DSP IMPLEMENTATION AND PERFORMANCES EVALUATION OF JPEG2000 WAVELET FILTERS

Ihsen Ben Hnia Gazzah, Chokri Souani and Kamel Besbes

Keywords: Discrete wavelet transform, lifting scheme, filter banks, DSP.

Abstract: The lifting scheme wavelet transform allows efficiency implementation improvement over filter banks model. In this paper, we present simulation results and DSP implementation results of Lifting scheme algorithm for 1D and 2D discrete wavelet transform (2D-DWT). The lossless and lossy wavelet filters 5/3 and 9/7, respectively, have been used to transform images. The transforms have been implemented in a float-point DSP chip and performances are evaluated. The DSP code was optimized at source code level and memory usage. The implemented code is optimized in different ways especially within memory usage.

1 INTRODUCTION

Since their introduction by Wim Sweldens in 1994 (Sweldens, 1996), the discrete lifting scheme (LS) wavelet transform has gained widely acceptance due to their ability to construct biorthogonal wavelets in the spatial domain independently of the Fourier transform (Daubechies et al., 1998; Chendonga et al., 2007; Delouille et al., 2006). The lifting scheme was adopted as the base of the JPEG 2000 standard (Rabbani et al., 2002). The image compression in the JPEG2000 standard is performed either by the 9/7 real values wavelet or by the 5/3 integer values wavelet.

The DWT has been implemented conventionally using the filter bank scheme (FBS). This solution implements filters with convolution technique. It requires both a large number of clock cycles and a large amount of storage memory. However, the lifting scheme requires less computations and less storage memory space. Recent studies tempted to compare between LS and FBS. In this context, Gnavi (Gnavi et al., 2002) implemented both DWT methods and compared their performances for image coding task. He has found that the LS implementation run faster than the filter bank scheme. Special-purpose hardware is used to reduce the execution time of the DWT, Programmable processors, however, are preferable because they are more flexible. Furthermore, multimedia SIMD extensions (Shahbahrami et al., 2005) can be used to reduce the execution time of the DWT.

In this paper, we present simulation results of Lifting scheme algorithm using Matlab tool, and implementation results using a TMS320C6713 DSP processor. The code is optimized in order to reduce the execution time while performing the reconstruction quality. The lossless 5/3 and the lossy 9/7 lifting scheme transform were considered. The paper presents our contribution on the 2D-DWT-LS implementation into DSP processor. The paper is organized as follows: In section 2, a background of the lifting scheme is briefly explained, while an overview of our experimental results is given in section 3. Conclusions and future work are drawn in the end.

2 LIFTING SCHEME ALGORITHM

Lifting scheme decomposition consists on splitting the original signal into two subsets defined by the even and odd index signal samples, and then gradually a new wavelet coefficients set is built (Sweldens et al., 1996) (figure 1). The decomposition is held in three steps:

- **Split**: This step is called “Lazy wavelet Transform (LWT)”. It consists on decomposing the
original image S into two sub-images. The two sub-images are defined by the even ($S_e=S_{2i}$) and the odd ($S_o=S_{2i+1}$) pixel image coefficients. The LWT is a simple function switching coefficients corresponding to their order (odd or even).

- **Primal Lifting step**: the original signal has even and odd index samples interspersed. If the signal has a local correlation structure, the even and odd samples will be highly correlated. In other words given one of the two sets, it should be possible to predict the other set with reasonable accuracy. The even set is always used to predict the odd one which represents the wavelet coefficients (Daubechies et al., 1998). H_i are the wavelet coefficients. S_o_i are the odd samples. P is the prediction polynomial and S_e_i are even samples (eq. 1)

$$H_i = S_o_i - P(S_e_i) \quad (1)$$

- **Dual Lifting step**: The update operator U is applied to the wavelet coefficients computed H_i and then are addition with S_e_i to compute L_i (eq. 2). L_i are the scaling coefficients.

$$L_i = S_e_i + U(H_i) \quad (2)$$

3 EXPERIMENTATIONS AND RESULTS

In this section, we describe first the implementation of the DWT using lifting scheme into a DSP processor.

![Image](image1.png)

Figure 1: Basic structure of one dimensional Discrete Wavelet transform (1D-DWT) using lifting scheme (Ben Hnia Gazzah et al., 2007).

3.1 Implementation

The 5/3 filter allows achieving lossless image compression and has short filter taps composed of 3/2 coefficients respectively to the 5 and 3 filter taps. The 9/7 filter is composed of 5/4 taps respectively. Figure 2 shows the lifting scheme steps of the 5/3 wavelet filter. The Input samples x_{2k+1} and x_{2k} denote the odd and even samples, respectively, resulting from the split step provided by the Lazy Wavelet Transform (LWT). The prediction and updating steps are given by x'_{2k+1} and x'_{2k}. Coefficients x'_{2k+1} and x'_{2k} are the output coefficients obtained by the prediction task and the updating task respectively.

