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Hjörtur Björnsson1, Peter Giesl2, Skuli Gudmundsson3 and Sigurdur Hafstein1

1Science Institute and Faculty of Physical Sciences, University of Iceland, Dunhagi 5, 107 Reykjavı́k, Iceland
2Department of Mathematics, University of Sussex, Falmer, BN1 9QH, U.K.

3Svensk Exportkredit, Klarabergsviadukten 61-63, 11164 Stockholm, Sweden

Keywords: Stochastic Differential Equation, Lyapunov Function, Linearization, Asymptotic Stability in Probability.

Abstract: We present a rigid estimate of the domain, on which a Lyapunov function for the linearization of a nonlinear
stochastic differential equation is a Lyapunov function for the original system. By using this estimate the
demanding task of computing a lower bound on the γ-basin of attraction for a nonlinear stochastic systems is
greatly simplified and the application of a resent numerical method for the same purpose facilitated.

1 INTRODUCTION

When analysing the stability of an equilibrium of a
nonlinear deterministic system ẋ = f(x), f : Rd →Rd ,
one often resorts to linearization around the equilib-
rium. Assuming, without restriction of generality, that
the equilibrium in question is at the origin, then one
analyzes the stability of the origin for the system ẋ =
Ax, where A :=Df(0) is the Jacobian of f at the origin.
Now, if the matrix A is Hurwitz, i.e. the real-parts of
the eigenvalues of A are all strictly negative, then one
can solve the Lyapunov equation A>P + PA = −Q,
where Q ∈ Rd×d is an arbitrary symmetric and pos-
itive definite matrix. The solution P ∈ Rd×d is then
symmetric and positive definite and V (x) = x>Px is
a Lyapunov function for the system, i.e. V has a min-
imum at the equilibrium at the origin and the deriva-
tive of V along solution trajectories of the linearized
system fulfills

∇V (x) •Ax =−x>Qx

and is thus negative on Rd \{0}. The function V will
also be a Lyapunov function for the original nonlinear
system ẋ = f(x) on a neighbourhood N of the origin
where

V ′(x) = ∇V (x) • f(x)< 0 for x ∈N \{0}.
Here V ′ denotes the orbital derivative of the system.
The size of the set N is of great importance because
compact sublevel sets of V that are within N are
lower bounds on the equilibrium’s basin of attraction,
i.e. the set of points which converge to the equilibrium

as time goes to infinity. Explicit bounds for the size of
N are quite easily derived, cf. e.g. (Hafstein, 2004).
In this paper we will derive such an estimate, but for
the considerably more demanding case of stochastic
differential equations.
Notation: We denote by ‖x‖ the Euclidian norm
of a vector x ∈ Rd and for A ∈ Rd×d by ‖A‖ =
max‖x‖=1 ‖Ax‖ the matrix norm induced by the Eu-
clidian vector norm. Vectors are assumed to be col-
umn vectors.We denote by κ(A) := ‖A‖‖A−1‖ the
condition number with respect to the ‖ · ‖ norm of
the nonsingular matrix A ∈ Rd×d . For a symmet-
ric and positive definite Q ∈ Rd×d we define the en-
ergetic norm ‖x‖Q :=

√
x>Qx and the correspond-

ing induced matrix norm ‖A‖Q := max‖x‖Q=1 ‖Ax‖Q.
Recall that a symmetric and positive definite Q ∈
Rd×d can be factorized as Q = ODO> where O ∈
Rd×d is orthogonal, i.e. O>O = O>O = I and D =
diag(λ1,λ2, . . . ,λd) ∈ Rd×d is a diagonal matrix with
0 < λ1 ≤ λ2 ≤ . . . ≤ λd . For every a ∈ R we define
the matrix Qa = Odiag(λa

1,λ
a
2, . . . ,λ

a
d)O

>. It is not
difficult to see that for a > 0 we have ‖Qa‖= λa

d and
‖Q−a‖= λ−a

1 . Further,

‖Q− 1
2 ‖−1‖x‖ ≤ ‖x‖Q =

√
x>Qx

= ‖Q 1
2 x‖ ≤ ‖Q 1

2 ‖‖x‖.
We consider d-dimensional systems and in all sums
where the upper and lower bounds of the sum are
omitted they are assumed to be 1 and d respectively,
i.e. ∑i := ∑d

i=1, ∑i, j := ∑d
i, j=1 etc.

