ANALYSING MULTIDIMENSIONAL DATABASES USING DATA MINING AND BUSINESS INTELLIGENCE TO PROVIDE DECISION SUPPORT

Rajveer Singh Basra and Kevin J. Lu
Brunel Business School, Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K.

Keywords: Business Intelligence (BI), decision support systems (DSS), data mining, multidimensional databases (MDDB), data cubes, digital dashboard, reporting, on-line analytical processing (OLAP).

Abstract: After relational databases and data warehouses, the techniques used for data management have entered the next phase, Business Intelligence Tools. These tools provide enhanced business functionality by integrating data mining and advanced analytics into data warehouse systems to provide comprehensive support for the purposes of data management, analysis and decision support. In this paper, we introduce an on-going project aimed at developing BI tools on data warehouse systems for multi-dimensional analysis. A prototype has been developed and has been tested for two examples, which are also reported in this paper.

1 INTRODUCTION

Reduced cost of storage equipment has facilitated companies to store vast amounts of data. Typically, key information is retained and knowledge extracted enabling organisations to discover customer needs and preferences, the competition, conditions in the industry and general economic, technological, and cultural trends. Furthermore, the explosion of the internet and web based services, enables access to previously untapped markets, consequently companies are required to cope with ever increasing quantities of information. Such information and data is stored in data warehouses; data warehouses facilitate an organisation to store and analyses their data in order to utilise this to make informed decisions. The requirement for informed decisions has lead to the development and growth of Business intelligence (BI).

BI amalgamates tools such as reporting, data depositories, on-line analysis tools and data mining, in addition to providing access to data that has been integrated and cleaned. Users are able to analyse, manipulate, transform and combine data to assist organisations to discover correlations, trends and patterns aiding an organisation to become more competitive allowing managers to make more informed decisions (Simmers, 2004). Traditionally the focus of BI has been on the analysis of batch data that is updated periodically. Batch updating has traditionally been daily, therefore real-time has been considered anything better than that (Finnie et al, 2005). However with the internet facilitating a larger quantity of transactions, and blurring the lines between time zones, it is imperative that businesses move toward a model that allows for true real-time transactions and reach as many customers as possible at the least possible cost, thus targeting previous customers and current needs, but also potential customers and forecast trends. Furthermore with such a dynamic environment it is essential that BI tools and information be provided to managers enabling them to make informed decisions. Thus BI forms a very well suited platform to be integrated with Decision Support Systems (DSS).

Since its introduction in the 1970s, decision makers in a number of fields have employed DSS to aide in critical decisions (Arnott, 2007). DSS are an interactive computer based system that is intended to provide support to the decision makers engaged in solving various semi- to ill-structured problems involving multiple attributes, objectives and goals (Nemati et al, 2002). Thus DSS can be defined as an interactive computer-based system to aide decision makers utilise data and models to identify problems, solve problems and reach the most efficient decision. DSS integrate both data and models to assist the decision making processes (Rupnik et al, 2006). It should be noted however that DSS are not autonomous systems and therefore is not intended to replace decision-makers, but improve the effectiveness of the decisions (Mladen et al, 2002),
however traditional DSS or conventional AI techniques for supporting the decision-making process, fail to address situations that require a vast amount of data to be analysed from Databases, especially multi-dimensional databases for effective support to be provided.

The purpose of this paper is to describe how BI techniques, especially data mining and digital dashboards can aide decision makers, particularly managers and those in a senior decision-making position make informed decisions using large quantities of data extracted from multidimensional databases. It is the inability to analyse large quantities of data from multidimensional databases in an efficient manner that has hindered conventional decision support systems and artificial intelligence models. Yet, as processing and storage capacity has increases, companies are storing vast amounts of data within data warehouses. BI techniques such as data mining provide the means to interrogate large-scale data warehouses to extract and analyse the data, providing the means through which the decision making process can be supported. Data mining is a core tool of BI models, used effectively it can significantly aide organisations to form critical decisions faster and with an increased degree of confidence (Mladeneti et al 2003). Several authors have discussed the potential benefits that can be reaped from the integration of data mining into DSS and they have all confirmed the value of investigating this. (Rupnik et al, 2006).