$$x_{2k+1} = x_{2k+1} - \frac{1}{2}(x_{2k+2} + x_{2k+2}) \quad (3)$$

$$x_{2k} = x_{2k} + \frac{1}{4}(x_{2k-1} + x_{2k+1}) \quad (4)$$

![Image](image2.png)

Figure 2: The lifting scheme set for 5/3 filter (Ben Hnia Gazzah et al., 2007).
The 9/7 decomposition is computed within four steps (Daubechies et al., 1998) as shown by equation 5-8:

\[x_{2k+1} = x_{2k} + a \ast (x_{2k} + x_{2k+2}) \]
\[x_{2k} = x_{2k-1} + b \ast (x_{2k-1} + x_{2k-2}) \]
\[x_{2k+1} = x_{2k} + c \ast (x_{2k} + x_{2k+2}) \]
\[x_{2k} = x_{2k-1} + d \ast (x_{2k-1} + x_{2k-2}) \]

The lifting coefficients (Jiang et al., 2005) are: \(a=-1.5861, b=-0.0529, c=0.8829\) and \(d=0.4435\). The high-pass coefficients \(x_{2k+1}\), are normalized by a weight \(K_a=1.2302\), and the low pass coefficients \(x_{2k}\) are normalized by \(K_b=1/K_a\).

The implementation is held with the Texas Instrument TMS320C6713 floating-point processor. The TMS320C6713 processor is a fast special-purpose microprocessor with adequate architecture (figure 3) for signal processing (Texas Instrument, 2002).

![Figure 3: Functional bloc of TMS320C6713 and CPU diagram (Texas Instrument, 2002).](image)

The TMS320C6713 is based on the VLIW architecture and its performance is rated at 1800 MIPS. The internal program memory is structured so that a total of eight instructions can be fetched every cycle. With a clock rate of 255 MHz the processor is capable of fetching eight 32-bit instructions every 4.44ns (Texas Instrument, 2001).

It is used only one storage memory block, in the algorithm description. In both prediction and update stages a new computed coefficient replaces the original input value without need to additional emplacements (in place calculus). The inverse transform is easily performed by inverting the steps of LS and the operations signs.

3.2 Experimental Results

The implementation performances are evaluated in term of execution time and cycle’s number per computed pixel. Performance was measured using the cycle counters (Texas Instrument, 2002). Cycle counters provide a very precise tool for measuring the time that elapses between two different points in the execution of a program. Obviously the execution time depends on the image size (table 1), the type of used memory (internal or external memory) and the number of steps of lifting scheme. The running time when using processor internal memory is shorter than that when using external memory. In our case, due to the limited size of the internal memory (256 KB), we are conducted to use the external memory (16 MB SDRAM) as a “buffer memory”.

Table 1 shows the execution time ratio of external memory to internal memory. The mean value ratio for 5/3 filter is about “21”, however, the mean value is about “39” for the 9/7 filter. The mean value for 9/7 filter is two times higher then that for the 5/3 filter: this is due to the number of lifting scheme steps. The transforms with less lifting steps 5/3 tend to perform better than transforms with more lifting steps 9/7 in term of speed. In addition, we have implemented the 5/3 lifting scheme using only addition, subtraction, and shifting operations without multiplications.

The code optimization by using internal memory reduces the execution time. Obviously the internal memory access time is lower than that of external memory.

Figure 4 shows the running time using internal memory and figure 5 shows the running time using external memory.
Table 1: Cycle’s number per pixel.

<table>
<thead>
<tr>
<th>Samples number</th>
<th>Memory type*</th>
<th>64</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5/3 filter</td>
<td>ext</td>
<td>int</td>
<td>Ratio</td>
<td>ext</td>
<td>int</td>
<td>Ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>135</td>
<td>6</td>
<td>22.5</td>
<td>145</td>
<td>7</td>
<td>20.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>145</td>
<td>7</td>
<td>20.75</td>
<td>135</td>
<td>6</td>
<td>22.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22.5</td>
<td></td>
<td></td>
<td>135</td>
<td>7</td>
<td>19.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110</td>
<td>6</td>
<td>18.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/7 filter</td>
<td>274</td>
<td>7</td>
<td>39.14</td>
<td>273</td>
<td>7</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>274</td>
<td>7</td>
<td>39.14</td>
<td>275</td>
<td>7</td>
<td>39.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>275</td>
<td>7</td>
<td>39.29</td>
<td>275</td>
<td>7</td>
<td>39.29</td>
</tr>
</tbody>
</table>

*int = execution time of internal memory in cycles/pixel, ext = execution time of external memory in cycles/pixel

We optimize the execution time of the lifting scheme by using internal memory for processing in three steps:

First, the image is divided into several blocks before storage into the SDRAM memory. Secondly, the blocks are transferred in the L2 cache internal memory. The filtering operation is performed by the lifting scheme algorithm. Finally the transformed image is transferred to the external memory (SDRAM) for result storage.

Similarly, the next blocks of image are transferred one after another into L2 cache where they are processed. The number of blocks depends on the image size. In the case of 256x256 image size, the size of each block is 64x256 pixels. Four successive blocks are to be used.

Table 2: Execution time of the 1D- Discrete Wavelet lifting for image (Baboon 256x256) using 5/3 filter.

