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Abstract: It has been reported that a novel class of nonlinear spline adaptive filter (SAF) obtains some advantages in 
modeling the nonlinear systems. In this paper, a nonlinear subband structure based on the spline adaptive 
filters, called subband spline adaptive filter (SSAF) is presented. The proposed structure is composed of a 
series of subband spline filters, each one comprises a linear time invariant (LTI) filter followed by an 
adaptive look-up table (ALUT). In addition, the computational complexity is also analyzed. Some exper-
imental results in the context of the nonlinear system identification demonstrate the robustness of the 
proposed structure. 

1 INTRODUCTION 

In many practical engineering applications, the 
nonlinear system identification is an important and 
difficult task. Much well-established theory for 
linear system identification is unavailable when it 
comes to nonlinear case, so techniques to model the 
nonlinear behavior have been received more attenti-
on in recent decades (Mathews, 2000). In order to 
model the nonlinearity, several adaptive nonlinear 
structures have been introduced. Truncated Volterra 
adaptive filter (VAF) (Schetzen, 1980) is one of the 
most popular nonlinear model. However, its 
computational complexity be-comes huge with the 
increase of the nonlinear order. Neural Networks 
(NNs) (Haykin, 2009) can make a good des-cription 
of the nonlinear relation between the input signal 
and the current output adequately, but it suffers from 
a large computational cost and diffi-culties in on-line 
adaptation. Block-oriented archi-tecture (Giri, 2010), 
including the Wiener model, Hammers-tein model 
and cascade model, originates from the different 
combination of the linear time invariant (LTI) filters 
and memoryless nonlinear functions. Recently, 
Scarpiniti et al. has proposed a novel class of 
nonlinear spline adaptive filter (SAF) structure, 
which also contains the Wiener spline filter 
(Scarpiniti, 2013), the Hammerstein spline filter 
(Scarpiniti, 2014) and the cascade spline filter 
(Scarpiniti, 2015). In this kind of structure, the 
nonlinearity is modelled by a spline function which 
can be repress-ented by the adaptive look-up table 

(ALUT), and the linear time invariant (LTI) filter is 
used for determining the memory effect. Both the 
control points belonging to ALUT and the 
coefficients of the LTI are adapted by using the 
sophisticated adaptive algorithms such as the least 
mean square (LMS) algorithm, normalized least 
mean square (NLMS) algorithm and affine 
projection algorithm (APA). 

In this paper, extending the subband idea into the 
spline adaptive filter (SAF), a nonlinear subband 
spline structure, called subband spline adaptive filter 
(SSAF) is proposed. Each subband spline filter is 
composed of a LTI filter followed by an ALUT. 
Then main advantage of the proposed subband 
model is its improved convergence performance 
because of the decorrelating properties with no sign-
ificant computational increasement. 

2 SPLINE ADAPTIVE FILTER  

The block diagram of a SAF is shown in Fig.1, 
which consists of an adaptive finite impulse respo-
nse (FIR) filter followed by a nonlinear network. In 
the nonlinear network, the spline interpolater, 
connected behind the adaptive LUT, determines the 
number and the spacing of control points (knots) 
contained in the LUT. 

The input of the SAF at time n  is ( )x n , ( )s n  
represents the output of the linear networks which is 
given by 
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                 ( ) ( ) ( ),Ts n n n= w x                        (1) 

( )x n ( )s n
( )y n

 Figure 1: Block diagram of SAF. 

where 0 1 1( ) [ , , , ]T
Bn w w w −=w L  represents the weight 

vector of the FIR filter with length B , and 
[ ( ), ( 1), ,) )]( ( 1 Ts n nn s s n B− − +=x L  is the input vector 

of the linear network. 
With reference to the spline interpolation scheme 

(Guarnieri, 1999), the output of the whole system 
( )y n  and ( )s n  can be related by a local polynomial 

function ( )i nuϕ , which depends on the span index i  
and the local parameter u . The two parameters are 
defined as follows 

        ( ) ( ) ,nu s n x s n x= Δ − Δ⎢ ⎥⎣ ⎦                         

(2) 
        ( ) ( 1) 2,ni s n x Q= Δ + −⎢ ⎥⎣ ⎦                        

(3) 
where xΔ  is the uniform space between two control 
points for the function ( )i nuϕ  , Q  is the total number 
of control point and ⋅⎢ ⎥⎣ ⎦ denotes the floor operator. 
The output of the whole system can be expressed as 

       ,( ) ( ) ,T
i n n i ny n u= =φ u Cq                        (4) 

where C  is the 4 4×  spline basis matrix if the three-
order spline function is used. Two suitable types of 
spline basis are B-spline and Catmull-Rom (CR) 
spline (Scarpiniti, 2013) which are given by 

   

1 3 3 1 1 3 3 1
3 6 3 0 2 5 4 -11 1,
3 0 3 0 1 0 1 06 2

1 4 1 0 0 2 0 0

B CRC C

− − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥=   =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

，    (5) 

where 3 2[ , , ,1]n n n
T

nu u u=u , , 1 2 3[ , , , ]T
i n i i i iq q q q+ + +=q  is the 

control point vector and superscript ( )T⋅ denotes 
transposition. 

