
Architectural Considerations for a Data Access Marketplace

Uwe Hohenstein, Sonja Zillner and Andreas Biesdorf
Siemens AG, Corporate Technology, Otto-Hahn-Ring 6, D-81730 Munich, Germany

Keywords: Marketplace, Data Access, Access Control, Filtering, API Management.

Abstract: Data and data access are increasingly becoming a good to sell. This paper suggests a marketplace for data
access applications where producers can offer data (access) and algorithms, while consumers can subscribe
to both and use them. In particular, fine-grained controlled data access can be sold to several people with
different Service Level Agreements (SLAs) and prices. A general architecture is proposed which is based
upon the API management tool WSO2 to ease implementation and reduce effort. Indeed, API Management
provides many features that are useful in this context, but also unveil some challenges. A deeper discussion
explains the technical challenges and alternatives to combine API Management with user-specific filtering
and control of SLAs.

1 INTRODUCTION

Data and related data-processing algorithms are
becoming more and more a product or service to be
sold. At the same time and with the advent of
integrated data analytics, data and algorithms may
form an ecosystem if a protected and controlled
usage and exchange is possible.

However, public research on algorithms is
typically carried out outside of a data provider’s
premises in – partially profit-oriented – research
organizations. They are not allowed to directly
access the data due to a lack of interest to share data
for free. But without access to the data, promising
algorithms and applications cannot be tested and
their results cannot be disseminated. Vice versa, the
largest benefit of research activities could be
realized if the algorithms or their results are made
available to data owners. Indeed, since algorithmic
research is expensive and the result represents
intellectual property of the research institution,
sharing the algorithms and/or their results for free is
not an intention.

Giving monetary incentives could help out of the
dilemma. Access to data can be given to algorithm
developers for a certain fee. In case of regulations or
data protection laws, data can be made anonymous
before granting access. The other way round,
algorithms and/or the data they produce can be sold
to professionals. However, an open and secure
marketplace platform for trading, sharing, and ex-

changing data, data processing algorithms as well as
data analytics results is a prerequisite. On the one
hand, a marketplace makes it easier for providers to
publish data and algorithms, disseminate the offer-
ings, and finally attract potential consumers. On the
other hand, it helps data consumers to discover and
request access to data published in the marketplace.

One important requirement towards such a
marketplace is security with a particular focus on
authentication: Access should be granted for
particular portions of data to known and privileged
consumers only. Moreover, a controllable consumer-
specific filtering of data needs to be ensured, i.e.,
different consumers should obtain access to different
portions of the data.

Partial solutions have been discussed in the
domain of databases to address the problem of
consumer-specific access to data sources: There are
several approaches for column-level access control
(i.e., to omit or mask out specific columns) and row-
level access control (i.e., filter out rows) discussed in
research (cf. Section 6). However, advanced
concepts are required to be also able to limit data
quality, the result size, or to throttle too many
accesses depending on a selected Service Level
Agreement (SLA).

While various approaches have been developed
to restrict visibility of data by filtering, little
attention has been paid to monetization of data.
Marketplaces can help but appropriate solutions are
missing to integrate advanced database filtering,

322
Hohenstein, U., Zillner, S. and Biesdorf, A.
Architectural Considerations for a Data Access Marketplace.
DOI: 10.5220/0006855303220333
In Proceedings of the 7th International Conference on Data Science, Technology and Applications (DATA 2018), pages 322-333
ISBN: 978-989-758-318-6
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

especially due to quite a dynamic set of users that
requests a high degree of automation.

In this paper, we present a marketplace
architecture that provides high flexibility by combin-
ing API Management and flexible filtering. The use
of API Management as off-the-shelve is reasonable
because it already implements a lot of functionality
for marketplaces and thus let the architecture focus
on core functional aspects. In fact, many features
such as OAuth-based authentication, scalability for a
high amount of users, auditing, monitoring, and
billing are available or can be integrated at least.

The proposed marketplace allows data providers
to generate, advertise, and sell access to APIs
(especially for data access), while consumers are
enabled to purchase access to APIs at the
marketplace. There are dedicated provider and
consumer web interfaces. Figure 2 and 3 show an
example that we developed and tested in a funded
project named “Klinische Datenintelligenz”
(Sonntag et al., 2015).

In the following, we propose in Section 2 a
customizable Data Delivery Service, i.e., a generic
REST service for database access to be offered as an
API in a marketplace. This service provides
consumer-specific query results.

API Management in general and the tool WSO2
in particular are introduced in Section 3. We explain
why API Management reduces effort to implement a
marketplace by already offering fundamental
concepts.

While API-Management usage appears to be
highly appealing, there are still a couple of
challenges to tackle. Section 4 details the problem
space and discusses major challenges of combining
API Management and user-specific filtering, e.g.,
how to maintain a highly automated environment,
especially for an unknown and potentially large
consumer community.

Solutions for tackling those problems,
alternatives, and an architectural proposal are
discussed in Section 5.

Section 6 presents some related work in order to
underline the novelty of our approach. Finally,
conclusions are drawn in Section 7.

