Keywords: e-Learning, Learning Object, reengineering, web-based user interface design, usability.

Abstract: We analyze the problem of reengineering of Learning Objects (LO) for web-based education. Such reengineering must be based on sound methodological background and design principles. We apply methods adopted from software engineering domain for redesigning the structure and user interface of LOs and aim both at usability and accessibility of learning material. We evaluate usability of a LO from the user interface point of view, following the user interface development principles common both for Human-Computer Interaction (HCI) and e-Learning domains. We propose the LO reengineering framework based on the user interface usability principles. In a case study, we demonstrate how these principles and recommendations can be used to reengineer a LO to improve its learnability, understandability and usability in general.

1 INTRODUCTION

E-Learning is learning that uses computer networks as the delivery or mediation mechanism (Piskurich, 2003). On the other hand, internet technologies are only a prerequisite for e-Learning. In a holistic view, e-Learning considers content, technologies, and services for delivering well-designed, learner-centered, interactive, and facilitated learning environment to anyone, in anyplace, at anytime by utilizing the attributes and resources of various digital technologies along with other forms of learning materials tailored for open, flexible, and distributed learning environment (Khan, 2005).

Main reusable resource in e-Learning is a Learning Object (LO). From the technological point of view, the LO consists from (1) teaching material, and (2) technologies that are used to provide a view of a LO to the user, i.e. a user interface (UI). As a part of a LO and entire e-Learning system, the UI is a very important subsystem, because it is responsible for the representation of the content and functionality. Depending on the design of the UI, the users of a computer system or device make their judgment on the usability of the system as a whole. If the UI of the system is easy to learn and to use, and it supports the users in the tasks they wish to undertake, the users consider the system to be usable (Shiratuddin et al., 2005).

Different artifacts and instruments are employed to solve the usability problem such as standards, principles, guidelines and recommendations (Nielsen, 1993; Paramythis and Loidl-Reisinger, 2004; Mariage et al., 2004). The design and development of UIs for e-Learning solutions is time consuming, cumbersome, and usually based on concrete models, scenarios and recommendations, but not on general framework or methodology. Furthermore, the reuse of LOs and their integration into other e-Learning environments and/or technological platforms also requires extensive reengineering efforts, too. Therefore, reengineering of LOs is necessary before importing them into the e-learning system as well as during LO maintenance. Unfortunately, this step is often omitted, and the prepared material goes online, but sound e-learning principles are not implemented.

Recent work in the area of LO reengineering includes the development of reengineering frameworks for e-Learning systems (Choquet and Corbiere, 2006), and case studies in re-engineering of LOs for e-Learning and m-Learning (Scalera et al.,...
Reengineering of LOs is still an underdeveloped topic and Polsani et al. (2003) conclude that the reengineering of the design and development process of LOs itself must be improved. In general, the aim of reengineering is to create knowledge that is appropriate for the emergent network society where Human-Computer Interaction (HCI) and web-based education plays an important role.

The aim of our paper is to show how the concept and methodology of reengineering adopted from software engineering domain can be used in deploying the learning material for web-based education. Our prior work concerned reengineering of distance study courses (Tankelevičienė and Demenis, 2007), and the development of user interfaces for mobile devices (Damaševičius and Tankelevičienė, 2008), for eLearning-oriented web pages (Štuikys et al., 2004) and LOs (Štuikys and Damaševičius, 2007).

The structure of the paper is as follows. Section 2 analyzes the concept of LO reengineering. Section 3 formulates the requirements for LO reengineering based on Common HCI/e-Learning Principles Model. Section 4 as a case study presents the reengineering of a LO for teaching computer science students about array sorting algorithms. Finally, Section 5 presents conclusions.

2 CONCEPT OF LEARNING OBJECT REENGINEERING

The concept of reengineering with its different interpretations is used in software engineering and management sciences. Software reengineering is concerned with re-implementing a system in order to make it more maintainable (Sommerville, 2000). In (Chikofsky and Cross, 1990), reengineering is defined as „the examination and alteration of a subject system to reconstitute it in a new form and the subsequent implementation of the new form“.