A function α : R+→R+ is said to be of class K ∞
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if it is continuous, monotonically increasing, α(0) =
0, and limx→∞ α(x) = ∞.

We write P and E for probability and expecta-
tion respectively. The underlying probability spaces
should always be clear from the context. The abbrevi-
ation a.s. stands for almost surely, i.e. with probability
one, and a.s.

= means equal a.s.

2 THE PROBLEM SETTING

We give a short discussion of the setup and the
problem at hand. For a more detailed discussion
of the setup see (Gudmundsson and Hafstein, 2018,
§2). The general d-dimensional stochastic differen-
tial equation (SDE) of Itô type we consider is of the
form:

dX(t) = f(X(t))dt +g(X(t)) ·dW(t) (1)

or equivalently

dXi(t) = fi(X(t))dt +
U

∑
u=1

gu(X(t)) ·dWu(t)

for i = 1,2, . . . ,d. Thus f = ( f1, f2, . . . , fd)
>, g =

(g1,g2, . . . ,gU ), and gu = (gu
1,g

u
2, . . . ,g

u
d)
>, where

fi,gu
i : Rd → R. We assume that the origin is an

equilibrium of the system, i.e. f(0) = 0 and gu(0) =
0 for u = 1,2, . . . ,U and we consider strong solu-
tions to (1). For deterministic initial value solutions,
i.e. X(0) = x ∈ Rd a.s., we write Xx for the solution,
i.e.

Xx(t) = x+
∫ t

0
f(X(s))ds+

∫ t

0
g(X(s))dW(s),

where the second integral is interpreted in the Itô
sense. As shown in (Mao, 2008) it suffices to consider
deterministic initial value solutions when studying the
stability of an equilibrium.

Numerous concepts are in use concerning the
stability of equilibria of SDEs. Here we will be
concerned with the so-called asymptotic stability in
probability of the zero solution (Khasminskii, 2012,
(5.15)), also referred to as stochastic asymptotic sta-
bility (Mao, 2008, Definition 4.2.1). For a more
detailed discussion of the stability of SDEs see the
books by Khasminskii (Khasminskii, 2012) or Mao
(Mao, 2008). We recall a few definitions:

Definition 2.1 (Stability in Probability (SiP)). The
null solution X(t) a.s.

= 0 to the SDE (1) is said to be sta-
ble in probability (SiP) if for every r > 0 and 0< ε< 1
there exists a δ > 0 such that :

‖x‖ ≤ δ implies P
{

supt≥0 ‖Xx(t)‖ ≤ r
}
≥ 1− ε.

�

Definition 2.2 (Asymptotic Stability in Probability
(ASiP)). The null solution X(t) a.s.

= 0 to the SDE (1) is
said to be asymptotically stable in probability (ASiP)
if it is SiP and in addition for every 0 < ε < 1 there
exists a δ > 0 such that :

‖x‖ ≤ δ implies P
{

lim
t→∞
‖Xx(t)‖= 0

}
≥ 1− ε.

�
Our definitions of SiP and ASiP are equivalent to

the more common

lim
‖x‖→0

P{supt>0 ‖Xx(t)‖ ≤ r}= 1 for all r > 0

for SiP and additionally

lim
‖x‖→0

P

{
limsup

t→∞
‖Xx(t)‖= 0

}
= 1

for ASiP, which can be seen by fixing r > 0 and writ-
ing down the definition of a limit: for every ε > 0
there exists a δ > 0.

The reason for our formulation is that we want to
look at a more practical concept related to such sta-
bility, namely a stochastic analog of the basin of at-
traction (BOA) in the stability theory for deterministic
systems, cf. (Gudmundsson and Hafstein, 2018). In-
stead of the limit ‖x‖ → 0 we consider: Given some
confidence 0< γ≤ 1 how far from the origin can sam-
ple paths start and still approach the equilibrium as
t→∞ with probability greater than or equal to γ. This
is the motivation for the next definition.
Definition 2.3 (γ-Basin Of Attraction (γ-BOA)).
Consider the system (1) and let 0 < γ≤ 1. We refer to
the set{

x ∈ Rd : P
{

lim
t→∞
‖Xx(t)‖= 0

}
≥ γ
}

(γ-BOA)

as the γ-basin of attraction, or short γ-BOA, of the
equilibrium at the origin.

