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Abstract: As the number of digital medical images taken daily rapidly increases, manual annotation is impractical,
time-consuming and prone to errors. Hence, there is need to create systems that automatically classify and
annotate medical images. The aim of this presented work is to utilize Transfer Learning to generate image
keywords, which are substituted as text representation for medical image classification and retrieval tasks.
Text preprocessing methods such as detection and removal of compound figure delimiters, stop-words, special
characters and word stemming are applied before training the keyword generation model. All images are
visually represented using Convolutional Neural Networks (CNN) and the Long Short-Term Memory (LSTM)
based Recurrent Neural Network (RNN) Show-and-Tell model is adopted for keyword generation. To improve
model performance, a second training phase is initiated, where parameters are fine-tuned using the pre-trained
deep learning network Inception-ResNet-V2. For the image classification tasks, Random Forest models trained
with Bag-of-Keypoints visual representations were adopted. Classification prediction accuracy was higher for
all classification schemes and on two distinct radiology image datasets using the proposed approach.

1 INTRODUCTION

Due to advances in software, hardware, and digital
imaging in the medical domain, the number of images
taken per patient scan has rapidly increased (Rah-
man et al., 2007; Tagare et al., 1997). To decrease
the burden on radiologists and maintain the maxi-
mum interpretation of these radiology images, there
is need to create automatic computer-aided interpre-
tation, which can be further applied for image anno-
tation and semantic information extraction.

An important criteria for creating an effective
classification system, is the selection and combina-
tion of features for an adequate representation of the
images. As shown in (Pelka and Friedrich, 2015;
Codella et al., 2014; Valavanis et al., 2016; Kalpathy-
Cramer et al., 2015; Pelka and Friedrich, 2016),
multi-modal representation achieves higher classifica-
tion rates in biomedical annotation tasks. This is the
combination of visual and text representations which
sufficiently represents these biomedical images.

However, for real clinical cases and some image
classification tasks such as ImageCLEF2009 Medical
Annotation Task (Tommasi et al., 2009) and Image-
CLEF 2015 Medical Clustering Task (Amin and Mo-
hammed, 2015), corresponding text representations
are not available. In this paper, Transfer Learning
(Pan and Yang, 2010) is utilized to generate keywords
(Pelka and Friedrich, 2017), which are combined with
visual features to obtain multi-modal image represen-
tations. These text features are further adopted for the
medical image classification tasks mentioned above
and semantic tagging.

As deep learning techniques (LeCun et al., 2015)
have improved prediction accuracies in object detec-
tion (Huang et al., 2017), speech recognition (Hinton
et al., 2012) and in domain application such as med-
ical imaging (Abrao et al., 2007; Xu et al., 2014), a
deep learning architecture is used to create the key-
word generation model. Deep Convolutional Neu-
ral Networks (dCNN) (Szegedy et al., 2017) are ap-
plied to encode the medical images to a feature rep-
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resentation which is decoded using a Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) based Recurrent Neural Network (RNN)
(Bengio et al., 1994) to generate appropriate key-
words for a given image.

For the image classification tasks, Random For-
est (Breiman, 2001) models trained with visual and
text representations were adopted. Bag-of-Keypoints
(Csurka et al., 2004; Lazebnik et al., 2006) computed
with dense SIFT descriptors (Dalal and Triggs, 2005)
were combined with text representations obtained by
vector quantization on a Bag-of-Words (Salton and
McGill, 1983) codebook. The codebook was created
with words from the keyword generation model.

Figure 1 shows the complete workflow for the ap-
proach presented in this paper. PART 1 displays nec-
essary steps for creating a keyword generator. This
is a distinct and stand-alone process which does not
need PART 2 for application. The keyword genera-
tor can be further adopted for several purposes, such
as image classification and retrieval. In PART 2,
the keyword generator is used to create keywords for
medical datasets that lack text representations. This
second part is dependable on the first part. Two
datasets containing grayscale radiographs were uti-
lized in PART 2, however there are no restrictions,
as the keyword generator was created using biomed-
ical literature figures. The rest of this paper is struc-

Figure 1: Overview of the proposed approach workflow.

tured as follows: Section 2.1 lists the adopted dataset
for keyword generation and the two datasets used

for evaluating the proposed approach. In subsec-
tions 2.2 and 2.3, applied deep learning networks, vi-
sual representation and machine learning methods for
keyword generation and image classification are de-
scribed. The achieved results are stated in section 3.
Finally, results are discussed in section 4 and conclu-
sions are drawn in section 5.