2 DATA DELIVERY SERVICE

Before diving into the details of the marketplace
architecture, we first propose a Data Delivery
Service (DDS) for relational database systems. The
DDS offers a generic REST service that allows for
executing arbitrary SQL queries passed as a string.

The DDS is REST-based, but in fact,
HTML/JavaScript based user interfaces can be put
on top of the REST API. A DDS request has the
following form:

POST Host/Type/Database?Options

The SQL query to be executed is placed in the
request body. The result of such a POST request can
be obtained in XML or JSON, controllable by the
“Accept” header of the request. The Type of the
database, e.g., PostgreSQL, and a concrete Data-
base are part of the URL. For instance, the query

SELECT encounter_num, patient_num,
 concept_cd, provider_id,
 start_date,quantity_num,
 units_cd, observation_blob
FROM i2b2myproject.Observation_fact
WHERE observation_blob <> ''

to a medical i2b2 database returns a JSON result
like the following:

{
 "columns": [// columns of the result
 "encounter_num",
 "patient_num",
 "concept_cd",
 "provider_id",
 "start_date",
 "quantity_num",
 "units_cd"
],
 "types": [// data types for those columns

 "int4", // (in the same order)
 "int4",
 "varchar",
 "varchar",
 "timestamp",
 "numeric",
 "varchar"
],

 "elapsedMs": 36, // server-side execution
 // time in ms

 "size": 2, // number of records in result
 "content": [// records
 {
 "no": 0, // 1st record
 "values": [
 "1791",
 "1",
 ...]
 },
 {
 "no": 1, // 2nd record
 "values": [...]
 },
 ... // further records
]
}

Architectural Considerations for a Data Access Marketplace

323

The JSON result possesses a generic structure
and includes a meta-data description (if requested by
the query parameter metainfo=include in
Options) which describes the column names and
data types. Hence, the result becomes interpretable
and machine readable.

The DDS provides further features such as
pagination with query parameters top= and limit=,
streaming, and data compression.

Similar approaches for other data sources are
also possible, e.g., ontologies like DBpedia
(http://wiki.dbpedia.org/) with other APIs like
SparQL or general computing services.

3 API MANAGEMENT

According to Wikipedia (https://en.wikipedia.org
/wiki/API_management), API Management is “the
process of creating and publishing Web APIs,
enforcing their usage policies, controlling access,
nurturing the subscriber community, collecting and
analyzing usage statistics, and reporting on
performance.” The technical platform is composed
of tools, services and infrastructure developed to
support two types of users: producers and
consumers.

Figure 1 illustrates the basic principle of recent
API Management (API-M) tools such as WSO2.
At the left side, providers can provision existing
backend APIs to API-M at any time. The API
is defined by its URI and might be of REST or
SOAP style. Indeed, the DDS of Section 2 is
one potential service to be offered. All offerings
obtain a new URI by the API-M, which is mapped
to the original backend service URI. Thereby,
each provider obtains a base URI like
https://server:8243/t/a_provider which
is extended by a service-specific part like /dds for
the published API-M service. API-M acts as a proxy
and protects the backend service.

A user can browse through all the API offerings
of all the providers (cf. left side of Figure 2). If
interested, a user can sign-up to the API-M with a
name and password. Having then logged in, a user
can subscribe to a service of his interest, thus
becoming a consumer. For using a subscribed API, a
consumer has to request an OAuth security token for
access issued by an Identity Provider.

Figure 1: API Management.

API-M mainly handles the producers and
consumers and their interplay. API-M is a good
basis for a marketplace for data-access applications,
especially a DDS. One important feature is the
addition of an OAuth-based access control to even
unprotected services.

The approach we present relies on the WSO2
API Management: WSO2 is an open source API
Management, which is also offered as a payable
Cloud offering (the latter having special features
already built-in). Figure 2 and 3 present some
screenshots for a marketplace that we have set up for
a funded project (Sonntag et al., 2015) in the
medical area. Figure 2 illustrates the consumer’s
web interface https://server:8243/store
with all the subscribed services (at the bottom), the
possibility to sign-up to the API-M as a new user, to
log in (both not visible in Figure 2), and to subscribe
to a service as a consumer. Figure 3 illustrates the
provider’s web interface https://server:8243
/publisher. The interface shows all the offered
APIs with icons. Clicking on an icon, details about
the mapping to the backend service occur and the
lifecycle management can be entered, e.g., stopping
a service at all or for particular customers only.
Using the functionality at the left side, new APIs can
be published by “Add”.

As already mentioned, a consumer has to request
an OAuth security token for invoking an API. Such
a token can be requested by pushing the
“Regenerate” button (cf., “Access Token” box in
Figure 2). The token must be passed with every
REST request in the “Authorization” header. API-M
then authenticates the security token and allows
invocation of the API. The token expires after a
configurable time, but can be renewed at any time.

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

324

Figure 2: Consumer’s web interface.

Architectural Considerations for a Data Access Marketplace

325

Figure 3: Provider’s web interface.

We have chosen WSO2 as it provides several
useful features:
 Several dashboards are available in addition to

the providers’ and consumers’ views. For
instance, an administration view allows
providers to manage consumers. Moreover,
the platform administrator can handle
tenants/providers.