�
Note that a 1-BOA corresponds to the usual BOA

for deterministic systems.
For the SDE (1) the associated generator is given

by

LV (x) := (2)

∇V (x) • f(x)+
1
2 ∑

i, j

[
g(x)g(x)>

]
i j

∂2V
∂xi∂x j

(x)

for some appropriately differentiable V : U→R with
U ⊂ Rd . Notice that this is just the drift term in the
expression for the stochastic differential of the pro-
cess t 7→V (X(t)). The generator for a stochastic sys-
tem corresponds to the orbital derivative of a deter-
ministic system.
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Definition 2.4 (Local Lyapunov function). Consider
the system (1). A function V ∈ C(U)∩C2(U \ {0}),
where 0 ∈ U ⊂ Rd is a domain, is called a (local)
Lyapunov function for the the system (1) if there are
functions µ1,µ2,µ3 ∈K ∞, such that V fulfills the prop-
erties :

(i) µ1(‖x‖)≤V (x)≤ µ2(‖x‖) for all x ∈U

(ii) LV (x)≤−µ3(‖x‖) for all x ∈U \{0}
Remark 2.5. It is of vital importance that V is not
necessarily differentiable at the equilibrium, because
otherwise a large number of systems with an ASiP
null solution do not possess a Lyapunov function,
cf. (Khasminskii, 2012, Remark 5.5).

The following theorem provides the first center-
piece of Lyapunov stability theory for our application,
cf. (Khasminskii, 2012, Theorem 5.5 and Corollary
5.1):

Theorem 2.6. If there exists a local Lyapunov func-
tions as in Definition 2.4 for the system (1), then the
null solution is ASiP. Further, let Vmax > 0 and as-
sume that V−1([0,Vmax]) is a compact subset of U.
Then, for every 0 < β < 1 the set V−1([0,βVmax]) is a
subset of the (1−β)-BOA of the origin.

This concludes our discussion of the setup. In
the next section we discuss Lyapunov functions for
the linearization of (1) and prove the main contribu-
tion of this paper, a lower bound on the area where a
Lyapunov function for the linearization is also a Lya-
punov function for the nonlinear system.

3 MAIN RESULTS

We now consider the linearization of system (1). A
Lyapunov function for the linearized system can then
be constructed, e.g. with the method form (Hafstein
et al., 2018), much more easily than for the nonlinear
system (1). In addition to f and g satisfying the usual
sufficient SDE solution-theory conditions locally Lip-
schitz and the linear-growth conditions, cf. e.g. (Mao,
2008, §2.3) or (Kallenberg, 2002, §21), we assume f
and g are C2 on a convex neighbourhood U ⊂ Rd of
the origin. The second order Taylor expansion for the
components fi of f at x ∈U reads

fi(x) = ∑
j

x jFi j +
1
2 ∑

j,k
x jxkRi

jk(x)

=
(
Fx)i +

1
2

x>Ri(x) x,

and the components gu
i of gu,

gu
i (x) = ∑

j
x jGu

i j +
1
2 ∑

j,k
x jxkRui

jk(x)

=
(
Gux)i +

1
2

x>Rui(x) x

Here

F = (Fi j)i, j ∈ Rd×d with Fi j = ∂ j fi(0)

and

Gu =
(
Gu

i j
)

i, j ∈ Rd×d with Gu
i j = ∂ jgu

i (0)

and the matrices Ri(x) and Rui(x) are the Taylor re-
mainders

Ri(x) =
(

Ri
jk(x)

)
j,k
∈ Rd×d and

Rui(x) =
(

Rui
jk(x)

)
j,k
∈ Rd×d .

