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Abstract: This paper compares the discriminating powers of various acoustic group features for the task of automatic
sleepiness recognition using three different classifiers: Voted Perceptron, Simple Logistic, and Random Forest.
Interspeech 2011 Sleepiness Sub-Challenge’s “Sleepy Language Corpus” (SLC) is used to generate the 4368
acoustic features of the official baseline feature set. The feature space is divided into Low-Level Descriptor
(LLD) partitions. We consider the resulting feature space in groups rather than individually. A group feature
corresponds to a set of one or more LLD partitions. The relevance of various group features to sleepiness state
is then evaluated using the mentioned classifiers. Employing larger feature sets has been shown to increase
the classification accuracy in sleepiness classification. Our results, however, demonstrate that a much smaller
subset of the baseline feature set outperforms the official Sub-Challenge baseline on the SLC test data.

1 INTRODUCTION

Sleep is a widespread phenomenon and there is great
interest in detecting it. An important area of inter-
est is the prevalent sleep related road accidents (Pack
et al., 1995; McCartt et al., 1996; Vanlaar et al.,
2008) where sleep detection systems may play a crit-
ical role in preventing them. Another area of great in-
terest is in the emerging fields of Ubiquitous Comput-
ing, Intelligent Companion, and Robots for Eldercare,
where both the naturalness and efficiency of Human-
Computer Interaction can be enhanced by knowing
the speaker’s various states such as fatigue and sleepi-
ness. The system may provide feedback about the
user’s state to appear more emphatic and may adapt
its output to the user’s state to render the communica-
tion more intelligible (Krajewski et al., 2008).

Employing the speech mode in recognition appli-
cations offers advantages: 1) over modes that use in-
trusive or inconvenient sensors which require being
attached to the subject or 2) under conditions that
degrade performance of alternative modes, e.g., low-
light environment for the visual mode (Krajewski and
Kröger, 2007; Krajewski et al., 2008; Hönig et al.,
2014a; Hönig et al., 2014b; Pir et al., 2017).

The binary task of sleepiness classification, a

computational paralinguistics (CP) task, was pre-
sented at Interspeech 2011 Sleepiness Sub-Challenge
(Schuller et al., 2011). Whereas Automatic Speech
Recognition (ASR) tries to determine which words
are spoken, CP attempts to discover how those words
are spoken and thereby gain knowledge about the var-
ious aspects and conditions of the speakers, e.g., age,
gender, sleepiness, friendliness, etc. (Schuller and
Batliner, 2014; Hantke et al., 2016).

The Sleepiness Sub-Challenge employs the
openSMILE toolkit (Eyben et al., 2010) to generate
the 4368 baseline acoustic features from the “Sleepy
Language Corpus” (SLC) (Schuller et al., 2011). A
score of 70.3% Unweighted Average Recall (UAR)
is obtained by the Sub-Challenge baseline feature set
which is considered to be a collection of relevant
features for the task of sleepiness (Schuller et al.,
2011; Dhupati et al., 2010). The UAR measure takes
the imbalance between class instances into account
(Schuller et al., 2011)

We divide the feature space into Low-Level De-
scriptor (LLD) partitions and consider the resulting
feature space in groups rather than individually (Pir
and Brown, 2015). A group feature corresponds
to a set of one or more LLD partitions. The Sub-
Challenge findings demonstrate that using larger fea-
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Table 1: Type: Type of features included in LLD set. LLD-Set: Names of LLDs contained in the set. nLLD: Number of
LLDs in the LLD set.

Type LLD-Set nLLD

Energy

Sum of auditory spectrum 1
Sum of RASTA-style filtered auditory spectrum 1
RMS Energy 1
Zero-Crossing Rate 1

Spectral

RASTA-style filt. auditory spectrum 26
Spectral energy 2
Spectral Roll Off 4
Spctral Flux, Entropy, Variance, Skewness, Kurtosis, Slope 6
MFCC 12

Voice

F0 1
Probability of voicing 1
Jitter (local) 1
Jitter (delta) 1
Shimmer 1

ture sets improves the classification performance. By
evaluating the various constituent group features of
the baseline feature set we attempt to discover those
that are more relevant for the task. This information,
in turn, may be helpful in designing feature sets with
superior performance.

The novel aspect of this paper in the context of
sleepiness recognition, to the best of our knowledge,
is the use of multiple classifiers in evaluating the dis-
criminating power of the various group features that
comprise the openSMILE generated baseline feature
set without employing any feature selection opera-
tion.

This paper is organized as follows. Section 2 de-
scribes group features, LLDs, and the Mel-Frequency
Cepstral Coefficients (MFCCs). Section 3 describes
the corpus. Section 4 covers the group features con-
sidered in experimental evaluation, the over-sampling
step, and the classifiers employed. Section 5 presents
the experimental results and the paper’s conclusions
and suggested future work are discussed in Section 6.

2 FEATURES

Acoustic features are generated, on the chunk level,
by application of functionals like statistical moments
or quartiles to LLD contours such as Fundamental
Frequency or Zero-Crossing Rate (Schuller et al.,
2009; Weninger et al., 2013; Schuller et al., 2011).

