructed for the feature vectors, and then, the distances between models from different musics can be determined. For instance (Tzanetakis and Cook, 2002; Pampalk et al., 2005b; Aucouturier and Pachet, 2002a; Heln and Virtanen, 2007) use a Gaussian mixture model, and (Logan and Salomon, 2001; Berenzweig et al., 2004) apply a k-means algorithm to model the features. Then the models are compared using different techniques such as Monte Carlo sampling (Aucouturier and Pachet, 2002a), Kullback-Leibler divergence (Virtanen and Heln, 2007), likelihood approximation (Berenzweig et al., 2004), ... (for a review of the main methods see (Aucouturier and Pachet, 2004) and references therein).

In this paper, we present a method for constructing a distance measure between musics based on their audio contents. The organization of this paper is as follows. In section 2 we describe the process of obtaining the features and we present the method for determining the similarity measure. Experimental results are presented and analyzed in section 3. Finally, some conclusions are drawn and possible directions for future work are presented.

2 OVERVIEW OF THE METHOD

Our goal is to estimate a similarity measure between different pieces of music. The first step consist in computing the spectrogram of the music and finding the most representative frames. This set of frames is then used to compute a “distance” between this music and other signals. This is done by calculating the average minimum distance between the FFT vectors of the audio signal and the representative frames found in the first music.

2.1 Representative Frames

The first step consist in finding representative frames for each music. First, from the audio signal sampled at 44.1KHz, the spectrogram is computed using a 1024 samples windows with 50% overlap. Let \mathcal{F}^A be the set of FFT vectors of every frame of music A. Let \mathcal{F}^B_3 be the subset of \mathcal{F}^A that corresponds to a 30 seconds excerpt of the middle of music A. Then, the k-means algorithm is used on this subset to find k centroids (c_1^A, \ldots, c_k^A) that will represent the music. According to the parameter used to compute the FFT, the FFT vectors are in a 512-dimensional space.

In our experiment, we used $k = 6$. The figure 1 shows the different clusters obtained on a spectrogram.

![Figure 1: An example of spectrogram. The color indicates, for each frame, the corresponding cluster. (each frame is colored according to the nearest centroid).](image)

2.2 Similarity

In order to compute the similarity between a music A and a music B, we consider a set $\mathcal{F}^B_n (n = 1..N)$ of 30 seconds-sequences of music B. For each portion of music \mathcal{F}^B_n, the euclidean distance between each vector f^B_t in \mathcal{F}^B_n and each centroid of A (c_1^A, \ldots, c_k^A) is computed. The time indice t corresponds to the indice of the FFT frames. For each frame the distance to the nearest centroid is recorded:

$$D(A, B^t) = \arg \min_j \left(\text{dist}(f^B_t, c_j^A) \right) \quad \forall t = 1..k$$

This set of distances is then averaged to give the the similarity between music A and the portion \mathcal{F}^B_n of music B:

$$S(A, \mathcal{F}^B_n) = \frac{1}{N} \sum_t D(A, f^B_t) \quad (1)$$

Because we are interested in a similarity measure between music A and the whole B music, we define the similarity measure as the average similarity over all portions \mathcal{F}^B_n:

$$S(A, B) = \frac{1}{N} \sum_{n=1}^N S(A, \mathcal{F}^B_n) \quad (2)$$

The following section shows some results obtained when comparing various kinds of musical pieces using this similarity measure.

\(^1\)The signal is cut in 30 second sequences in order to save computing resources.
3 EXPERIMENTS AND RESULTS

In order to evaluate the proposed similarity measure, we extracted three musics from three albums from very different artists: Sade, The Clash and Frederic Chopin. The goal of this first test is to verify experimentally that the similarity measure makes sense when very different kinds of sounds are compared. The tracks chosen for this experiment are:

<table>
<thead>
<tr>
<th>Artist</th>
<th>Album</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sade - Love Deluxe</td>
<td>No Ordinary Love</td>
</tr>
<tr>
<td>B</td>
<td>Sade - Love Deluxe</td>
<td>Feel No Pain</td>
</tr>
<tr>
<td>C</td>
<td>Sade - Love Deluxe</td>
<td>I Couldn’t Love you more</td>
</tr>
<tr>
<td>D</td>
<td>The Clash - London Calling</td>
<td>London Calling</td>
</tr>
<tr>
<td>E</td>
<td>The Clash - London Calling</td>
<td>Hateful</td>
</tr>
<tr>
<td>F</td>
<td>The Clash - London Calling</td>
<td>Brand new Cadillac</td>
</tr>
<tr>
<td>G</td>
<td>Frederic Chopin</td>
<td>Nr. 11 g-moll op. 37/1: Andante sostenuto</td>
</tr>
<tr>
<td>H</td>
<td>Frederic Chopin</td>
<td>Nr. 14 fis-moll op. 48/2: Andantino</td>
</tr>
<tr>
<td>I</td>
<td>Frederic Chopin</td>
<td>Nr. 20 cis-moll op. posth.: Lento con gran espressione</td>
</tr>
</tbody>
</table>

The capital letters will be used for shorter reference.