By abuse of notation we define the elements of up-
per bound matrices Ri =

(
Ri

jk

)
j,k
∈ Rd×d and Rui =

(
Rui

jk

)
j,k
∈ Rd×d as follows:
∣∣∂2

jk fi(x)
∣∣= |Ri

jk(x)| ≤ Ri
jk and (3)

∣∣∂2
jkgu

i (x)
∣∣= |Rui

jk(x)| ≤ Rui
jk, (4)

for all x ∈ N , where N is a neighbourhood of the
origin to be defined later. Finally we fix the constants
R i and R ui as

R i := ‖Ri‖ and R ui := ‖Rui‖. (5)

The action of the generator (2) of the system (1)
on some V ∈C(U)∩C2(U \{0}) can be written as

LV (x) =
1
2 ∑

i, j
mi j(x)∂2

i jV (x)+∑
i

fi(x)∂iV (x)

= L0V (x)+E(x)

where L0V (x) is the generator of the linearized sys-
tem defined below and E(x) the rest (containing all
the Taylor remainders). We will now work out the
details, first notice that:

mi j(x) =
U

∑
u=1

gu
i (x)g

u
j(x)

= ∑
k,l

xkxl

U

∑
u=1

Gu
ikGu

jl

+
1
2 ∑

k,l,m
xkxlxm

U

∑
u=1

(
Gu

ikRu j
lm(x)+Gu

jkRui
lm(x)

)

+
1
4 ∑

k,l,m,n
xkxlxmxn

U

∑
u=1

Rui
kl(x)R

u j
mn(x).

Local Lyapunov Functions for Nonlinear Stochastic Differential Equations by Linearization

581



We define L0 as the generator associated to the lin-
earization of the system (1), i.e. the system

dX(t) = F X(t) dt +
U

∑
u=1

Gu X(t) dWu(t) (6)

or equivalently

dXi(t) = ∑
j

Fi jX j(t) dt +
U

∑
u=1

∑
j

Gu
i jX j(t) dWu(t)

for i = 1,2, . . . ,d, which means that

L0V (x) = (7)

∑
i, j

Fi jx j∂iV (x)+
1
2 ∑

i, j

(
∑
k,l

xkxl

U

∑
u=1

Gu
ikGu

jl

)
∂2

i jV (x).

We gather together the nonlinear parts of the full SDE
generator into the expression for E(x):

E(x) = ∑
s

Es(x)∂sV (x)
︸ ︷︷ ︸

EF (x)

+
1
2 ∑

r,s
Ers(x)∂2

rsV (x)

︸ ︷︷ ︸
EG(x)

,

where

Es(x) =
1
2 ∑

j,k
x jxkRs

jk(x) and

Ers(x) =
1
2 ∑

k,l,m
xkxlxm

U

∑
u=1

(Gu
rkRus

lm(x)+Gu
skRur

lm(x))

+
1
4 ∑

k,l,m,n
xkxlxmxn

U

∑
u=1

Rur
kl (x)R

us
mn(x).

The plan for the rest of this section is as follows:
With LV (x) broken up into a linear part L0V (x) and a
nonlinear correction E(x), we take the explicit func-
tion

V (x) = ‖x‖p
Q =

(
x>Qx

) p
2

(8)

as the ansatz for the Lyapunov function candidate,
where Q ∈ Rd×d is a symmetric and positive definite
matrix and p > 0. As argued in (Hafstein et al., 2018,
§4) this is the expected form of a Lyapunov function
for the linearized system (6) just as x 7→ x>Px for a
symmetric and positive definite P is the usual form for
a Lyapunov function for a linear deterministic system
ẋ = Ax. Note that typically p < 2 so V is not differen-
tiable at the origin. For this reason take x 6= 0 in the
calculations below. Assuming that we have fixed Q
and p > 0 such that L0V (x) < 0 for all x ∈ Rd \ {0},
we derive a neighbourhood of the origin such that
|L0V (x)|> |E(x)|, which implies LV (x)< 0.

From (Hafstein et al., 2018, Lemma 4.1) we can
state the following: for V (x) = ‖x‖p

Q we have

L0V (x) =−1
2

p‖x‖p−4
Q H(x) for all x ∈ Rd \{0},

where

H(x) =−x>
(

F>Q+QF +
U

∑
u=1

(Gu)>QGu

)
x‖x‖2

Q

+(2− p)
U

∑
u=1

(
1
2

x>(QGu +(Gu)>Q)x
)2

.