Furthermore this paper will purpose a prototype system for the integration of BI techniques and DSS to interrogate and analyse multidimensional databases within a business context to aide the decision-making process. As a BI application, DSS would form an aspect of a program that analyzes business data and presents it to decision-makers with a view to assisting in the decision-making process. As opposed to an operational application, which collects data over the normal course of business, BI is an informational application, thus it gathers data like comparative and projected figures. This will enable comparisons to be made between products, trends to be discovered and facilitate predictive capabilities to be exploited to aide the decision-maker; furthermore these discoveries can be presented to the user via digital dashboards resulting in an informative user friendly interface. The integration of BI techniques and DSS can lead to the improved performance of an organisation and enable the system to be investigated for problems that have not been addressed before by enabling the fusion of knowledge from experts and knowledge extracted from data (Mladeneti et al, 2002). Being able to apply this technology to analyse multidimensional databases (MDDB) will be a great asset to organisations.

The remainder of this paper is organised into the following sections; Section 2 will examine some of the currently available BI tools that can be investigated to facilitate DSS based upon BI techniques and model. For the purpose of this research the open-source data mining tool Weka has been investigated and customised. In Section 3, research that has been conducted using datasets from the UCI machine learning repository, in addition to data sets that have been collected from a large retail company will be discussed. These dataset have been interrogated using a customised BI platform yielding promising results for the application of BI techniques to interrogate MDDB with a view to providing decision support. In Section 4, a summary of the preliminary research and a road map for future work will be presented.

2 BACKGROUND

It has been identified that the Information/Data management systems market advances in 20-year cycles. The initial period can be identified from the 1950s. During this period in a seminal October 1958 IBM Journal article (Luhn, 1958) that the term “Business Intelligence” was first coined. At this time organisations collected data from non-automated sources, yet lacked the computing resources to properly analyze the data, thus, companies often made decisions primarily on the basis of intuition. During the 1970s to 1990s the data management sector dominated by companies such as SAS, IBI, and IBM, was characterised by production reporting on mainframes. This eventually evolved to the current “modern era of Business Intelligence.”

The modern era of BI can be characterized by user friendly client/server-based BI tools. This period has also witnessed the evolution of query reporting, and OLAP technology being migrated from client/server to Web-based architecture and the development of broad suites of BI tools from vendors such as Business Objects, Cognos, and Hyperion (Lawton, 2006).

BI software incorporates the ability to mine data, analyze, and report. Some modern BI software allows users to cross-analyze and perform deep data research rapidly. In modern applications of BI software, managers are able to quickly compile reports from data, for forecasting, analysis, and
business decision-making (Zhang et al, 2007). Consequently, modern BI models can be classed under two categories: End user query, reporting, and analysis (QRA) and advanced analytics:

- **End-user query, reporting, and analysis** include ad hoc query and multidimensional analysis tools as well as dashboards and production reporting tools. Query and reporting tools are designed specifically to support ad hoc data access and report building by either IT or business users. Multidimensional analysis tools include both online analytical processing (OLAP) servers and client-side analysis tools that provide a data management environment used for modelling business problems and analyzing business data.

- **Advanced analytics** software includes data mining and statistical software (previously called technical data analysis). It uses technologies such as neural networks, rule induction, and clustering, among others, to discover relationships in data and make predictions that are hidden, not apparent, or too complex to be extracted using query, reporting, and multidimensional analysis software.

These BI models are being implemented in a number of industries, for a variety of purposes, which has led to the development of many BI tools. However, in the past BI tools where prohibitive due to their complex nature requiring a specialist operator, this is changing and in the face of increased demand. BI developers have endeavoured to make their tools more user-friendly and ensure that they are able to integrate more seamlessly with the current applications (Ortiz, 2002). Furthermore there are a number of open-source BI tools that are available, since the interest has not been solely from commercial vendors but also from researchers. The requirement for user-friendly BI applications has resulted in tools that can be classified into one of 4 categories, depending upon the required results:

- **Business operations reporting**: Organisations often require weekly or monthly reports. These reports generate aggregated views of data to enable stakeholders and management to view the state of their business such as the value of assets, and distinguish between the assets which are obtaining their goals to the resources that are performing sub-optimally.

- **Digital Dashboard**: Is a business management tool utilised to visually ascertain the status and performance of a business enterprise via key business indicators. Digital dashboards use visual, at-a-glance displays of data pulled from disparate business systems to provide warnings, action notices, next steps, and summaries of business conditions. An example of a digital dashboard by SAS Dashboards can be seen in Figure 1.