 The API provider (owner) of a service is able
to approve every user sign-up and/or
subscription in an administration view;
corresponding pre-defined business processes
can be used, and new ones can be specified.
These are triggered if activated. A self-
approval without provider interaction can also
be configured.

 An application’s publication can specify
information about usage conditions and
pricing: To this end, APIs can be offered in
several tiers such as Gold, Silver, or Bronze
with certain SLAs and prices associated. By
subscribing, a consumer accepts the usage
conditions (e.g., about payment). Moreover, a
throttling of access according to tiers can be
configured.

 A corresponding billing component can be
integrated. Billing is based upon consumption
and can use a monitoring component that
tracks all consumers’ activities.

 There are powerful concepts to map a frontend
URL as published in the API-M to the
backend URL of the service, for instance, to
change the URL by switching query
parameters and path elements.

 Similarly, the authentication of the WSO2
service at the backend system can be
configured.

 A scope concept enables a consumer to further
restrict accesses.

 A versioning of APIs is supported.

4 PROBLEM SPACE

Using API management (API-M) such as WSO2 for
implementing a marketplace is helpful and useful
because a lot of marketplace functionality like
producer and consumer web interfaces is available.
But API-M also introduces some challenges if we
want to offer a Data Delivery Service (DDS) as a
service.

Suppose a provider has exposed a DDS for his
data to the API Management as a REST service.
Any consumer interested in using the DDS can
subscribe to the DDS service in the API-M. After a
successful approval by the provider, a consumer can
ask the API Management for issuing an OAuth
security token; the OAuth token is consumer and
DDS-specific. The security token has a specific
expiration time and must be passed to the API-M as
an integral part of any invocation. API Management
checks the validity of the security token and – if
valid – invokes the Data Delivery Service.

Figure 1 shows that neither the DDS nor the
database is directly accessed by consumers: API
Management acts as a proxy in front and protects the
DDS. API-M receives requests and forces
consumers to authenticate with a valid OAuth token
in order to let API-M forward the call to the DDS.

When a consumer subscribes to an API, a tier
(which has been described by the provider as part of
his offering) can be selected: In fact, the tier can be

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

326

used to establish some predefined SLAs (especially
throttling) and to determine pricing.

This is all functionality already offered by API
Management. However, one important point is
missing: We have to take care of consumer-specific
filtering in the DDS: Consumers should see specific
data instead of the whole data set. Examples in case
of relational database systems are row/column level
filtering, reducing the size of a result set, or other
SLA attributes that affect the quality of returned
data. To achieve filtering, three major problems have
to be tackled.

(1) Information about the consumer is required
for filtering. Any kind of filtering should take place
depending on the consumer who is invoking the
request. The problem is how to get the consumer’s
identity from the API-M, especially as the consumer
uses a cryptical OAuth token for authentication at
the API-M. Indeed, the DDS at the backend must
know the consumer. Moreover, the selected tier can
also be used to control filtering (row/column level,
limit on result sets, quality, de-personalization,
aggregation, read/write permissions etc.).

(2) Next, suppose the consumer is known by the
DDS: How to use the consumer information to
reduce results in a flexible manner? How to perform
filtering without large manual, administrative effort?
The software of the DDS as a backend service
should not be modified for every new consumer.

(3) Finally, API-M and DDS have to co-operate.
In particular, there is an unknown consumer base,
with potentially many unexpected consumers. Each
provider wants to give consumer-specific access to
the database, but does not know about potential con-
sumers of the marketplace. Moreover, each
subscribed user requires certain actions to be
performed in the database such as creating some
database access roles.

5 OVERALL APPROACH

The following discussion is based upon the WSO2
API Management, but other API-Ms have similar
concepts.

5.1 Passing Authorization Tokens

As already mentioned, every invocation of an API
via the API-M requires a security token. Concerning
Point (1) in Subsection 4, there are two major
problems to solve: How to pass the security token to
the DDS and how to interpret the quite cryptic token

like 6db65cdf3231be61d9152485eef4633b in
the DDS.

We investigated that WSO2 API-M can be
configured to pass the security token (coming from
the consumer) to the DDS backend service. There
are mainly two steps to perform within the
provisioning of an API. First, a WSO2 predefined
mediation configuration “preserve_accept_header”
has to be applied to In/Out Flow requests. Using this
option, the request is forwarded from WSO2 to DDS
with an x-jwt-assertion header that contains a
so-called Java Web Token (JWT). At a first glance,
the JWT with its 1445 bytes looks even more
cryptic, but has the advantage that it can be parsed in
a second step with a JWTParser like http://jwt.io.
Even more important, the parsed JWT yields the
information the DDS requires, for example:

{
 "iss": "wso2.org/products/am",
 "exp": 1467298671690,
 "http://wso2.org/claims
 /applicationid":

"1",
 "http://wso2.org/claims
 /applicationtier": "Unlimited",
 "http://wso2.org/claims
 /apicontext": "/dds/v0.1",
 "http://wso2.org/claims/version":
 "v0.1",
 "http://wso2.org/claims/tier":
 "Silver",
 "http://wso2.org/claims/keytype":
 "PRODUCTION",
 "http://wso2.org/claims/usertype":
 "APPLICATION",
 "http://wso2.org/claims/enduser":
 "a_user@a_company.com",
 "http://wso2.org/claims
 /enduserTenantId": "-1234"
}

Figure 4: Decrypted token.