This V is a Lyapunov function for the linear system
(6) if there is a constant C > 0 such that

H(x)≥C‖x‖2
Q‖x‖2 for all x ∈ Rd ,

because then

L0V (x)≤−1
2

pC‖x‖p−2
Q ‖x‖2 (9)

for all x ∈ Rd \{0}.
Before we state and prove our results we prove a

simple but useful lemma:

Lemma 3.1. Let A = (Ai j), Ã = (Ãi j)∈Rd×d be such
that |Ai j| ≤ Ãi j for i, j = 1,2, . . . ,d. Then

‖A‖ ≤ ‖Ã‖. (10)

In particular
∣∣∣∣∣∑i, j

xiAi jy j

∣∣∣∣∣≤ ‖Ã‖‖x‖‖y‖ (11)

and ∣∣∣∣∣∑i, j,k
xiQikAk jy j

∣∣∣∣∣≤ ‖Ã‖‖Q
1
2 ‖‖x‖Q‖y‖ (12)

≤ ‖Ã‖κ(Q)
1
2 ‖x‖Q‖y‖Q.

for every symmetric and positive definite Q ∈ Rd×d .
If AQ

1
2 = Q

1
2 A we even have

∣∣∣∣∣∑i, j,k
xiQikAk jy j

∣∣∣∣∣≤ ‖Ã‖‖x‖Q‖y‖Q. (13)

Proof. For x = (x1,x2, . . . ,xd)
> set x̃ =

(|x1|, |x2|, . . . , |xd |)>. Clearly ‖x‖ = ‖x̃‖. The
estimate (10) follows from

‖Ax‖2 = x>A>Ax =

∣∣∣∣∣∑i, j,k
xiAkiAk jx j

∣∣∣∣∣
≤ ∑

i, j,k
|xi| · |Aki| · |Ak j| · |x j|

≤ ∑
i, j,k
|xi| · ÃkiÃk j|x j|= x̃>Ã>Ãx̃ = ‖Ãx̃‖2

≤ ‖Ã‖2‖x̃‖2 = ‖Ã‖2‖x‖2

and thus

‖A‖ := supx6=0
‖Ax‖
‖x‖ ≤ ‖Ã‖.
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The inequality (12) follow from

|∑
i, j,k

xiQikAk jy j|=
∣∣∣∣∣∑i, j

xi

(
∑
k

QikAk j

)
y j

∣∣∣∣∣

= |x>QAy|= |(Q 1
2 x)>Q

1
2 Ay|

≤ ‖Q 1
2 x‖‖Q 1

2 Ay‖= ‖x‖Q‖Q
1
2 Ay‖

≤ ‖x‖Q‖Q
1
2 ‖‖A‖‖y‖

≤ ‖Ã‖‖Q 1
2 ‖‖Q− 1

2 ‖‖x‖Q‖y‖Q

and (11) follows form (12) with Q as the identity ma-
trix. To see (13) just note that if AQ

1
2 = Q

1
2 A we have

‖Q 1
2 Ay‖= ‖AQ

1
2 y‖ ≤ ‖A‖‖Q 1

2 y‖ ≤ ‖Ã‖‖y‖Q

which can be used to improve the estimate above.

Remark 3.2. If A in (12) is symmetric we have

x>QAy = ∑
i, j,k

xiQikAk jy j = ∑
i, j,k

y jA jkQkixi = y>AQx.

Remark 3.3. For vectors x, x̃ ∈ Rd , |xi| ≤ x̃i for
i = 1,2, . . . ,d, we obviously have ‖x‖ ≤ ‖x̃‖, but in
general ‖x‖Q is not necessarily smaller than ‖x̃‖Q.
Take for example x = (1,−1)>, x̃ = (1,1)>, and

Q =

(
2 −1
−1 2

)
. Then ‖x‖Q =

√
x>Qx =

√
6 but

‖y‖Q =
√

2. For this reason one cannot expect |Ai j| ≤
Ãi j to imply ‖A‖Q ≤ ‖Ã‖Q for matrices A, Ã ∈ Rd×d .

We now come to the main contribution of this pa-
per:

