Authors:
Rafael Z. Frantz
1
;
Sandro Sawicki
1
;
Fabricia Roos-Frantz
1
;
Iryna Yevseyeva
2
and
Michael Emmerich
3
Affiliations:
1
Unijuí University, Brazil
;
2
Newcastle University, United Kingdom
;
3
Leiden University, Netherlands
Keyword(s):
Simulation, Enterprise Application Integration, Domain-Specific Language, Markov Decision Process.
Related
Ontology
Subjects/Areas/Topics:
Agents
;
Artificial Intelligence
;
Bioinformatics
;
Biomedical Engineering
;
Coupling and Integrating Heterogeneous Data Sources
;
Databases and Information Systems Integration
;
Enterprise Information Systems
;
Information Systems Analysis and Specification
;
Methodologies and Technologies
;
Modeling of Distributed Systems
;
Operational Research
;
Simulation
Abstract:
The software ecosystem of an enterprise is usually composed of an heterogeneous set of applications,
databases, documents, spreadsheets, and so on. Such resources are involved in the enterprise’s daily activities
by supporting its business processes. As a consequence of market change and the enterprise evolution,
new business processes emerge and the current ones have to be evolved to tackle the new requirements. It is
not a surprise that different resources may be required to collaborate in a business process. However, most of
these resources were devised without taking into account their integration with the others, i.e., they represent
isolated islands of data and functionality. Thus, the goal of an integration solution is to enable the collaboration
of different resources without changing them or increasing their coupling. The analysis of integration
solutions to predict their behaviour and find possible performance bottlenecks is an important activity that
contributes to increas
e the quality of the delivered solutions. Software engineers usually follow an approach
that requires the construction of the integration solution, the execution of the actual integration solution, and
the collection of data from this execution in order to analyse and predict their behaviour. This is a costly, risky,
and time-consuming approach. This paper discusses the usage of Markov models for formal modelling of
integration solutions aiming at enabling the simulation of the conceptual models of integration solutions still
in the design phase. By using well-established simulation techniques and tools at an early development stage,
this new approach contributes to reduce cost, risk, development time and improve software quality attributes
such as robustness, scalability, and maintenance.
(More)