That is, the DDS is finally able to obtain and
interpret the JWT and to extract information about
tier or enduser from the token.

5.2 Options for Implementing Filtering

Having extracted and parsed the OAuth token, the
consumer information becomes available to the
DDS. Concerning problem (2) and (3) in Subsection
4, there are two major alternatives.

A) The extracted consumer can be used to
connect to the database and to perform the filtering
in the database by using the database features that

Architectural Considerations for a Data Access Marketplace

327

are discussed in Section 6. This is an easy option,
but has the drawback that for every new consumer
(which is just known after subscription), a
corresponding database user has to be created for
database logon, and further GRANTs and database-
specific actions are required. This must be integrated
into the subscription approval business process.
Hence, there is some administrative effort to keep
API-M and database users in sync. As a
consequence, self-approval of consumers is
complicated. Moreover, a user and password
management is required to secure the database. The
security token might be a good candidate for the
password. However, the token has a short expiration
time in the area of a few minutes; the user password
that the consumer has chosen during sign-up for the
API-M is invisible. Another disadvantage is the
huge amount of database accounts. This leads to
many parallel open database connections – one for
each consumer – since connection pools usually do
not work with a user-spanning pooling over database
accounts. This has a major impact on the
performance and raises high resource consumption
in the database.

B) As an alternative, it is possible to use one
single connect string to connect to the database. This
requires less administration effort in the database
and also solves the connection pooling issue.
Unfortunately, database filtering features can no
longer be used since the real consumer is now
unknown in the database due to the shared database
account. Hence, filtering must be performed in the
DDS with some implementation effort as a
consequence. As a gain, this offers most flexibility
for filtering, especially since further information
such as the chosen tier can be taken into account.
There are two major options:

B.1) The Data Delivery Service can perform
filtering by query rewriting and sending consumer-
specific, modified queries to the database. There are
many approaches in the literature, for example
(Barker, 2008), (Rizvi et al., 2004) and (Wang et al.,
2007). That is, the filtering logic becomes part of the
DDS, and the DDS has to be aware of the
corresponding policies. The DDS must know which
user is allowed to see what columns and rows. And
query rewriting at runtime is a must. Moreover,
some technical issues like SQL injection have to be
handled carefully.

B.2) Alternatively, the DDS can submit the
original query and perform the filtering on the
received result sets. Again, the DDS has to know the
filtering policies. Performing complex filtering
results is challenging leading to some complex

analysis, since the filter conditions must be
interpreted; the columns are not directly obvious and
must be derived from the submitted SQL query.
Moreover, there are performance issues since such a
client-side vertical filtering transports larger query
result sets from the database to perform filtering.

5.3 Database Connect

We suggest a more generic approach combining the
alternatives to achieve best benefit. In a nutshell, we
proceed as follows:

a) In order to solve the issue with several
database accounts, the DDS connects to the
database with a shared account in the sense of
alternative B), without giving any further
privileges to this account except for the
permission to connect.

b) However, the user (consumer) is passed as a
hook-on to the connection. This allows us to
set up specific user access privileges in the
database.

c) The consumer information is used to control
the result for a specific consumer by one
single database view for all the users. This
eases the administrative effort. Sections 5.4
will present the details.

d) Further filtering can occur in the DDS to
achieve powerfulness, e.g., considering the
tier and/or scope.

Indeed, we found for a) and b) some quite
hidden, product-specific mechanisms that are
available in some database systems and enable
passing consumer information to the database. For
example, in PostgreSQL it is possible to create an
account to connect to the database. The account has
no further access to tables and views beyond the
allowance to login:

CREATE ROLE loginOnly NOINHERIT
 LOGIN PASSWORD ‘Pw4LoginOnly’;

The DDS uses this loginOnly account.

Another account a_user, created without the LOGIN
PASSWORD option, is unable to connect:

CREATE ROLE a_user;

However, if a_user is added to the loginOnly

group by GRANT a_user TO loginOnly, DDS
can login with loginOnly and issue the statement
SET ROLE a_user. This lets the user privileges for
a_user become effective for every successive
query.

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

328

Teradata has a so-called Query Band mechanism
that behaves similarly from a functional point of
view. SQL Server offers an EXECUTE AS statement
to switch the user after having connected.

Letting the DDS authenticate in the database
with a (shared) predefined account avoids a user
management and corresponding administrative effort
as well as negative performance impact.

5.4 Column-and Row-Level Filtering

The goal to achieve is a flexible filtering approach
with little administrative effort. We present a hand-
made solution to become product-independent.
However, note that the approach also allows for
integrating with database features or the research
approaches discussed in Section 6.

Our approach consists of one common view for
each base table handling the filtering in a consumer-
specific manner. Accessing the common view, consu-
mer information is implicitly used to restrict results.
The view performs column- and row-level filtering
based upon consumer and tier in a generic manner.