Theorem 3.4. Consider the system (1), assume that
V as in (8) is a Lyapunov function for its linearization
(6), and let C > 0 be a constant as in (9). Let ρ∗ > 0
and assume the estimates (3), (4), and (5) hold true
on N = D∗ := {x ∈ Rd : ‖x‖Q ≤ ρ∗}. Define

p∗ := 1+ |p−2|,
R i := ‖Ri‖,

R ui := ‖Rui‖,
R F := ‖(R 1,R 2, . . . ,R d)‖,
R u

G := ‖(R u1,R u2, . . . ,R ud)‖,
R G := ‖(R 1

G,R 2
G, . . . ,R U

G)‖2,

ẼG := ‖Q 1
2 ‖
(

R F + p∗
U

∑
u=1

R u
G‖Q

1
2 GuQ−

1
2 ‖
)
,

Ẽ∗G :=
1
4

p∗κ(Q)R G.

Then
LV (x) = L0V (x)+E(x)

where L0V is defined in (7) and

|E(x)| ≤ 1
2

p‖x‖p−2
Q ‖x‖2 · ‖x‖Q

(
ẼG + Ẽ∗G‖x‖Q

)

for x ∈ D∗ := {x ∈ Rd : ‖x‖Q ≤ ρ∗}. In particular,
V is a Lyapunov function for the nonlinear system (1)
satisfying the condition of Definition 2.4 on

U = D := {x ∈ Rd : ‖x‖Q ≤ ρ},
with

ρ < min

{
ρ∗,

1

2Ẽ∗G

(√
(ẼG)2 +4CẼ∗G− ẼG

)}
.

Proof. Let us first compute ∂sV (x) and ∂2
rsV (x),

∂sV (x) =

(
∑

j
Qs jx j +∑

i
Qisxi

)
p
2

(
∑
i, j

Qi jxix j

) p
2−1

= p∑
i

xiQis‖x‖p−2
Q and

∂2
rsV (x) = pQrs‖x‖p−2

Q + p

(
∑

j
x jQ js

)( p
2
−1
)

×2

(
∑

i
xiQir

)(
∑
i, j

Qi jxix j

) p
2−2

= p‖x‖p−2
Q Qrs + p(p−2)∑

i, j
xix jQirQ js‖x‖p−4

Q

= p‖x‖p−4
Q

(
Qrs‖x‖2

Q +(p−2)∑
i, j

xix jQirQ js

)
.

Now set z = (z1,z2, . . . ,zd)
> with zs := x>Rs(x)x and

then |zs| ≤ R s‖x‖2 and ‖z‖ ≤ ‖x‖2R F for x ∈ D∗.
Then

|EF(x)| ≤
∣∣∣∣∑

s
Es(x)∂sV (x)

∣∣∣∣

≤ p
2
‖x‖p−2

Q

∣∣∣∣∣ ∑
s,i, j,k

x jxkRs
jk(x)xiQis

∣∣∣∣∣

=
p
2
‖x‖p−2

Q

∣∣∣∣∣∑s,i
xiQis

(
∑
j,k

x jRs
jk(x)xk

)∣∣∣∣∣

=
p
2
‖x‖p−2

Q

∣∣∣∣∣∑s,i
xiQis

(
x>Rs(x)x

)∣∣∣∣∣

=
p
2
‖x‖p−2

Q

∣∣∣∣∣∑s,i
xiQiszs

∣∣∣∣∣

=
p
2
‖x‖p−2

Q

∣∣∣x>Qz
∣∣∣

=
p
2
‖x‖p−2

Q ‖Q 1
2 x‖‖Q 1

2 z‖

≤ p
2
‖x‖p−2

Q ‖x‖Q‖Q
1
2 ‖‖z‖

≤ p
2
‖x‖p−1

Q ‖x‖2‖Q 1
2 ‖R F .
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Since EG(x) = 1
2 ∑r,s Ers(x)∂2

rsV (x) and by using
our expressions for Ers and ∂2

rsV (x) we obtain:

|EG(x)| ≤
1
4

p‖x‖p−4
Q

∣∣∣∣∣ ∑
r,s,k,l,m

xkxlxm

×
U

∑
u=1

(Gu
rkRus

lm(x)+Gu
skRur

lm(x))

×
(

Qrs‖x‖2
Q +(p−2)∑

i, j
xix jQirQ js

)∣∣∣∣∣

+
1
8

p‖x‖p−4
Q

∣∣∣∣∣ ∑
r,s,k,l,m,n

xkxlxmxn

×
(

Qrs‖x‖2
Q +(p−2)∑

i, j
xix jQirQ js

)

×
U

∑
u=1

Rur
kl (x)R

us
mn(x)

∣∣∣∣∣.