- **Multidimensional Analysis**: In Relational data, each piece of data correlates to one row and one column, each of which can be considered a dimension, thus relational data is considered to be two-dimensional. Multi-dimensional databases however provide a higher-level perspective of the data by providing further dimensions to include core components of your business plan such as Accounts; Time; Products; and markets. Each dimension consists of individual components known as members. Although the Dimension will tend to remain static, members will generally be dynamic, e.g. new customers or products added. Multi-dimensional analysis supports interactive examination of large amounts of data from many perspectives facilitating for the interrogation of data at a high-level, however this traditionally requires a reliable data warehousing / data mart backend Pederson & Jenson, 2001). If the data is configured correctly the data can quickly provide answers to analytical queries using OLAP.

- **Data mining**: Data mining is concerned with finding models and patterns from the available data (Mladenic’ et al, 2003). This can be achieved through the extraction of data from a database by utilising software that can isolate and identify previously unknown patterns or trends in large amounts of data (Han et al, 2006). There are a variety of data mining techniques that reveal different types of patterns such as, predictive data mining algorithms, descriptive data mining algorithms and neural networks as very advanced means of analysing data (Lavrac, 2006).

The predictive capabilities of a BI tool can be further enhanced by integrating data mining with other BI strategies such as Customer Relationship Management (CRM) a BI tool can make effective
predictions and forecasts for a manager. Being one of the leading business strategies CRM integrates sales, marketing and service across multiple business units and customer contact points. In addition to this CRM helps companies understand the value of customers, identify and target their most profitable customers, encourage and maintain high-quality relationships that increase loyalty and profits (Lee & Park, 2005). However for this to be successful it is imperative that customer profitability precisely evaluated thus, targeting the most profitable customers, consequently, companies will utilise historical data and through ETL (Extract, Transform and Load) and data mining techniques, to extrapolate this data in order to (as accurately as possible) predict trends and forecast expected growths within their business operations. This enables organisations to make focused decisions for the future. Forecasting can also be utilised to find correlations between various products, thus for example would increased consumption of one product affect the performance of another? Thus BI can be utilised to view not only current action, but also suggest the most suitable direction an organisation should take, consequently BI can be an invaluable tool for decision-makers and managers.

Increasing standards, automation, and technologies have led to vast amounts of data becoming available. Data warehouse technologies have facilitated the establishment of repositories to store this data. Improved ETL and even recently Enterprise Application Integration tools have increased the speed of collecting the data. OLAP reporting technologies enable faster generation of new reports which analyze the data. However conventional DSS even those based upon AI models and conventional BI tools have failed to integrate effectively when dealing with large datasets. Considering the capabilities of both Data mining and DSS, the two approaches can be integrated to better solve data analysis and decision-making. In knowledge management (Mladenic et al, 2003), such integration is interesting for several reasons. For example, in data mining it is often unclear which algorithm is best suited for the problem. This decision support process could be extended to the initial phase of data collection, thus when data is collected decisions models could be developed to describe the data and ensure that the correct data is collected, thereby improving the quality of results when data is analysed, furthermore this data could be presented via a digital dashboard. These are two examples of how data mining and DSS can be integrated to improve the quality of BI systems (Mladenic et al, 2003), it would be of even greater significance if such models, could be developed to handle extremely large datasets, with the results provided via visual BI models to support decision making. If the integration of these two technologies is to be truly beneficial, they must address the issue of accessing and analysing the vast stores of data that companies are collecting.

Traditional methods of storing and viewing data are databases and spreadsheets. The traditional methods provide adequate support for a small volume of data that has few non-hierarchical dimensions. They do not however support the requirements for advanced data analysis. Despite spreadsheets being a staple tool for many business practices for a number of years, as the quantity of data an organisation stores increases it has become apparent that spreadsheets are an inadequate tool for managing and storing multidimensional data since they fail to separate the structural information from the desired views of the information. A spreadsheet is a useful tool for analyzing sales data such as product sold, number of purchases, and city of sale. The model of the spreadsheet has been further extended to a two-dimensional spreadsheet with associated subtotals and totals known as a pivot table. However, adding a third dimension such as time or classifying the data into higher-level product types requires a considerably more complex setup (Pederson and Jensen, 2001). The only effective solution is to use database technology that offers inherent support for the full range of multidimensional data modelling, as multidimensional structures will enable managers to "slice and dice" views of company performance data and drill down into trouble spots (Hasan and Hyland, 2001).