3.1 Similarity between Different Kinds of Music

The similarity matrix, computed for the musics A - I is represented in this table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>323</td>
<td>315</td>
<td>368</td>
<td>412</td>
<td>431</td>
<td>475</td>
<td>626</td>
<td>570</td>
</tr>
<tr>
<td>B</td>
<td>337</td>
<td>293</td>
<td>361</td>
<td>391</td>
<td>396</td>
<td>471</td>
<td>554</td>
<td>500</td>
</tr>
<tr>
<td>C</td>
<td>357</td>
<td>352</td>
<td>324</td>
<td>500</td>
<td>534</td>
<td>547</td>
<td>395</td>
<td>423</td>
</tr>
<tr>
<td>D</td>
<td>491</td>
<td>453</td>
<td>579</td>
<td>324</td>
<td>363</td>
<td>417</td>
<td>1043</td>
<td>950</td>
</tr>
<tr>
<td>E</td>
<td>482</td>
<td>430</td>
<td>559</td>
<td>360</td>
<td>297</td>
<td>455</td>
<td>1054</td>
<td>984</td>
</tr>
<tr>
<td>F</td>
<td>498</td>
<td>460</td>
<td>556</td>
<td>352</td>
<td>364</td>
<td>351</td>
<td>892</td>
<td>816</td>
</tr>
<tr>
<td>G</td>
<td>863</td>
<td>864</td>
<td>700</td>
<td>1014</td>
<td>1051</td>
<td>902</td>
<td>300</td>
<td>288</td>
</tr>
<tr>
<td>H</td>
<td>799</td>
<td>798</td>
<td>651</td>
<td>929</td>
<td>968</td>
<td>825</td>
<td>318</td>
<td>280</td>
</tr>
<tr>
<td>I</td>
<td>819</td>
<td>809</td>
<td>666</td>
<td>939</td>
<td>972</td>
<td>827</td>
<td>301</td>
<td>280</td>
</tr>
</tbody>
</table>

As seen above, the similarity measure is not symmetric. It is interesting to note that in most cases the shortest distance is between a music and itself (i.e. the smallest values are on the diagonal). The only exception occurs for music I.

The measure of similarity can be easily be adapted to yield a symmetric distance:

\[d(A, B) = (s(A, B) + s(B, A))/2 \]

where \(d(A, B)\) represents the distance between musics A and B. The image in figure 2 represent the distance matrix. Tracks are ordered from A to I starting at the upper left corner. Dark squares correspond to small distances. One can see clearly three clusters that correspond to the pieces from the same author. According to the distance measure, The Clash is closer to Sade than it is to Frederic Chopin, which corresponds to our expectations.

3.2 Similarity between Portions of Tracks

In this experiment we use the same set of tracks as before but we consider each 30 seconds-long sequences extracted from each track as a different music. The distance matrix is computed as before and represented as an image (see figure 3) but this time a logarithmic scale is used to represent the gray levels.

At this scale, one can see three clusters that cor-
respond to the three artists. Within each cluster, the lighter pixels indicate that certain segments of a given music are not that close to the centroids of another portion of the same music. This is not surprising, since different instruments may be used on different segments.

3.3 Similarity between Musics with Different Instruments

The objective of this experiment is to evaluate the ability of the proposed similarity measure to capture timbral characteristics of different instruments. In this experiment we use three kinds of classical music featuring a piano solo, a piano and cello, and a cello solo:

* Artist - Album - Title

H Frederic Chopin - Nr. 14 fis-moll op. 48/2: Andantino

I Frederic Chopin - Nr. 20 cis-moll op. posth.: Lento con gran espressione

J Rostropovitch, Britten - Frank Bridge - Sonata for violoncello and piano part 1

K Rostropovitch, Britten - Frank Bridge - Sonata for violoncello and piano part 2

L Janos Straker - Bach Suite for Solo Cello - Suite No. 1 in G Major

M Janos Straker - Bach Suite for Solo Cello - Suite No. 3 in C Major

The matrix distance is represented as before by a gray-scale image (figure 4) with tracks in the following order: H, I, J, K, L, and M starting at the upper right corner. Again, darker squares represent shorter distances.

![Figure 4](image.png)

Figure 4: Picture of the matrix distance calculated between music pieces H, I, J, K, L, and M.

The gray cross visible on the image indicates that musics J and K that feature cello and piano are roughly equidistant from musics H and I and from musics L and M. Our interpretation of these results is that in the first two pieces (H and I), clusters will represent various instances of piano sounds and clusters of musics (L and M) will represent cello. Then, as Frank Bridge sonatas feature piano and cello, the corresponding FFT vectors are likely to be close to a piano cluster or to a cello cluster.

4 CONCLUSIONS AND FUTURE WORK

A new distance measure for estimating similarity between audio signals was presented. Preliminary results on a set of musics show that the distance measure meet our expectations in terms of perceptual similarities. The proposed distance does not capture high level features of the music like beat or melody but musics with similar sounds are indeed recognized as similar. This characteristic is an interesting feature that indicates that our distance may be used for clustering audio signals based on timbre.

Ongoing work focus two main directions: on one hand these preliminary results have to be confirmed on a larger database, and several parameters like the number of centroids used in the clustering phase should be better understood and optimized. On the other hand, following the last experiment described in this paper, we are working on methods that use this approach in order to cluster a set of music tracks according to the instruments used or to the timbre present in the signal.

ACKNOWLEDGEMENTS

This work was supported by EU and FCT, through LaSIGE Multiannual Funding Programme, and by the Department EETC of ISEL.

REFERENCES