3 SUBBAND SPLINE ADAPTIVE 
FILTER (SSAF) 

Fig.2 shows the block diagram of the proposed 
SSAF. 0 ( )Φ   denotes the unknown nonlinear system 

which generates the desired signal [ ]0 )( ()d x nn = Φ  
( )v n , where ( )x n  is the system input. ( )v n  is the 

background noise, assumed to be zero mean ,and 
independent of ( )x n , its variance is 2

vσ . The input 
signal ( )x n  and desired signal ( )d n  are partitioned 
into M  subband signals ( )mx n  and ( )md n  via the 
analysis filters ( )mH z , 0,1, , 1.m M= −L  The subband 
signals, ( )md n  and ( )mx n  are critically decimated to 
a lower sampling rate commensurate with their 
bandwidth. We use the variable n  to index the 
original sequences, and k  to index the decimated 
sequence for all subband signals. The decimated 
output for the thm subband filter can be computed as 
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Figure 2: Block diagram of SSAF.         

       , , ,( ) ( )= ,
m m

T
m i m k m k i ky k u= φ u Cq                (6) 

where 3
,,

2
, ,[ , , ,1]T

m k m k m km k u u u=u , , ( 1) ( 2)[ ,= , ,
m m m mi k i i iq q q+ +q  

( 3) ]
mi

Tq +  represents the thm  subband control 
point vector at the decimated time k . The 
corresponding subband local parameter and subband 
span index mi  are defined as 

        , ( ) ( ) ,m k m m m mu s k x s k x= Δ − Δ⎢ ⎥⎣ ⎦            (7) 

        ( ) ( 1) 2,m m m mi s k x Q= Δ + −⎢ ⎥⎣ ⎦                (8) 
where mQ  is the total number of the control points 
for the thm subband LUT and mxΔ  is the uniform 
space, which can be selected to different values for 

0,1, , 1.m M= −L  ( )ms k  is the output of the thm  
subband linear combiner which is given by 

                  ( ) ( ) ( ),T
m m ms k k k= w x                 (9) 

where ,0 ,1 , 1[ ( ), ( ), ,( ( ]) ) T
m mm m Bw k w k w kk −=w L  denotes 

the weight vector of the subband FIR filter with 
length .B  ( ) [ ( ), ( 1), , ( 1)]T

m m mm k s k s k s k B− − +=s L  is 
the subband input vector. 

The subband output error can be expressed as 
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( ) ( ) ( )
= ( ) ( ),

m

m m m

m i m k

e k d k y k
d k u

= −
−φ

                (10) 

It is realized that the adaptation in each subband 
is carried out independently as shown in Fig.2. 
Therefore, the updating equations of the linear and 
nonlinear networks for each subband can be derived 
by minimizing the cost function ( ), ,, =

mm m k i kθ w q  

{ }2= ( )mE e k , where { }E   is the expectation 

operator.    For analytical simplicity, using the 
instantaneous error instead of the expectation, we 
get 

( ) 2
, ,, = 0,1, , 1,

mm m k i k me k m Mθ  ( )   = −w q L          (11) 

and taking the partial derivative ( ), ,,
mm m k i kθ w q  with 

respect to ,m kw , we have 

( ), , , ,

, ,

,

, ( ) ( )
= 2

( ) ( )
2= ( ) ( ),

m m

m

m m k i k i m k m k m
m T

m k m k m

m i m k m
m

u u s k
e k

u s k k

e k u k
x

θ∂ ∂ ∂ ∂
−  ( )   

∂ ∂ ∂ ∂

′−  ( )
Δ

w q φ
w w

φ x

                                                                           (12) 
where ,( )

mi m ku′φ  is the partial derivative of the local 
activation function for the thm  subband, ,( )

mi m ku′φ  

, ,= ,
m

T
m k i ku Cq& 1

, ,,
2[3 ,2 ,1,0]m k mk

T
m ku u=u& , so the updating 

equation of the linear networks for each subband can 
be given as 

w
, ,( 1)= ( ) ( ),

m

T
m m m m k i k m

m

k k e k k
x

μ
+ +  ( )

Δ
w w u Cq x&  (13) 

where wμ  is the step-size for the linear network 
adaptation. 