The activities in the software reengineering process are: a) Source code translation; b) Reverse engineering; c) Program structure improvement; d) Program modularisation; e) Data reengineering (Sommerville, 2000). They are not all necessary, and are applied depending on the level on which we want to renew the system.

The difference between engineering and reengineering is shown in Figure 1. In reengineering an old system acts as a specification for a new system.

The main advantages of reengineering are: a) Reduced risk; b) Reduced cost.

![Figure 1: Forward engineering and reengineering (Sommerville, 2000).](attachment:figure1.png)

The objective of system re-engineering is to improve the system structure and make it easier to understand. The cost of future system maintenance should therefore be reduced (Sommerville, 2000).

Here we propose the following framework for the reengineering of a LO:

1) Identification/evaluation of the existing LO.
2) Formulation of requirements for reengineering.
3) Development of a reengineering plan.
4) Re-evaluation and adaptation of teaching objectives, methods and activities.
5) Rewriting of encapsulated teaching materials following newly formulated aims.
6) Redesign of the user interface of a LO.
7) Reimplementation of LO functionality.
8) Updating/rewriting of a LO documentation.

Formulation of requirements for reengineering is the first and, perhaps, the most important step. The requirements can be technological (e.g., motivated by platform change), social (adaptation of a course to a student group with different background), educational, etc. Technological requirements may include the following tasks: modularization of LO, revision of the LO structure to eliminate its defects according to the principles of structured programming, identification and removal of unnecessary/duplicated material/functionality, migration of LO to another learning environment, porting of LO to another platform, rehosting (modification of the LO architecture in order to exploit new technologies), conversion into another markup/scripting language, validation of markup language code, bringing up to a defined LO usability and web accessibility standard, enhancement of user interface, optimization of LO functionality, inclusion of additional functionality, bug fixing, etc.

Once the reengineering requirements have been identified, a reengineering plan needs to be written on how these requirements are to be implemented. To maintain control over this process it should be broken down into distinct steps. The steps should outline what must be done and what methods (technologies, standards) should be applied. At the end of
each step, a copy of the LO must be saved for versioning. This means that any problems introduced during the reengineering process can be quickly identified and the cause eliminated or addressed.

Once the reengineering process has been completed and the LO has been tested, any existing LO documentation should be updated or, if none exists, written. Documentation is a very important part of the re-engineering process as it is the primary source of information that will assist in the future support and maintenance of the LO. Alongside the description of the content and functionality of the LO and a quick guide which describes how to use the application, it should cover a description of any fundamental changes that were introduced during the reengineering process.

3 FORMULATION OF REQUIREMENTS FOR LO REENGINEERING BASED ON COMMON HCI/E-LEARNING PRINCIPLES MODEL

3.1 Didactic e-Learning Principles

The E-Learning methodologies are based on common didactic principles. After analyzing the literature in the E-learning domain, the following E-learning principles were identified (Clark, 2002; Miles, 2003), which are summarized in Table 1.