We now estimate the expression on the right-hand
side term by term: Set zu = (zu

1,z
u
2, . . . ,z

u
d)
>, where

zu
i := x>Rui(x)x, and then |zu

i | ≤ R ui‖x‖2 and ‖zu‖ ≤
‖x‖2R u

G for x ∈D∗. Then

∑
r,s,k,l,m

xkxlxm

U

∑
u=1

Gu
rkRus

lm(x)Qrs‖x‖2
Q

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

xk

(
∑
l,m

xlRus
lmxm

)
QsrGu

rk

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

xk

(
x>Rusx

)
QsrGu

rk

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

zu
s QsrGu

rkxk

= ‖x‖2
Q

U

∑
u=1

(zu)>QGux

= ‖x‖2
Q

U

∑
u=1

(zu)>QGuQ−
1
2 Q

1
2 x

≤ ‖x‖3
Q‖x‖2

U

∑
u=1
‖QGuQ−

1
2 ‖R u

G

≤ ‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G

and similarly

∑
r,s,k,l,m

xkxlxm

U

∑
u=1

Gu
skRur

lm(x)Qrs‖x‖2
Q

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

(
x>Rurx

)
QrsGu

skxk

= ‖x‖2
Q

U

∑
u=1

∑
r,s,k

zu
r QrsGu

skxk

= ‖x‖2
Q

U

∑
u=1

(zu)>QGux

≤ ‖x‖3
Q‖x‖2

U

∑
u=1
‖QGuQ−

1
2 ‖R u

G

≤ ‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G.

Further

∑
r,s,k,l,m

xkxlxm

U

∑
u=1

Gu
rkRus

lm(x)(p−2)∑
i, j

xix jQirQ js

= (p−2)
U

∑
u=1

∑
j,s

(
∑
i,k,r

xiQirGu
rkxk

)

×
(

∑
l,m

xlRus
lm(x)xm

)
Qs jx j

= (p−2)
U

∑
u=1

∑
j,s

(
x>QGux

)(
x>Rusx

)
Qs jx j

= (p−2)
U

∑
u=1

∑
j,s

(
x>QGuQ−

1
2 Q

1
2 x
)(

x>Rusx
)

Qs jx j

≤ |p−2|
U

∑
u=1
‖x‖2

Q‖Q
1
2 GuQ−

1
2 ‖
∣∣∣∣∣∑j,s

zu
s Qs jx j

∣∣∣∣∣

≤ |p−2|‖x‖2
Q

U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖
∣∣∣(zu)>Qx

∣∣∣

≤ |p−2|‖x‖2
Q

U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖‖zu‖‖Q 1

2 ‖‖x‖Q

≤ |p−2|‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G
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and similarly

∑
r,s,k,l,m

xkxlxm

U

∑
u=1

Gu
skRur

lm(x)(p−2)∑
i, j

xix jQirQ js

= (p−2)
U

∑
u=1

∑
i,r

(
∑
j,k,s

xiQ jsGu
skxk

)

×
(

∑
l,m

xlRur
lm(x)xm

)
Qrixi

= (p−2)
U

∑
u=1

∑
i,r

(
x>QGux

)(
x>Rurx

)
Qrixi

≤ |p−2|
U

∑
u=1
‖x‖2

Q‖Q
1
2 GuQ−

1
2 ‖
∣∣∣∣∣∑i,r

zu
r Qrixi

∣∣∣∣∣

≤ |p−2|‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G.

Further

∑
r,s,k,l,m,n

xkxlxmxnQrs‖x‖2
Q

U

∑
u=1

Rur
kl (x)R

us
mn(x)

= ‖x‖2
Q

U

∑
u=1

∑
r,s

(
∑
k,l

xkRur
kl (x)xl

)
Qrs

×
(

∑
m,n

xmRus
mn(x)xn

)

= ‖x‖2
Q

U

∑
u=1

∑
r,s

zu
r Qrszu

s

= ‖x‖2
Q

U

∑
u=1

(
(zu)>Qzu

)

≤ ‖x‖2
Q

U

∑
u=1
‖Q‖‖zu‖2

≤ ‖x‖2
Q‖x‖4‖Q‖

U

∑
u=1

(R u
G)

2

= ‖x‖2
Q‖x‖4‖Q‖R G

≤ ‖x‖4
Q‖x‖2‖Q−1‖‖Q‖R G

= ‖x‖4
Q‖x‖2κ(Q)R G.