Multidimensional databases (MDDB) developers and users consider the dimensional view of organizational data to provide managers with a means of understanding the current state and future possibilities of their business. MDDB view data as cubes (multidimensional arrays) that are capable of categorising spreadsheets to any number of dimensions. Thus, a collection of related data cubes comprises a multidimensional database (Pederson & Jensen, 2001). In data cubes each core data value (key performance indicators) occupies a cell indexed by a unique set of dimension values supporting hierarchies in dimensions and formulas without duplicating their definitions. In its simplest form a data cube can be visualised as a structure using a value, such as number of products sold, and show how it varies along the three most common dimensions (time, location, and product type) (Hasan and Hyland, 2001).
Storing data in MDDB may result in a robust view of the data; for this technology to be fully exploited it is essential that the data can be accessed and analysed in a timely and efficient manner. OLAP provides a proficient method to access a data warehouse for multidimensional analysis and decision support. However OLAP techniques alone cannot derive patterns from the stored data (Fong et al, 2002). For this purposes the investigation of data mining and BI tools which analysts can exploit to interrogate data cubes, is thus a natural partner to OLAP and MDDB and necessary if the technology is to reach its full potential.

3 BI PROSPECTOR ENGINE

As discussed in the previous section, managers view information systems as an essential part of the successful, modern business. Similarly the increasing popularity of data warehousing illustrates that many managers now see the huge volumes of data stored in organizational databases as a company asset. Used effectively, this data provides information for management decision making and strategic planning (Hasan & Hyland, 2001). This has motivated the investigation of a system that will address the issue of using data mining and BI techniques, for analysing MDDB to provide decision support.

For the purpose of this research, a prototype system has been developed. Integrating the Weka machine learning workbench, the Prospector Engine aims to apply data mining algorithms to analyse MDDB to provide decision support.

The Prospector engine, will provide a graphical means through which MDDB can be interrogated to find trends and correlations providing support to decision makers, the Prospector Engine, integrates the functions of Weka such as providing a collection of visualization tools and algorithms for data analysis and predictive modelling (Witten & Frank, 2005), however the Prospector engine will extend this facility to interrogate MDDB and present the data via digital dashboards.

The initial phase of this research investigated various data mining algorithms, for this purpose a dataset from the UCI machine learning site was manipulated. The German Bank Credit data, contains details of customers and there history, thus this dataset classifies 1000 instances (people / customers) described by a set of 30 attributes as good or bad credit risks. Thus, each applicant was rated as “good credit” (700 cases) or “bad credit” (300 cases). New applicants for credit can also be evaluated on these 30 "predictor" variables. The data set has been investigated with a view to discovering eligible loan applicants and potential credit risks.

One of the data mining algorithms applied to a data set for investigation was the C4.5 version 8 algorithm. C4.5 Version 8 is an algorithm used to generate a decision tree developed by Ross Quinlan (see Figure 2). C4.5 is an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier. C4.5 addresses the following issues not dealt with by ID3:

- Avoiding over fitting the data. Determining how deeply to grow a decision tree.
- Reduced error pruning.
- Rule post-pruning.
- Handling continuous attributes e.g., temperature
- Choosing an appropriate attribute selection measure.
- Handling training data with missing attribute values.
- Handling attributes with differing costs.
- Improving computational efficiency.

Once the algorithm was applied a pruned decision tree for the German Credit data can be produced (see figure 3).

![Figure 2: C4.5 algorithm applied to the German credit dataset.](image)

![Figure 3: Pruned C4.5 decision tree.](image)
Upon applying the algorithm to the data set as in figure 2, a results output is produced consisting of a text decision tree and a number of statistics. The output can be scrutinized (see table 1) to analyse the significance of these results. Lines 28-169 are a text based version of the decision tree constructed by the C4.5 classifier depicted in Fig 3. This indicates how the classifier uses the attributes to make a decision. The leaf nodes indicate which class an instance will be assigned to should that node be reached. The numbers in brackets after the leaf nodes indicate the numbers of instances assigned to that node, followed by how many of those instances were incorrectly classified as a result. With other classifiers some other output will be given that indicates how the decisions are made, e.g. a rule set, it should be noted that this tree has been pruned to remove branches that do not help by replacing them with leaf nodes.