2.1 Group Features

Acoustic group features are comprised of LLD par-
titions. LLD-based portioning is acoustically moti-

vated since the features within an LLD are supra-
segmental information on the same single LLD and
therefore related (Schuller et al., 2011; Pir and Brown,
2015; Pir et al., 2016; Pir et al., 2017)

2.2 LLDs

The list of basic LLDs used by the openSMILE toolkit
to generate the baseline acoustic features are shown in
Table 1. The LLDs are divided by type into: energy-
related, spectral, and voice-related sets. Details about
the full set of functionals applied to these LLDs can be
found in (Schuller et al., 2011). For each basic LLD
shown, there is a corresponding delta LLD. Delta is
defined as the first order difference function of the re-
lated LLD (Eyben, 2016). The total number of LLDs,
i.e., basic and delta combined, are therefore twice the
numbers shown in Table 1.

2.3 MFCCs

The MFCCs (Davis and Mermelstein, 1980) are
among the most popular features for ASR and have
also been successful in many other audio process-
ing tasks such as speaker identification, music sig-
nal processing, and CP (Eyben, 2016; Lerch, 2012).
We therefore chose to investigate the performance of
four of their smaller subsets in addition to the full set
which is included in the openSMILE feature set.

3 CORPUS

The 21 hours of SLC speech recordings were made
from 99 subjects. The recordings have a sampling rate
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Table 2: Classification results in % UAR on test data using three classifiers: VP, SL, and RF. Type: Type of features included
in the group feature. Group: Abbreviation for the group feature. Basic: Results for basic group features. Delta: Results for
delta group features. Comb: Results for the combined basic and delta group features. The best performance for each row is
depicted in bold.

VP SL RF
Type Group Basic Delta Comb Basic Delta Comb Basic Delta Comb

Energy ENER 61.3 60.8 62.4 64.0 64.5 65.7 58.4 65.3 62.9

Spectral

RFilt 66.0 61.6 64.9 68.3 65.5 67.7 64.9 63.6 65.5
SpEn 42.7 45.8 46.1 54.2 57.7 58.7 51.0 53.0 51.0
SpRo 62.0 56.4 58.2 61.9 62.2 62.0 63.7 62.6 64.9
Mom+ 63.3 62.4 64.4 63.2 64.1 63.8 60.7 61.1 61.2
MFCC12 63.7 59.4 62.1 64.2 59.0 63.3 67.9 61.7 66.0

Voice VOICE 66.7 63.3 65.3 66.6 65.8 66.7 67.8 62.6 67.6
All ALL 67.1 65.3 67.9 70.4 66.5 68.9 68.7 69.0 69.8

MFCC

MFCC1 66.4 55.9 63.5 66.6 54.0 67.3 66.2 61.5 67.8
MFCC2 66.4 60.8 65.8 67.4 59.4 67.1 70.1 62.5 70.4
MFCC3 65.3 59.1 65.5 64.9 56.9 65.2 70.1 62.3 70.7
MFCC4 64.4 60.0 64.5 64.8 59.0 64.4 70.2 62.4 70.2

of 16 kHz and are quantized at 16 bits (Schuller et al.,
2011).

SLC uses the Karolinska Sleepiness Scale (Shahid
et al., 2012), which defines levels of sleepiness 1
though 10. A level greater than 7.5 represents the
sleepy state and one equal to or less than 7.5 indicates
a non-sleepy state.

4 METHOD

4.1 Group Features Considered

For each LLD, three different feature sets are consid-
ered for evaluation. The first set consists of the basic
features. The second set is comprised of the delta fea-
tures of the corresponding basic features of the first
set. The third set is the basic and delta sets combined.

The number of energy-related LLD sets is small
and hence they are combined into a single group fea-
ture for performance evaluation. The voice-related
LLD sets are also combined for the same reason. Each
of the five spectral LLD sets is considered as a group
feature and evaluated separately. In addition, four
MFCC group features are considered where the first
group includes the first coefficients, the second group
includes the first and second coefficients, and so forth.

4.2 Synthetic Minority Over-sampling
Technique

WEKA’s Synthetic Minority Over-sampling Tech-
nique (SMOTE) implementation (Chawla et al., 2002)

is used to balance the number of class instances in the
development set.

4.3 Classifiers

Our three classifiers use WEKA’s (Hall et al., 2009)
implementations: VotedPerceptron (VP) (Freund and
Schapire, 1999), SimpleLogistic (SL) (Sumner et al.,
2005), and RandomForest (RF) (Breiman, 2001). The
training is done on training and development data
combined and the evaluation is performed on test data
using the Sub-Challenge defined data partitions.

5 EXPERIMENTAL RESULTS

5.1 Relevance

The classification results on test data are shown in Ta-
ble 2 for the basic, delta, and combined group features
using three classifiers: VP, SL, and RF. The bold en-
tries in each row of the table depict the best perfor-
mance for the associated group feature. The results
demonstrate that relevance depends on the classifier
used, e.g., Mom+ is most relevant for VP, RFilt for
SL, and SpRo for RF. Alternatively, average relevance
could be defined as the classification accuracies’ av-
erage for all classifiers.