Finally

∑
r,s,k,l,m,n

xkxlxmxn(p−2)∑
i, j

xix jQirQ js

U

∑
u=1

Rur
kl (x)R

us
mn(x)

= (p−2)
U

∑
u=1

∑
i, j,r,s

xiQir

(
∑
k,l

xkRur
kl (x)xl

)
x jQ js

×
(

∑
m,n

xmRus
mn(x)xn

)

= (p−2)
U

∑
u=1

∑
i, j,r,s

xiQirzu
r x jQ jszu

s

= (p−2)
U

∑
u=1

(
∑
i,r

xiQirzu
r

)(
∑
i,r

x jQ jszu
s

)

= (p−2)
U

∑
u=1

(
x>Qzu

)2

≤ |p−2|
U

∑
u=1
‖x‖2

Q‖Q
1
2 ‖2‖zu‖2

≤ |p−2|‖x‖2
Q‖x‖4‖Q‖R G

≤ |p−2|‖x‖4
Q‖x‖2‖Q−1‖‖Q‖R G

= |p−2|‖x‖4
Q‖x‖2κ(Q)R G.

By combining the results from these estimates we get

|EG(x)| ≤
1
4

p‖x‖p−4
Q

∣∣∣∣∣2‖x‖
3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G

+2|p−2|‖x‖3
Q‖x‖2‖Q 1

2 ‖
U

∑
u=1
‖Q 1

2 GuQ−
1
2 ‖R u

G

∣∣∣∣∣

+
1
8

p‖x‖p−4
Q

∣∣∣∣∣‖x‖
4
Q‖x‖2κ(Q)R G

+ |p−2|‖x‖4
Q‖x‖2κ(Q)R G

∣∣∣∣∣

=
1
2

p‖x‖p−1
Q ‖x‖2(1+ |p−2|)

×
(
‖Q 1

2 ‖
U

∑
u=1

R u
G‖Q

1
2 GuQ−

1
2 ‖+ 1

4
κ(Q)R G‖x‖Q

)

and we can estimate

|E(x)| ≤ |EF(x)|+ |EG(x)|

≤ 1
2

p‖x‖p−2
Q ‖x‖2 · ‖x‖Q

(
ẼG + Ẽ∗G‖x‖Q

)
,

which proves the first stated inequality.
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Since

LV (x) = L0V (x)+E(x)

≤−1
2

pC‖x‖p−2
Q ‖x‖2 +E(x)

≤−1
2

p‖x‖p−2
Q ‖x‖2

[
C−‖x‖Q

(
ẼG + Ẽ∗G‖x‖Q

)]

we have LV (x)< 0 if

‖x‖Q

(
ẼG + Ẽ∗G‖x‖Q

)
<C,

i.e.

‖x‖Q <
−ẼG +

√
(ẼG)2 +4CẼ∗G
2Ẽ∗G

.

Thus for

x ∈D = {x ∈ Rd : ‖x‖Q ≤ ρ}
with

ρ < min

{
ρ∗,

1

2Ẽ∗G

(√
(ẼG)2 +4CẼ∗G− ẼG

)}
,

we have LV (x)< 0, which concludes the proof.

4 CONCLUSIONS

We derived rigid bounds on a domain, on which a
Lyapunov function for a linearized stochastic differ-
ential equation is also a Lyapunov function for the
original nonlinear system. This allows for the deriva-
tion of a lower bound on the equilibrium’s γ-basin of
attraction, i.e. the area in which all started solutions
converge to the equilibrium with probability no less
than γ. Another application is the facilitation of a nu-
merical method to compute Lyapunov functions for
nonlinear stochastic differential equations on a larger
domain as discussed in (Gudmundsson and Hafstein,
2018), because one first needs a local Lyapunov func-
tion at the equilibrium.
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