<table>
<thead>
<tr>
<th>Execution time (Cycles/pixel)</th>
<th>Ratio of B to A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution time A*</td>
<td>Execution time B**</td>
</tr>
<tr>
<td>image(256*256 pixels)</td>
<td>43</td>
</tr>
<tr>
<td>decomposition</td>
<td>135</td>
</tr>
<tr>
<td>image (256*256 pixels)</td>
<td>43</td>
</tr>
<tr>
<td>reconstruction</td>
<td>134</td>
</tr>
</tbody>
</table>

*A: execution time using internal memory for processing.
**B: execution time using external memory for processing (SDRAM).

The reconstructed image was compared to the original image and the peak signal-to-noise ratio (PSNR) in decibels was computed for images to evaluate the performance of the wavelet lifting scheme transform program. In the case of an image whose intensity of the pixels lies between 0 and 255, the PSNR is given by the following formula:

$$PSNR = 10 \cdot \log_{10} \left(\frac{255^2}{\sum_{i=1}^{M} \sum_{j=1}^{N} (x(i,j) - \hat{x}(i,j))^2} \right)^{1/2}$$
where: M×N is image size computed in pixels:

\[(1<i<M) \text{ and } (1<j<N) \text{ denote pixel indices.}\]

We have founded a higher PSNR for wavelet lifting scheme transforms. This verifies a perfect reconstruction property of Wavelet lifting scheme transform. Table 3 shows the PSNR and SNR results obtained by DSP implementation and MATLAB simulation using 2D wavelet lifting scheme transform for both 5, 3 and 9, 7 filters.

The 2-D discrete wavelet transform (DWT) based on a lifting scheme, is carried out as a separable transform by cascading two 1-D transforms in the horizontal and vertical direction. Each level of wavelet decomposition provides four sub-bands of decomposition images: LL, LH, HL and HH with halved resolution in both horizontal and vertical directions.

In our application we implemented the 2D-DWT on DSP using lifting scheme until level three with different image sizes: Barbara (512x512), Cameraman (256x256), Lena (256x256), Baboon (512x512), goldhill (512x512), lena(512x512).

The same algorithm was simulated using Matlab language. We compared PSNR results of 2D lifting scheme at level three using different image sizes (table 3). Experimental and simulation results have almost the same performance.

The following figure represents three levels of the 2D-DWT with lifting implemented on DSP using Barbara image (512 x 512 pixels).

Figure 6: 3-level 2D-DWT using lifting scheme with Barbara image 512x512 pixels.

Table 3: PSNR results of 2D lifting scheme implementation and MATLAB simulation (level three).

<table>
<thead>
<tr>
<th>image</th>
<th>Performance</th>
<th>Wavelet CDF9/7</th>
<th>Wavelet LeGaul 5/3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulation results</td>
<td>Experimental results</td>
<td>Simulation results</td>
</tr>
<tr>
<td>Barbara</td>
<td>512x512</td>
<td>PSNR (dB) 307.929</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNR 301.522</td>
<td>∞</td>
</tr>
<tr>
<td>Baboon</td>
<td>512x512</td>
<td>PSNR (dB) 307.016</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNR 301.550</td>
<td>∞</td>
</tr>
<tr>
<td>Lena</td>
<td>512x512</td>
<td>PSNR (dB) 307.171</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNR 301.514</td>
<td>∞</td>
</tr>
<tr>
<td>Lena</td>
<td>256x256</td>
<td>PSNR (dB) 307.452</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNR 301.647</td>
<td>∞</td>
</tr>
<tr>
<td>Camera-man</td>
<td>256x256</td>
<td>PSNR (dB) 307.114</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNR 301.532</td>
<td>∞</td>
</tr>
<tr>
<td>Goldhill</td>
<td>512x512</td>
<td>PSNR (dB) 307.979</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SNR 301.613</td>
<td>∞</td>
</tr>
</tbody>
</table>

4 CONCLUSIONS AND FUTURE WORK

In this paper, we reported the implementation of 2D-DWT using lifting scheme algorithm on the TMS320C6713 DSP, floating-point processor. We used 5/3 and 9/7 filters. We compared the implementation of the algorithm on DSP with the simulation using Matlab.

For both methods, we obtained high PSNR values of different images sizes confirming efficacy of the approach. The most important advantages of the lifting scheme (Ben Hnia Gazzah et al., 2007) for wavelet transform were verified which are: perfect reconstruction capability, in place computation.

We optimized speed execution time of DSP implementation of lifting scheme algorithm in different ways especially within memory usage.

Execution times of the two algorithms of 5/3 and 9/7 filters on a DSP have been compared. The corresponding C-program for a 1-level 1D DWT of 5/3 filter is up to 3x faster than of the 9/7. Integer-to-integer transforms are often faster than real-to-real transforms, because the 5/3 wavelet filter requires...
two lifting scheme steps, however the 9/7 wavelet filter requires four ones.

The future work will be optimizing speed execution time of lifting scheme algorithm using DMA.

REFERENCES

415