The filtering principle uses additional tables
similar to (Barker, 2008). A configuration table
Privileges (cf. Table 1) controls the visibility for
users. For example, if TabXColumn1 contains a
value false for a particular consumer, then
Column1 of table TabX should not be visible for that
user.

Consequently, the configuration of user
privileges – which columns and which rows in tables
should be visible – is done external to the DDS.

Table 1: Privileges.

Privileges Consumer TabXColumn1 TabXColumn2 …
 User1 true false
 User2 false true
 User3 true true

This table is used in a generic view
TabX_Filter to be created for each table TabX:

CREATE VIEW TabX_Filter
SELECT CASE WHEN p.TabXColumn1
 THEN t.Column1
 ELSE NULL END AS Column1,
 CASE WHEN p.TabXColumn2
 THEN t.Column2
 ELSE NULL END as Column2,
 ...
FROM TabX t
LEFT OUTER JOIN Privileges p
 ON p.Consumer = current_user
AND <Condition>

Figure 5: Filtering view.

Certainly, each user is withdrawn access to the
base tables TabX; only access to the TabX_Filter
views is granted.

CASE expressions nullify or mask out columns
for dedicated users according to what is defined in
table Privileges. Hence, the behaviour is similar
to the nullification semantics of (LeFevre et al.,
2004).

The views need the current user (as being hooked
to the connect). Database products usually provide
corresponding functions, e.g., there is the
current_user function in PostgreSQL. Oracle
offers a so-called system context that is accessible in
a similar manner.

Row-level filtering, i.e., <Condition> in the
view definition of Figure 5, is simple if the
consumer is part of table TabX, e.g., in a column
User. This is in fact how row level security works in
commercial database products. Then, the
<Condition> is quite generic: “User=
current_user” by applying the current_user
function in PostgreSQL.

However, it seems to be rather unrealistic that
the subscribed consumer already occurs in the
column data. It would certainly be more flexible if a
subquery could determine the visible records for a
consumer. As an important requirement to be taken
into account, the approach must avoid a re-
compilation of the DDS for any new customer.
Moreover, the communication between frontend
API-M and DDS or database should at least be
reduced because business processes for service
subscription have to be implemented, the
possibilities of which are limited.

One approach is to implement the functionality
in the database by computing the keys of visible
records for a table TabX by a table-valued function
RowLevelFilter4TabX(user VARCHAR):

CASE User
 WHEN "user1"
 THEN SELECT t.key FROM TabX t ...
 WHEN "user2"
 THEN SELECT t.key FROM TabX t ...

Hence, row-level filtering can rely on any

condition, on any columns or data. Even more, the
view TabX_Filter (cf. Figure 5) remains stable by
replacing <Condition> with:

LEFT OUTER JOIN
 RowLevelFilter4TabX(current_user) c
 ON c.key = t.key

Architectural Considerations for a Data Access Marketplace

329

This principle offers complete freedom for a
consumer-specific row-level filtering. However,
there is a small disadvantage: For each new
consumer, the function must be extended in order to
add a consumer-specific subquery in the CASE
clause. Fortunately, this can be done in the database
at runtime without any impact on the DDS and its
implementation, and without downtime.

An alternative is to keep the condition in the
Privileges table in a textual form and to rely on
dynamic SQL to compose an overall query.

5.5 Tiers

As already mentioned, the provider of the DDS is
able to offer a service in different tiers. There are
predefined tiers such as Gold, Silver, and Bronze,
but new tiers like Platinum can be defined, too. With
each tier certain SLAs and the price scheme can be
specified as part of the offering in order to become
visible for potential consumers.

A consumer can subscribe to an API for a
specific tier, thus accepting the associated prices and
SLAs. S/he can also subscribe to several tiers. The
generation of a security token is then done for each
particular tier. During invocation, the tier is part of
the security token (cf. Figure 4). Hence, the DDS
can use it, e.g., by adding TOP(n) by query
rewriting in order to limit the result size according to
the tier.

Furthermore, throttling, i.e., allowing only a
limited number of accesses per time unit, can be
configured for each tier in WSO2 without any
explicit implementation.

Using the tier to control filtering is also possible.
A possible solution is to concatenate user and tier
(both can be extracted from the token) to a single
name with some separation symbol in between. This
name is then passed to the database instead of the
consumer as before. That is, a role for this name has
to be created in the database, and both parts of the
name have to be extracted from the role in the view.

5.6 Administration

Some administrative effort is required for the
presented approach. At first, a common database
connect user is required for the DDS, e.g., in
PostgreSQL:

CREATE ROLE loginOnly NOINHERIT ...;

Furthermore, the Privileges table and the
TabX_Filter views must be created. These
activities occur only once.

Moreover, several statements have to be
executed for every new consumer <user>:
 CREATE ROLE <user>;
 GRANT <user> TO loginOnly;
 GRANT SELECT ON TabX_Filter

 TO <user>;

Next, a record in the Privileges table
specifies column and/or row access. New consumers
require additional records in the table, otherwise
default settings apply to them. And finally, the
function RowLevelFilter4TabX has to be
adjusted.