<table>
<thead>
<tr>
<th>Principle</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility/openness</td>
<td>Learning material is accessible to all potential students. Learners with different input level, with specific educational needs, etc. can participate without interruption of the work; Openness of the communication forms and tools.</td>
</tr>
<tr>
<td>Adaptability/Individualization</td>
<td>The ability to adapt the e-learning system and learning materials to the learner and context.</td>
</tr>
<tr>
<td>Engagement</td>
<td>The e-learning system should be pleasant to use to ensure learners visual satisfaction and active engagement, supports learner’s motivation and desire to pursue a goal or perform a task.</td>
</tr>
<tr>
<td>Flexibility/Learner centeredness</td>
<td>Freedom to choose time and place for learning, content. Focus on the needs of learner. Multiple instructional methods are used in order to gain better results.</td>
</tr>
<tr>
<td>Interactivity/Feedback</td>
<td>Support for indirect personal interactions student-student, student-teacher, etc. Provision of appropriate and informative feedback within reasonable time.</td>
</tr>
<tr>
<td>Modularity</td>
<td>The curriculum consists of different courses depending on the individual and group educational necessities, learning material and learning activities. The content of the learning materials should be built on the basis of the major learners’ activities.</td>
</tr>
<tr>
<td>Problem-orientation</td>
<td>Learning content and activities must be problem-oriented. The learning content should reflect multiple viewpoints to the problems and their possible solutions.</td>
</tr>
<tr>
<td>Relevancy/reflexivity</td>
<td>Learners’ awareness of the content and the ways to participate in the learning activities, and especially – of their own personal development and acquisitions.</td>
</tr>
<tr>
<td>Responsibility/control</td>
<td>Strict regulation and management of the activities using information technologies (IT). Control encourages responsibility.</td>
</tr>
<tr>
<td>Self-direction/autonomy</td>
<td>Instructions should be customized as much as possible to the individual learner. A trainer should act more as a facilitator than a teacher.</td>
</tr>
<tr>
<td>Suitability</td>
<td>Avoidance of unnecessary and pedagogically ungrounded use of IT.</td>
</tr>
<tr>
<td>Usability/Support</td>
<td>Creation of a user-friendly environment for learning process support. Support of content, interface, methods, strategies, etc. Efficient and convenient use of an e-learning system.</td>
</tr>
</tbody>
</table>

3.2 Requirements for UI as a Part of e-Learning System

The most important feature of e-Learning is interactivity. Therefore, UI design is essential to e-Learning. Common didactic e-Learning principles dictate the requirements for designing UI. The main goal of UI in this context is to support learning. In order to reach this goal, UI must satisfy the set of requirements. The basic requirements for UI design from e-Learning domain are summarized in Table 2.

3.3 User Interface Usability Principles

We formulate the requirements for reengineering based on Common HCI/e-Learning Principles Model, which we first proposed in (Damaševičius and Tankelevičienė, 2008). Here we only summarize it in Table 3.
Table 2: E-learning domain requirements related to the UI design.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
<th>Strategies (recommendations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multimodality</td>
<td>Modality is the communication path in which we receive information from surrounding environment. There are four types of modalities: verbal, visual, aural, tactile-kinesthetic.</td>
<td>Presenting content and activities in more than one modality to increase choice and control.</td>
</tr>
<tr>
<td>Minimizing cognitive load</td>
<td>Cognitive load must be oriented toward learning task. The user doesn’t need to think what to do in the window (page, UI).</td>
<td>UI must be coherent, consistent, transparent, polite, positive, relevant and clear.</td>
</tr>
<tr>
<td>Reflection</td>
<td>Reflecting content structure, task, learning theory, learning model (the transmission model; the learner centered model; the participative model), the learner (adaptivity, personalisation).</td>
<td>Pay different attention to designing appearance and functionality. Realize different levels of adaptivity for presentation, interaction, course delivery, content discovery and assembly.</td>
</tr>
<tr>
<td>Building mental models</td>
<td>A mental model is a person’s internal (mental) representation of some area of the world. The mental model is built or reassembled as an outcome of learning.</td>
<td>To show the various states of and relationships with the concepts, for example, including graphics and animation.</td>
</tr>
</tbody>
</table>

Table 3: Principles of HCI for UI design.

<table>
<thead>
<tr>
<th>Principle</th>
<th>Description</th>
<th>Example recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility</td>
<td>The degree to which a system can be used comfortably by a wide variety of people.</td>
<td>Allow adjustment of font size.</td>
</tr>
<tr>
<td>Affordance</td>
<td>Connection between a user interface and its functional and physical properties.</td>
<td>Use interface elements similar to real world objects.</td>
</tr>
<tr>
<td>Consistency/organization</td>
<td>A harmonious uniformity or agreement among parts of a system.</td>
<td>Use familiar patterns of interaction.</td>
</tr>
<tr>
<td>Error tolerance/reliability</td>
<td>The ability of a system or component to continue normal operation despite the presence of erroneous inputs.</td>
<td>Error messages should be in plain language, indicate a problem, and suggest a solution.</td>
</tr>
<tr>
<td>Feedback</td>
<td>The return of information about the result of a process or activity.</td>
<td>Keep the user informed about the state and actions of a system.</td>
</tr>
</tbody>
</table>