Lines 173-181 indicate the level of the error levels during a 10-fold cross-validation. The correctly/incorrectly classified instance refers to the case where the instances are used as test data and are the most important statistics here.

Lines 182-185 show the True Positive (TP) rate is the proportion of examples which were classified as class x, among all examples which truly have class x, i.e. how much part of the class was captured. It is equivalent to Recall. In the confusion matrix, this is the diagonal element divided by the sum over the relevant row, i.e. $588/(588+112)=0.84$ for class yes and $117/(183+117)=0.39$ for class no in our example. The False Positive (FP) rate is the proportion of examples which were classified as class x, but belong to a different class, among all examples which are not of class x. In the matrix, this is the column sum of class x minus the diagonal element, divided by the rows sums of all other classes; i.e. $183/(183+117)=0.61$ for class yes and $112/(588+112)=0.16$ for class no. The Precision is the proportion of the examples which truly have class x among all those which were classified as class x. In the matrix, this is the diagonal element divided by the sum over the relevant column, i.e. $588/(588+183)=0.763$ for class yes and $117/(112+117)=0.511$ for class no. The F-Measure is simply $2*Precision*Recall/(Precision+Recall)$.

From line 186-189 is the confusion matrix for the 10-fold cross-validation, showing what classification the instances from each class received when it was used as testing data. E.g. for class "a" 588 instances were correctly classified and 112 instances were assigned to class "b".

Table 1: The output produced by applying C4.5 algorithm to German credit data set.

<table>
<thead>
<tr>
<th></th>
<th>C4.5</th>
<th>Relation: german_credit</th>
<th>Instances: 1000</th>
<th>Attributes: 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>checking_status</td>
<td>duration</td>
<td>credit_history</td>
<td>...</td>
</tr>
<tr>
<td>26</td>
<td>Test mode: 10-fold cross-validation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Classifier model (full training set)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>C4.5 pruned tree</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 29 | ...
| 30 | checking_status = <0 | | |
| 31 | | foreign_worker = yes |
| 32 | | duration <= 11 |
| 33 | | | existing_credits <= 1 |
| 34 | ...
| 35 | ...
| 36 | credit_amount > 9857: bad (20.0/3.0) |
| 37 | checking_status = >=200: good (63.0/14.0) |
| 38 | checking_status = no checking: good (394.0/46.0) |
| 39 | Number of Leaves : 103 |
| 40 | Size of the tree : 140 |
| 41 | Time taken to build model: 0.19 seconds |
| 42 | Stratified cross-validation |
| 43 | Summary |
| 44 | Correctly Classified Instances 705 |
| 45 | Incorrectly Classified Instances 295 |
| 46 | Kappa statistic 0.2467 |
| 47 | Mean absolute error 0.3467 |
| 48 | Root mean squared error 0.4796 |
| 49 | Relative absolute error 82.5233 % |
| 50 | Root relative squared error 104.6565 % |
| 51 | Total Number of Instances 1000 |
| 52 | Detailed Accuracy By Class |
| 53 | TP Rate 0.84 |
| 54 | FP Rate 0.61 |
| 55 | Precision 0.763 |
| 56 | Recall 0.84 |
| 57 | ROC Area Class 0.799 |
| 58 | F-Measure 0.639 |
| 59 | Confusion Matrix |
| 60 | a b classified as 588 112 |
| 61 | a = good 183 117 |
| 62 | b = bad 0.39 0.16 |

Examples of some other algorithms that could be applied to this data set are, Naïve Bayes and Bayes net classifiers:

Naïve Bayes: a simple probabilistic classifier based on applying Bayes' theorem with strong (naïve) independence assumptions. A more descriptive term for the underlying probability model would be "independent feature model". In spite of their naïve design and apparently over-simplified assumptions, naïve Bayes classifiers often work much better in many complex real-world situations than one might expect.

⇒ Via the Naïve Bayes classifier each attribute will be treated independently, thus the probability that the customer represents a 'good' or 'bad'
credit risk will be calculated from independent probabilities, therefore since independent variables are assumed, only the variances of the variables for each class need to be determined and not the entire covariance matrix.

Bayes Net: A base class for a Bayes Network classifier. A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of variables and their probabilistic independencies. For example, a Bayesian network can be used to calculate the probability of a patient having a specific disease, given the absence or presence of certain symptoms, if the probabilistic independencies between symptoms and disease as encoded by the graph hold.