In total, the consumer-specific administrative
operations are minimal.

In principle, the above consumer-specific
activities have to be established as part of the
subscription workflow of the API-M. DDS can offer
a service to execute those tasks in the database. This
service can then be used by the workflow process.

 In case a specific subscription workflow cannot
be defined in the API-M tool, we can let DDS keep a
table AllConsumers of consumers who have
already accessed the DDS successfully. If a new
consumer signs in, i.e., not occurring in the
AllConsumers, the consumer will be added and the
setup is performed. This principle can also be
applied in general to avoid a communication
between API-M and database.

5.7 Authentication

So far, the API Management provides a REST API
for the DDS and takes care of authentication by
OAuth tokens. The REST API can be invoked by
any type of client – an application or a graphical
user interface – implemented in any language. Every
invocation requires a security token that can be
obtained by the consumer web interface of the API-
M (cf. Figure 2). The security token can be used
until it expires.

Requesting the token by the consumer’s web
interface is a manual interactive action. Fortunately,
further support is available by WSO2: Applications
can acquire the token programmatically by invoking
another REST API of WSO2 and passing user and
password as provided during sign-up.

Graphical user interfaces (GUIs) in HTML and
JavaScript benefit from an advanced OAuth support.
A GUI can be registered for the DDS service in such
a way that whenever the REST API is invoked from
the GUI, WSO2 is implicitly contacted. A login
form pops up asking the consumer to authenticate
with user and password. Furthermore, the user has to

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

330

confirm that the GUI is allowed to act on behalf of
the DDS. Hence, there is a tight integration of
authentication.

5.8 Implementation of DDS

The implementation of the DDS is done in a generic
manner by an abstract class that concentrates the
common functionality, while having several DBMS-
specific concrete classes to focus on database
concepts such as passing and using the customer
information.

6 RELATED WORK

Various tools and approaches have been developed
in the database area to restrict visibility of data by
filtering whereas only little attention has been paid
to selling and restricting data access at marketplaces.

proDataMarket is one rare architectural approach
for a marketplace (Roman et al. 2017). The approach
focuses on monetizing real estate and related
geospatial linked and contextual data. The proposed
architecture offers a provider and consumer view
similar to ours, however, does not rely on API
Management and does not tackle the major problems
of user-specific filtering and handling SLAs.

In contrast, a lot of work is available on access
control, i.e., to limit activities of legitimate users.
The need for flexible access control policies has
been already recognized for decades. (Bertino,
Jajodia, and Samarati, 1999) presented a well-
defined authorization model that permits a range of
discretionary access policies for relational databases.

This and other research influenced database
vendors as they also recognized basic standard
mechanisms (mainly views, stored procedures, and
application-based security) as inappropriate (Rjaibi,
2012). Standard mechanisms have several draw-
backs such as the need for a further view for each
additional policy or user. Nowadays, relational
database systems have introduced advanced features.
The concepts allow for mainly row-level and
column-level access control and are quite similar
although being named differently in the products.
For example, (Rjaibi, 2012) describes the IBM DB2
features for row permissions and column masks
definitions. The latter allows for a customizable
obfuscation of data by patterns for XXX-ing parts of
data, e.g., the last part of phone numbers or accounts
etc. (Oracle, 2017) introduced the Virtual Private
Database technology, while (SQL Server, 2016) has
concepts named Dynamic Data Masking, Column

Level Permissions, or Row Level Security. The
policies usually rely on functions to be defined for
each table. Moreover, they rely on the fact that users
obtain individual connect accounts. In contrast to
our work, no further SLAs can be integrated, thus
achieving less flexibility.

(Pereira, Regateiro and Aguiar, 2014)
distinguished three general architectural solutions:

a) Centralized architectures such as using views
and parameterized views (Roichman and
Gudes, 2007), query rewriting techniques
(Barker, 2008) (Rizvi et al., 2004) (Wang et
al., 2007), and extensions to SQL (Chlipala
and Impredicative, 2010) (Chaudhuri, Dutta,
and Sudarshan, 2007);

b) distributed architectures (Caires et al., 2011);
c) and mixed architectures (Corcoran, Swamy,

and Hicks, 2009) (XACML, 2012).
The proposal of (Pereira, Regateiro and Aguiar,

2014) belongs to category (c) and extends role-based
access control to supervise direct and indirect access
modes. An indirect mode means that SQL queries
are executed, the result set is modified (for instance
in JDBC, Hibernate, or LINQ), and changes then
committed to the database.

 The work of (Rizvi et al., 2004) is somehow
special. Their “Truman” mode behaves similar to
row/column level security with a query rewriting
technique. However, they stress on the disadvantage
of such an approach: possible misinterpretations of
query answers might arise as a consequence of
suppressed records due to row-level filtering. A
“Non-Truman” mode tackles this point: Based upon
authorization views for filtering, a user query is said
to be valid if the query can be answered by using the
authorization views only. If a query passes this vali-
dation test, the query is executed against the table
without any modification. Otherwise, the query is
rejected.