4 REENGINEERING OF A LO FOR TEACHING ARRAY SORTING ALGORITHMS

4.1 Identification of the Existing LO

We consider LOs for teaching the array sorting algorithms. Such LOs could be used in different programming teaching courses to demonstrate the principles and effectiveness of the array sorting algorithms within the internet-based e-learning environment. The LO was assembled from the teacher’s lecture materials and implemented in HTML+Javascript, which can be distributed over Internet. The HTML part of the LO is used for presentation of the natural language description of a sorting algorithm and presentation of its implementation in a specific programming language, while Javascript is used for demonstration of the principles or effectiveness of a specific sorting algorithm.

The LO as seen via the internet browser is shown in Figure 2. The LO introduces the student with the description and implementation of the Bubble sort algorithm, and demonstrates it in action. The array for sorting is generated after pressing the button “Generate”. And then the sorting process is demonstrated after pressing the button “Bubble sort”.

127
4.2 Formulation of Requirements

This LO was designed with no regards to the HCI and e-Learning principles and therefore, it should be reengineered to be usable for e-learning. The requirements for reengineering are as follows: 1) increase accessibility, 2) provide more visualization capabilities, 3) provide modularity/structurization of LO content, 4) increase consistency.

4.3 Development of a Reengineering Plan

The developed reengineering plan: 1) change the structure of the LO interface, add content and separate pages for each LO part, 2) increase visualization capabilities by providing animation using Java applet, 3) increase consistency by using CSS technology, 4) increase accessibility by providing the user with more flexibility for font size adaptation.

4.4 Re-evaluation of Teaching Objectives, Methods and Activities

No modification of teaching objectives, methods and activities was planned.

4.5 Rewriting of Teaching Materials

Modification of teaching material was not intended.

4.6 Redesign of the LO user Interface

Interface of the LO was redesigned following the principles and recommendations of the Common HCI/E-Learning Principles Model (Damaševičius and Tankelevičienė, 2008). The modifications of the LO during reengineering are summarized in Table 4. The reengineered LO is shown in Figure 2.

The advantages of the reengineered LO are as follows: better structure and organization of content, support for learner engagement, better visualization capabilities, higher interface flexibility, accessibility and learnability.

4.7 Reimplementation of Functionality

Visualization of Array sorting algorithms was implemented in Java applet (see Figure 3), which allows more capabilities for graphics and animation.
4.8 Writing of LO Documentation

The original LO was undocumented. Therefore, its documentation had to be written from scratch. It contains creation/modification dates, author names, title, learning objectives, short description of available learning materials, description of interaction means (buttons, input/output forms, links), and requirements for deployment.

5 CONCLUSIONS

We have analyzed the problem of reengineering of Learning Objects. and formulated 8 basic steps for the reengineering process: 1) Identification/evaluation of the existing LO. 2) Formulation of requirements for reengineering. 3) Development of a reengineering plan. 4) Re-evaluation and adaptation of teaching objectives, methods and activities. 5) Rewriting of encapsulated teaching materials following newly formulated aims. 6) Redesign of the user interface of a LO. 7) Reimplementation of LO functionality. 8) Updating/writing of LO documentation.

The requirements for reengineering are formulated based on common user interface design principles formulated for the HCI and E-Learning domains: Accessibility, Affordance, Consistency/Organization, Error tolerance/Reliability, Feedback, Flexibility, Learnability/Memorability, Satisfaction, Simplicity, Standardization.

The LO reengineering framework proposed in this paper allows to increase quality and usability of LOs for web-based distance education systematically.

REFERENCES