For the subband nonlinear networks, the 
derivative calculation of ( ), ,,

mm m k i kθ w q  to ,mi kq can 
be defined by 

( ), , ,
,

, ,

, ( )
= 2 2 ( ) ,m m

m m

m m k i k i m k T
m m m k

i k i k

u
e k e k

θ∂ ∂
−  ( )  = −

∂ ∂

w q φ
C u

q q

                                                                          (14) 
The updating equation of the nonlinear networks 

for each subband can be written as 
, 1 , q ,= ( ) ,

m m

T
i k i k m m ke kμ+ +q q C u             (15) 

 

4 COMPUTATIONAL 
COMPLEXITY 

Note that (13) and (15) are the updating equations of 
the LMS algorithm for the proposed SSAF. For each 
iteration, only four control points for each subband 
are changed because of the local behavior of the 
spline function. This leads to a large computational 
savings. The computational complexity of the pro-
posed SSAF solution is mainly evaluated in terms of 
the number of multiplications per sample. Note that 
for each subband , the control points of the LUT and 
the weights of the FIR filter are updated every M 
samples due to the critical sampling. Considering 
that there are M subband signals par-ticipating in the 
adaptation, it requires 2B+1 multi-plications for the 
linear updating equation (13) and B multiplications 
for the output estimation of the linear network. For 
the spline output calculation and adap-tation, like the 
conventional SAF (Scarpiniti, 2013), we take into 
account of the repetitive appearance of the terms 

,mi kCq , ,
T

m kC u in (6), (13) and (15), it only needs 4Kq 

multiplications by the date reuse of the past 
computations, where Kq  (less than 16) is the 
constant which can be defined with reference to the 
implementation spline structure in (Guarnieri, 1999). 
In addition, the subband input signal and desired 
signal partition needs 2MP  multiplications, where 
P  is the length of the analysis and synthesis filters. 
For error signal synthesis, it needs MP  
multiplications. Therefore, compared with the SAF 
scheme, the proposed one only requires extra 3MP  
multiplications for the subband signal analysis and 
synthesis. 

5 EXPERIMENTAL RESULTS 

To confirm the performance of the proposed scheme 
in this paper, we present the experimental results of 
the proposed scheme for the nonlinear system 
identification. All the following results are obtained 
by averaging over 50 Monte Carlo trials. The 
performance is measured by use of mean square 
error (MSE) defined as 2

1010log [ ( )]e n . The input 
signal is generated by the process  

2( ) ( 1) 1 ( )x n x n nω ω β= − + − ，          (16) 
where ( )nβ  is the White Gaussian noise signal with 
zero mean and unitary variance, the parameter ω  is 
selected in the range [0, 0.95] , which interprets the 
degree of correlation for the adjacent samples. The 
FIR filter coefficients for the SAF and SSAF model 
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are initialized as -1=[ ,0,...,0]αw  with length B  and 
0 1α< ≤ , while the spline model is initially set to a 
straight line with a unitary slope. For convenience, 
only B-spline basis is applied in the simulations, 
however, the similar results can also be achieved 
using the CR-spline basis. 

5.1 Experimental 1 

The unknown system model 0 ( )Φ   is the Wiener 
spline model which comprises a FIR filter 

[0.6, 0.4,0.25, 0.15,0= .1]o
T− −w  and a nonlinear spline 

function represented by a 23 control points length 
LUT 0q , xΔ  and mxΔ are set to 0.2 and 0q  is 
defined by 

0 [ 2.2, 2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.91,
0.4, 0.2,0.05,0, 0.4,0.58,1.0,1.0,1.2,1.4,1.6,1,8, 2.0,2.2],

= − − − − − − − − −
        − − −
q                                                                        

(17) 
For signal partitioning in this experiment, The 

cosine-modulated filter banks with subband number 
2,4,K = and 8 are used and the prototype filters’ 

length of analysis filter increases with the number of 
subband, the prototype filters’ length , P , are 32 , 64 
and 128 for 2,4,M = and 8 correspondently. The 
default values 0.5ω = , 0.1α = , and 5B =  are emp-
loyed and 10000 samples are used. An independent 
White Gaussian noise signal, ( )v n , is added to the 
output of the unknown system, with 23-dB, 26-dB, 
30dB signal to noise ratio (SNR) for 2,4,8M =  
respectively. The step sizes are selected to ensure 
that the conventional SAF and the SSAF obtain the 
similar steady-state MSE. The performances of the 
SAF and proposed SSAF are compared for the diff-
erent numbers of subband in Fig.3. It can be seen 
that the proposed SSAF supplies the faster conver-
gence rate than the SAF. This is due to the 
decorrelating properties of the subband scheme for 
colored input signals. 