(LeFevre et al., 2004) discussed a technique to
control the disclosing data process and thereby focus
on Hippocratic databases. LeFevre proposes a high-
level specification language for representing policy
requirements. A policy is based upon the premise
that the subject has control over who is allowed to
see its protected data and for what purpose. Thus,
operations are associated with a purpose and a
recipient. Policies can be defined in P3P and EPAL
and are translated into SQL by a query rewriting
technique. Each purpose-recipient pair is represented
by a view which replaces prohibited cells values at
the table level with null, and removes protected rows
from the query result according to the purpose-
recipient constraints.

Architectural Considerations for a Data Access Marketplace

331

(Barker, 2008) proposed a formally well-defined,
dynamic fine-grained meta-level access control.
Barker makes use of a high-level specification
language, a tuple calculus, for representing policies.
This specification is translated into SQL by means
of query rewriting to let the policy become effective.
By categorizing users to categories according to a
trust level, job level etc., the potential problem of
view proliferation is much more manageable than
for a user-based view (as for example in (Rizvi et
al., 2004)). Hierarchical and negative authorizations
are also handled by allowing for policy overriding
and withdrawals.

None of these proposals handle the marketplace
aspects and the resulting challenges that we address.
For example, they demand each user to individually
connect to the database. i.e., a shared connect is not
possible. Moreover, the approaches are not able to
handle further SLAs beyond row/column level
security.

Several approaches exist that generate
application code to assure access control. All these
approaches operate at compile time and thus are not
applicable to our work.

For example, the Ur/Web tool developed by
(Chlipala and Impredicative, 2010) enables
programmers to write statically checkable access
control policies. A new ‘known’ predicate is
proposed for SQL that returns what secrets are
already known by the user. Based upon a set of
policies, programs are inferred in such a way that
query results respect the policies. Validation of
policies occurs at compile time, thus requiring
programmers to know database schemas and
security policies while writing source code.

A similar approach (Abramov et al., 2012)
presented another validation process that takes place
at compile time. A complete framework allows
security aspects to be defined early in the software
development process. Based upon a model, access
control policies are derived and applied.

The approach of (Zarnett, Tripunitara, and Lam,
2010) can be applied to control the access to
methods of remote objects via Java RMI. Remote
objects and methods can be enriched with Java
annotations that specify access control policies.
Accordingly, RMI Proxy Objects are generated in
such a way that policies are satisfied. Annotations
are also used by (Fischer et al., 2009) to assign a
more fine-grained access control to methods.

The SELINKS programming language
(Corcoran, Swamy, and Hicks, 2009) focuses on
building secure 3-tier web applications.
Programmers write programs in a LINQ-like

language called LINKS whereupon a compiler
creates the byte-code for each tier according to the
security policies. The policy functions are called by
applications to mediate the access to data that is
labelled as sensitive. The generation process
guarantees that sensitive data is never accessed
directly by bypassing policy enforcement. Policy
functions run in a remote server and check at run-
time what type of actions users are granted to
perform.

(Komlenovic, Tripunitara and Zitouni, 2011)
presented a distributed enforcement of role-based
access control policies. Other work by (Jayaraman et
al., 2013) discussed a new technique and a tool to
find errors in role-based access policies.

A survey about further research can be found in
(Fuchs, Pernul, and Sandhu, 2011).

7 CONCLUSIONS

This paper presents an approach to offer data, more
precisely data access, at a marketplace. The
approach gives providers an opportunity to offer
data access as a service at various levels; consumers
can subscribe to data access services and use them.
As a specific requirement, the approach supports
delivering data in a consumer-specific manner. That
is, different users obtain different vertical and
horizontal parts of the data depending on some
configuration. To this end, a Data Delivery Service
(DDS) is proposed.

We suggest a flexible architecture that relies on
API Management, particularly the WSO2 eco-
system, and integrates a row-/column-level access
control for relational database systems. Any data
access is protected by an OAuth security concept.

The use of API Management eases implementing
a marketplace but also brings up some major
challenges. In particular, there is a strong need for
achieving a flexible configuration and avoiding
manual administrative effort due to the unknown and
possibly numerous users. The paper discusses these
challenges and their solutions in detail.

This work has been conducted in a funded
project in the medical domain (Sonntag et al., 2015).
To illustrate effectiveness of the overall approach,
we set up a marketplace including the DDS and
other value-added services in the way described in
this paper. The DDS offers access to a medical i2b2
database (https://www.i2b2.org/) in this particular
context. We were able to successfully control
accesses of medical professionals within a clinic.
Moreover, several value-added services have been

DATA 2018 - 7th International Conference on Data Science, Technology and Applications

332

developed on top of the DDS and integrated into the
marketplace, too. Of particular interest is the
combination of data access with making data
anonymous.

Our future work will consider commonly
used database interfaces such as OData
(http://www.odata.org) and other high-level REST
APIs as data providers. We also plan to evaluate in
depth whether the approach is appropriate for
advanced restrictions such as satisfying regulatory
compliance, governmental or dictated by another
body. Moreover, the performance impact of filtering
will be investigated in detail.

REFERENCES

Abramov, J., Anson, O., Dahan, M. et al., 2012. A
methodology for integrating access control policies
within database development. Computers & Security,
2012, Vol. 31, No 3, pp. 299-314.