5.2 Comparison Among Basic, Delta,
and Combined Groups Features

Table 3 shows the classification accuracy averages for
the basic, delta, and combined group features using
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each classifier. The basic groups’ averages outper-
form those of the delta for every classifier and the
combined groups’ averages outperform those of the
basic for the RF and SL classifiers.
Table 3: Classification accuracy averages in % UAR for the
basic, delta, and combined group features using each classi-
fier. Classifier: Classifier used. The rest of the columns are
described as in Table 2.

Classifier Basic Delta Comb
RF 65.0 62.3 65.7
SL 64.7 61.2 65.1
VP 62.9 59.2 62.6

In addition, Table 4 shows the percentage of cases
where each of the basic, delta, and combined groups
achieves top performance for every classifier. The
combined groups are associated with about 57% of
the cases followed by the basic groups representing
around 35% of the cases. The delta groups achieve
top results in only about 8% of the cases.

Table 4: The percentages of best performances for every
classifier. Classifier: Classifier used. Basic, Delta, and
Comb: The percentage of times the corresponding category
of group features achieves top performance for a particular
classifier and group feature.

Classifier Basic Delta Comb
All 35% 8% 57%

5.3 Most Relevant Group Features
Overall

The three most relevant, i.e., top performing, group
features using any classifier are shown in Table 5.
All the top three performances are achieved by the
RF classifier on some MFCC group. The best re-
sult, 70.7% UAR, achieved by the combined MFCC3
group feature outperforms the official Sub-Challenge
baseline of 70.3% while being comprised of only 6
LLDs.

We have not included in the table the 70.4% UAR
result obtained by the SL classifier on the entire base-
line feature set as our goal is to find particular group
features that are relevant to the sleepiness state.

5.4 Most Relevant Group Features on
Average

The three most relevant group features on average are
shown in Table 6. The MFCC2 basic group feature,
comprised of only 2 LLDs, achieves the highest av-
erage performance of 68.0% UAR. We have not in-
cluded performance results on the entire baseline fea-
ture set for the reason described above.

Table 5: Three top performing group features using any
classifier. Group: Abbreviation for the group feature. Cat:
Group feature category. Cls: Classifier. nLLD: Number of
LLDs in the group feature. % UAR: Classification result in
% UAR. Performance results that are superior to the Sub-
Challenge baseline are depicted in bold.

Group Cat Cls nLLD % UAR
MFCC3 Comb RF 6 70.7
MFCC2 Comb RF 4 70.4
MFCC4 Basic RF 4 70.2

Table 6: Columns are described as in Table 5.

Group Cat nLLD % UAR
MFCC2 Basic 2 68.0
MFCC2 Comb 4 67.8
MFCC3 Comb 6 67.1

5.5 Irrelevant Group Feature

Our analysis has allowed us to identify a group fea-
ture, the SpEn (Spectral Energy) group, that performs
worse than chance for all three categories as shown in
Table 7. We note that the group is not irrelevant when
using the SL classifier and the performance of the RF
classifier is near chance.
Table 7: Classification results of the VP classifier for SpEn
(spectral energy) group feature. Columns are described as
in Table 2.

VP
Group Basic Delta Comb
SpEn 42.7 45.8 46.1

5.6 Comparison with Previous Results

Of the six accepted papers in the Interspeech 2011
Sleepiness Sub-Challenge only three surpassed the
highly competitive baseline (Schuller et al., 2014).
The best performing system achieved a UAR of
71.7% which is not a significant improvement over
the baseline at an α = 0.05 level (Schuller et al.,
2014). The mentioned system employed two other
standard feature sets in addition that of the Sleepiness
Sub-Challenge. Classification results were obtained
using the authors’ proposed Asymmetric Simple Par-
tial Least Squares method, SVM, and fusions (Huang
et al., 2011; Schuller et al., 2014). Our best perfor-
mance is achieved, however, using only about 5% of
the features (6 out of 118 LLDs) in the baseline fea-
ture set. This reduction is significant in two important
ways. First, it renders the training phase of computa-
tionally intensive classifiers more tractable. Second,
it provides knowledge to domain experts by identify-
ing those features that are better suited to the task.
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Although (Hönig et al., 2014a) reports a state-
of-the-art result of 71.9% UAR, the dataset used is
smaller and a direct performance comparison cannot
be made.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we compared the accuracy perfor-
mances of LLD-based group features that comprise
the Sleepiness Sub-Challenge’s baseline feature set
using three different classifiers. Our analysis has re-
vealed the relative discriminating powers of various
group features for a specific classifier as well as aver-
aged over all classifiers. Our top performance, which
achieved improvement over the official baseline, was
obtained using the Random Forest classifier and the
MFCC group feature containing the first three coeffi-
cients. The mentioned MFCC group feature includes
only 6 LLDs out of the 118 that comprise the baseline
feature set.

Future work includes extending the current frame-
work for evaluating relevance for group features in the
context of other paralinguistics tasks as well as devel-
oping feature selection methods that incorporate the
knowledge obtained about group feature relevance in
this paper.
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