The Bayes Net classifier can be investigated to draw a network of nodes, one for each attribute, connected by directed edges thus to eliminate cycles (creating directed acyclic graph). Each node of the Bayesian network will define a probability distribution that is used to predict the class probability, thus combining features from decision trees and rules to predict the probability of the credit risk.

Once the investigation of data mining algorithms was completed, datasets were collected from a large retail company, which due to confidentiality cannot be disclosed, however for the purpose of the paper will be referred to as “Company S”. This data consists of financial, records, product details, and supplier details. The data set spans from 2002-2007, with details of over 40 suppliers and over 5000 different products, in addition to this data there are details of information relating to the financial state of the company.

A random sample of 1000 products was selected against there sales figures over the 5 years and this data was converted to an ARFF file. An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a list of instances sharing a set of attributes. First developed by the Machine Learning Project at the Department of Computer Science of The University of Waikato for use with the Weka machine learning software, ARFF files provide an effective method for encapsulating the data for machine learning (Witten & Frank, 2005).

Once converted machine learning algorithms were applied to the data set, these algorithms yielded results in a similar fashion to those of the German Credit, for the results of the data for Company S, a ROC curve was produced. A ROC curve of these results can be produced (see figure 4). The ROC curve represented by plotting the fraction of true positives (TPR = true positive rate) vs. the fraction of false positives (FPR = false positive rate). The area under the ROC curve can be interpreted as the probability that in the event a random positive and random negative is selected, the classifier will assign a higher score to the positive example than to the negative. The ROC curve enables the performance and accuracy of the classifier to be evaluated allowing for the selection of the most suitable models.

![Figure 4: ROC Curve.](image_url)

4 SUMMARY AND FUTURE DIRECTION

In this paper it has been investigated how BI can be applied for decision-making. BI and BI tools combine a number of disciplines with a view to enhancing business practices by analysing corporate data. Decision support systems conventionally encompass the knowledge of experts and advise users upon the most suitable actions. These two systems provide great scope for integration, as the facility to suggest courses of action can draw upon corporate data and previous experiences can be analysed to predict the most likely outcome, for see trends and target consumer groups. Given the increasing amount of data that is being stored, and the increasing necessity to make efficient use of this data, being able to apply BI techniques to a MDDB, in order to interrogate the data and provide decision support is very promising.

In this paper this potential was investigated using the BI prospector engine through this many functions key to which is the availability of a number of data-mining algorithms, was applied to interrogate datasets in section 3. However, to further this research the dataset provided by Company S will be interrogated directly from a MDDB, with the output analysed through digital dashboards and reports. Facilitating for the BI prospector engine to be able to effectively advise decision-makers utilising previous experiences and trends to
extrapolate data for accurate predictions that can support the decision making process. This is of great interest as data mining will facilitate a greater level of accuracy due to its natural ability to find trends of significance in arbitrary data. Furthermore the reporting feature (which forms an aspect of the visualisation aspect of BI) will require that the trends, patterns and information discovered by the platform be presented to the user in a manner that is easy to use and analyse, enabling the information to be efficiently utilised and support organisations with decisions regarding operations and future direction with reports that can be easily understood by any employee, not just experts.

The reporting feature will also lend itself to Data profiling, as these reports will enable the BI prospector engine to collect statistics and information about data in order to:
1. Find out whether existing data can easily be used for other purposes.
2. Provide metrics upon data quality including whether the data conforms to company standards.
3. Assess the risk involved in integrating data for new applications, including the challenges of joins.
4. Track data quality.
5. Assess whether metadata accurately describes the actual values in the source database.
6. Understanding data challenges early in any data intensive project, so that late project surprises are avoided. Finding data problems late in the project can incur time delays and project cost overruns.
7. Encompass an enterprise view of all data, for uses such as Master Data Management where key data is needed, or Data governance for improving data quality.

Consequently, the Reporting facility will enable platform to take snapshots of the data and statistics be it from profiling or forecasting/prediction to provide managers with details and performance indicators upon which decisions can be made.

REFERENCES

Rupnik, R., Kukar, M., Bajec, M., Krisper, M., 2006. DMDSS: data mining based decision support system to integrate data mining and decision support In Information Technology Interfaces, 2006. 28th International Conference on 2006 Page(s):225 – 230.

Weka Project home page at University of Waikato in New Zealand. Available online: http://www.cs.waikato.ac.nz/ml/weka/