Balazinska, M., Howe, B., and Suciu, D., 2017. Data
markets in the cloud: An opportunity for the fatabase
community. Proc. of VLDB Endowment 2011, Vol. 4,
No 12, pp. 1482-1485.

Barker, S., 2008. Dynamic meta-level access control in
SQL. In: Data and Applications Security XXII.
Springer Berlin Heidelberg, 2008, pp. 1-16.

Bertino, E., Jajodia, S., and Samarati, P., 1999. A flexible
authorization mechanism for relational data manage-
ment systems. In ACM Transactions on Information
Systems, Vol. 17, No. 2, April 1999, pp. 101-140.

Caires, L., Pérez, J., Seco, J. et al., 2011. Type-based
access control in data-centric systems. In: 20th
European Conference on Programming Languages and
Systems: Part of the joint European conferences on
theory and practice of software. Springer Berlin
Heidelberg, 2011. pp. 136-155.

Chaudhuri, S., Dutta, T. and Sudarshan, S., 2007. Fine
grained authorization through predicated grants. In:
23rd Int. Conference on Data Engineering (ICDE),
IEEE 2007, pp. 1174-1183.

Chlipala, A. and Impredicative, L., 2010. Static checking
of dynamically-varying security policies in database-
backed applications. In: The USENIX Conference on
Operating Systems Design and Implementation, 2010,
pp. 105-118.

Corcoran, B., Swamy, N., and Hicks, M., 2009. Cross-tier,
label-based security enforcement for web applications.
In: Proc. of the 2009 ACM SIGMOD Int. Conference
on Management of Data. ACM, 2009, pp. 269-282.

Fischer, J., Mario, D., Majumdar, R. et al., 2009. Fine-
grained access control with object-sensitive roles. In:
European Conf. on Object-Oriented Programming
(ECOOP 2009). Springer Berlin Heidelberg, 2009, pp.
173-194.

Fuchs, L., Pernul, G., and Sandhu, R., 2011. Roles in
information security – a survey and classification of

the research area. Computers & Security, 2011, Vol.
30, No 8, pp. 748-769.

Jayaraman, K., Tripunitara, M., Ganesh, V. et al., 2013.
Mohawk: abstraction-refinement and bound-
estimation for verifying access control policies. ACM
Transactions on Information and System Security
(TISSEC), 2013, Vol. 15, No 4, Article No 18.

Komlenovic, M., Tripunitara, M., and Zitouni, T., 2011.
An empirical assessment of approaches to distributed
enforcement in role-based access control (RBAC).
CODASPY 2011, pp. 121-132.

LeFevre, K., Agrawal, R., Ercegovac, V. et al., 2004.
Limiting disclosure in hippocratic databases. In: Proc.
13th VLDB, pp. 108-119.

Oracle, 2017. Using Oracle Virtual Private Database to
Control Data Access. [Online]. Available: https://
docs.oracle.com/cd /B28359_01/network.111/b28531/
vpd.htm#DBSEG007.

Pereira, O., Regateiro, D., and Aguiar, R., 2014.
Distributed and Typed Role-based Access Control
Mechanisms Driven by CRUD Expressions. Int.
Journal of Computer Science: Theory and Application,
Vol. 2, No 1, October 2014, pp 1-11.

Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P.,
2004. Extending query rewriting techniques for fine-
grained access control. In: ACM SIGMOD Conference
2004, pp. 551–562

Rjaibi, W., 2012. Data security best practices: a practical
guide to implementing row and column access control.
[Online]. Available: https://www.ibm.com/developer
works/community/wikis/home?lang=en#!/wiki/Wc9a0
68d7f6a6_4434_aece_0d297ea80ab1/page/A%20pract
ical%20guide%20to%20implementing%20row%20an
d%20column%20access%20control.

Roichman, A. and Gudes, E., 2007. Fine-grained access
control to web databases. In: Proceedings of the 12th
ACM symposium on access control models and
technologies. ACM, 2007. pp. 31-40.

Roman, D., Paniagua, J., Tarasova T. et al., 2017.
proDataMarket: a data marketplace for monetizing
linked data. Demo paper at 16th Int. Semantic Web
Conference (ISWC’17), Vienna 2017.

Sonntag, D., Tresp, V., Zillner, S., Cavallaro, A. et al.,
2015. The clinical data intelligence project.
Informatik-Spektrum Journal 2015, pp. 1–11.

Wang, Q, Yu, T., Li, N. et al., 2007. On the correctness
criteria of fine-grained access control in relational
databases. In: Proc. of the 33rd Int. conference on
Very Large Data Bases, 2007, pp. 555-566.

Zarnett, J., Tripunitara, M., and Lam, P., 2010. Role-based
access control (RBAC) in Java via proxy objects using
annotations. In: Proc. of the 15th ACM symposium on
access control models and technologies. ACM, 2010,
pp. 79-88.

XACML, 2012. XACML – eXtensible Access Control
Markup Language. [Online]. Available: http://www.
oasisopen.org/committees/tchome.php?wgabbrev=xac
ml.

Architectural Considerations for a Data Access Marketplace

333

