OPTIMAL POWER ALLOCATION IN A MIMO-OFDM TWISTED PAIR TRANSMISSION SYSTEM WITH FAR-END CROSSTALK

Andreas Ahrens, Christoph Lange

2006

Abstract

Crosstalk between neighbouring wire pairs is one of the major impairments in digital transmission via multipair copper cables, which essentially limits the transmission quality and the throughput of such cables. For high-rate transmission, often the strong near-end crosstalk (NEXT) disturbance is avoided or suppressed and only the far-end crosstalk (FEXT) remains as crosstalk influence. If FEXT is present, signal parts are trans- mitted via the FEXT paths from the transmitter to the receiver in addition to the direct transmission paths. Therefore transmission schemes are of great practical interest, which take advantage of the signal parts transmitted via the FEXT paths. Here a SVD (singular-value decomposition) equalized MIMO-OFDM system is investigated, which is able to take advantage of the FEXT signal path. Based on the Lagrange multiplier method an optimal power allocation schema is considered in order to reduce the overall bit-error rate at a fixed data rate and fixed QAM constellation sizes. Thereby an interesting combination of SVD equalization and power allocation is considered, where the transmit power is not only adapted to the subchannels but rather to the symbol amplitudes of the SVD equalized data block. As a result it can be seen that the exploitation of FEXT is important for wireline transmission systems in particular with high couplings between neighbouring wire pairs and the power allocation is possible taking the different subcarriers into account.

References

  1. Ahrens, A. and Lange, C. (2006). Transmit Power Allocation in SVD Equalized Multicarrier Systems. International Journal of Electronics and Communications (AEÜ ), 60. accepted for publication.
  2. Aslanis, J. T. and Cioffi, J. M. (1992). Achievable Information Rates on Digital Subscriber Loops: Limiting Information Rates with Crosstalk Noise. IEEE Transactions on Communications, 40(2):361-372.
  3. Bahai, A. R. S. and Saltzberg, B. R. (1999). Multi-Carrier Digital Communications - Theory and Applications of OFDM. Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moskau.
  4. Bingham, J. A. C. (2000). ADSL, VDSL, and Multicarrier Modulation. Wiley, New York.
  5. Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E. (1996). On the Lambert W Function. Advances in Computational Mathematics, 5:329-359.
  6. Hanzo, L., Webb, W. T., and Keller, T. (2000). Single- and Multi-carrier Quadrature Amplitude Modulation. Wiley, Chichester, New York, 2 edition.
  7. Honig, M. L., Steiglitz, K., and Gopinath, B. (1990). Multichannel Signal Processing for Data Communications in the Presence of Crosstalk. IEEE Transactions on Communications, 38(4):551-558.
  8. Jang, J. and Lee, K. B. (2003). Transmit Power Adaptation for Multiuser OFDM Systems. IEEE Journal on Selected Areas in Communications, 21(2):171-178.
  9. Kalet, I. (1987). Optimization of Linearly Equalized QAM. IEEE Transactions on Communications, 35(11):1234-1236.
  10. Kovalyov, I. P. (2004). SDMA for Multipath Wireless Channels. Springer, New York.
  11. Kreß, D. and Krieghoff, M. (1973). Elementare Approximation und Entzerrung bei der Ü bertragung von PCM-Signalen über Koaxialkabel. Nachrichtentechnik Elektronik, 23(6):225-227.
  12. Kreß, D., Krieghoff, M., and Gräfe, W.-R. (1975). Gütekriterien bei der Ü bertragung digitaler Signale. In XX. Internationales Wissenschaftliches Kolloquium, Nachrichtentechnik, pages 159-162, Ilmenau. Technische Hochschule.
  13. Krongold, B. S., Ramchandran, K., and Jones, D. L. (2000). Computationally Efficient Optimal Power Allocation Algorithms for Multicarrier Communications Systems. IEEE Transactions on Communications, 48(1):23-27.
  14. Lange, C. and Ahrens, A. (2005). Channel Capacity of Twisted Wire Pairs in Multi-Pair Symmetric Copper Cables. In Fifth International Conference on Information, Communications and Signal Processing (ICICS), pages 1062-1066, Bangkok (Thailand).
  15. Park, C. S. and Lee, K. B. (2004). Transmit Power Allocation for BER Performance Improvement in Multicarrier Systems. IEEE Transactions on Communications, 52(10):1658-1663.
  16. Proakis, J. G. (2000). Digital Communications. McGrawHill, New York, 4 edition.
  17. Raleigh, G. G. and Cioffi, J. M. (1998). Spatio-Temporal Coding for Wireless Communication. IEEE Transactions on Communications, 46(3):357-366.
  18. Raleigh, G. G. and Jones, V. K. (1999). Multivariate Modulation and Coding for Wireless Communication. IEEE Journal on Selected Areas in Communications, 17(5):851-866.
  19. Valenti, C. (2002). NEXT and FEXT Models for TwistedPair North American Loop Plant. IEEE Journal on Selected Areas in Communications, 20(5):893-900.
  20. van Nee, R. and Prasad, R. (2000). OFDM for wireless Multimedia Communications. Artech House, Boston and London.
Download


Paper Citation


in Harvard Style

Ahrens A. and Lange C. (2006). OPTIMAL POWER ALLOCATION IN A MIMO-OFDM TWISTED PAIR TRANSMISSION SYSTEM WITH FAR-END CROSSTALK . In Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2006) ISBN 978-972-8865-64-1, pages 164-169. DOI: 10.5220/0001568001640169


in Bibtex Style

@conference{sigmap06,
author={Andreas Ahrens and Christoph Lange},
title={OPTIMAL POWER ALLOCATION IN A MIMO-OFDM TWISTED PAIR TRANSMISSION SYSTEM WITH FAR-END CROSSTALK},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2006)},
year={2006},
pages={164-169},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001568001640169},
isbn={978-972-8865-64-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2006)
TI - OPTIMAL POWER ALLOCATION IN A MIMO-OFDM TWISTED PAIR TRANSMISSION SYSTEM WITH FAR-END CROSSTALK
SN - 978-972-8865-64-1
AU - Ahrens A.
AU - Lange C.
PY - 2006
SP - 164
EP - 169
DO - 10.5220/0001568001640169