 
Figure 3: MSE curves of the SAF and SSAF. 

5.2 Experimental 2 

In the second experiment, we compare the MSE 
performance of the polynomial model (Stenger, 
2000), 2-rd order Volterra model (Kuech, 2002), 2-
rd order subband Volterra model (Burton, 2009), 
SAF model (Scarpiniti, 2013) and proposed SSAF 
model. The unknown system to be identified 0 ( )Φ   
consists of two blocks, the first one is the 3-order 
IIR filter 

1 2 3

1 2 3

0.0154 0.046 0.0462 0.0154( ) ,
1 1.99 1.572 0.4583

z z zH z
z z z

− − −

− − −

+ + +=
− + −

          

(18) 
and the second block nonlinearity 

( ) sin( [ ]).y n x n=              (19) 
The number of subband is set to 4 for the SSAF 

and 2-rd order subband Volterra model. The cosine-
modulated filter banks with subband number 4M =  
are used and the prototype filters’ length is selected 
to 64. The step sizes are set to q w= =0.01μ μ  for both 
the HSAF and the SSAF, step size =0.001μ  is used 
for the polynomial model and the step size is set to 
0.01 for the 2-rd order Volterra and 2-rd order 
subband Volterra model. The signal to noise ratio is 

30SNR dB= . The default values 0.6ω = , 0.1α = , 
= =0.2mx xΔ Δ  and 15B =  are employed and 50000 

samples are used. A comparison of the MSE learn-
ing curves is reported in Fig. 4, it can be clearly 
noted that the robustness of the proposed SSAF. 

 
Figure 4: Comparison MSE of the different models in 
experiment 2. 
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5.3 Experimental 3 

The third experiment aims to test the effectiveness 
of the proposed structure in case of a high degree of 
nonlinearity. The unknown system in system ident-
ification 0 ( )Φ   comprises three blocks. The first and 
the last blocks are IIR filters whose transfer function 
can be written as 

1 2

1 1 2

1 2

1 2

0.2851 0.5704 0.2851( )
1 0.1024 0.4475

0.2025 0.2880 0.2025 ,
1 0.6591 0.1498

z zH z
z z

z z
z z

− −

− −

− −

− −

⎛ ⎞+ += ⎜ ⎟− +⎝ ⎠
⎛ ⎞+ +×⎜ ⎟− +⎝ ⎠

        (20) 

1 2

3 1 2

1 2

1 2

0.2025 0.2880 0.2025( )
1 1.01 0.5861

0.2025 0.2880 0.2025 ,
1 0.6591 0.1498

z zH z
z z

z z
z z

− −

− −

− −

− −

⎛ ⎞+ += ⎜ ⎟− +⎝ ⎠
⎛ ⎞+ +×⎜ ⎟− +⎝ ⎠

        (21) 

and the nonlinear portion of this model is expressed 
by 

2

2 ( )( ) .
1 ( )

x ny n
x n

=
+

           (22) 

It is noted that this model is capable of 
describing the behavior model of the radio frequency 
amplifier for satellite communications (Scarpiniti, 
2013). For both the SAF and the SSAF, linear filter 
length B  is set to 15. The parameter ω  is set to 0.2. 
All the other parameters are set to similar values as 
in Experimental 2. Fig. 5 shows that the comparison 
of the MSE learning curves for several models, it is 
clear in this case that the deteriorating performance 
of the Polynomial model and the 2-rd order Volterra 
model, verifying that these two models only cope 
with the case of mile nonlinearity. Furthermore, the 
proposed SSAF obtains the best convergence 
performance with respect to other models. 

 
Figure 5: Comparison MSE of the different models in 
experiment 3. 

6 CONCLUSIONS 

In this paper, a novel SSAF structure for nonlinear 
system identification is presented. It consists of a 
series of subband nonlinear filters, the adaptation of 
these subband filters is carried out independently. 
The computational complexity is analyzed based on 
the LMS algorithm. Some experimental results in 
the context of the nonlinear system identification 
show the effectiveness of the proposed structure. 
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