2 MATERIAL AND METHOD

2.1 Datasets

Three datasets are applied for this proposed work:

• ImageCLEFcaption Prediction 2017: For key-
word generation model

• ImageCLEF 2009 Medical Image Annotation
Task: For image classification and evaluation

• ImageCLEF 2015 Medical Clustering Task: For
image classification and evaluation

ImageCLEFcaption Prediction 2017. This dataset
was distributed at the ImageCLEFcaption 2017 Task
(Eickhoff et al., 2017). ImageCLEFcaption 2017

Figure 2: Example of a medical image with corresponding
caption and Concept Unique Identifiers (CUI). The com-
puter tomography scan was randomly chosen from the vali-
dation set of the ImageCLEFcaption 2017 Task.
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consisted of two subtasks: Concept Detection and
Caption Prediction. All distributed figures originate
from open access biomedical journal articles pub-
lished in PubMed Central (PMC) (PubMed Central,
2017). The objective of the concept detection task
was to retrieve clinical concepts present in the med-
ical images whereas for the caption prediction task,
meaningful captions to the images had to be predicted
(Eickhoff et al., 2017). Figure 2 shows an example
of an image with the corresponding information pro-
vided in the distributed dataset. The same datasets
were distributed for both Concept Detection and Cap-
tion Prediction tasks and includes a variety of content
and situations, ranging from ultrasound images and x-
rays to charts and clinical photographs, which can be
seen in figure 3.

For the Caption Prediction Task, a training set
containing 164,614 image - caption pairs and an ad-
ditional validation set of 10,000 biomedical image -
caption pairs for evaluation purposes in the develop-
ment stage were distributed. Official evaluation was
computed using BLEU scores (Papineni et al., 2002)
on a test set with 10,000 biomedical images. For the

Figure 3: Examples of biomedical images showing variety
of content and situation. All images were randomly cho-
sen from the validation set of the ImageCLEFcaption 2017
Task.

Concept Detection Task, a set of UMLS R© (Unified
Medical Language System) Concept Unique Identi-
fiers (CUIs) (Bodenreider, 2004) were provided for

each of the 164,614 biomedical images. These UMLS
concepts were identified using the QuickUMLS li-
brary (Soldaini and Goharian, 2016) from the original
captions published with the images (Eickhoff et al.,
2017). F1-Score was used as evaluation metric.

ImageCLEF 2015 Medical Clustering Task. This
dataset was distributed at the Medical Clustering Task
held at ImageCLEF 2015 and contains high resolu-
tion x-ray images collected from a hospital in Dhaka,
Bangladesh (Amin and Mohammed, 2015). X-rays
of both male and female patients aged 6 months to 72
years were present in the distributed dataset (Amin
and Mohammed, 2015). The training set included
500 images and the test set distributed for evalua-
tion contained 250 images. For each of the classes,
’Body’, ’Head-Neck’, ’Upper-Limb, ’Lower-Limb’
and ’True-Negative’, 100 images were present in the
training set. An example of the x-rays is shown in
figure 4.

Figure 4: Examples of x-rays with corresponding classifi-
cation. All images were randomly chosen from the training
set of the ImageCLEF 2015 Medical Clustering Task.

ImageCLEF 2009 Medical Image Annotation
Task. The dataset was distributed at the Image-
CLEF 2009 Medical Annotation task (Tommasi et al.,
2009). The training set consists of 12,671 grayscale x-
rays and the official evaluation set has 1,732 grayscale
x-rays. Each radiograph in the training set is anno-
tated with a 13 character string denoting the Image
Retrieval in Medical Applications (IRMA) (Lehmann
et al., 2004) classification code.

The IRMA-code describes the modality of the im-
ages, orientation of the image, examined body re-
gion and the biological system investigated. This
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classification scheme contains 193 distinct classes.
Figure 6 shows two radiographs with annotations
1121-127-732-500 and 1121-410-620-625, represent-
ing ”xray overview image; coronal anteroposterior;
middle right abdomen; gastrointestinal system” and
”xray analog low beam energy; other oblique orienta-
tion; left breast; Reproductive female system breast”.

Figure 6: Example of two grayscale radiographs annotated
with the 13-digit IRMA classification code. Both images
are from the ImageCLEF 2009 Medical Annotation Task
Training Set.

2.2 Keyword Generation

For keyword generation, a combination of encod-
ing and decoding using Convolutional Neural Net-
works (CNN) and Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) based Recur-
rent Neural Networks (RNN) (Bengio et al., 1994) is
adopted. This approach, also known as Show-And-
Tell model was proposed in (Vinyals et al., 2015) and
further improved in (Vinyals et al., 2017).

To produce rich visual representations of the im-
ages, CNN is used as an image encoder by pre-
training it for an image classification task. The
LSTM-RNN utilized as caption decoder generates the
image keywords, using the CNN last hidden layer as
input (Vinyals et al., 2015).

Figure 5 shows the keyword generation model
training setup. In the first training phase, the LSTM
is trained using a corpus of paired image and cap-
tions generated from the biomedical figures in the
ImageCLEF 2017 Caption Prediction Task Training
Set (Eickhoff et al., 2017). No further dataset was
used for training. In the second phase, parameters
of the image model and LSTM are fine-tuned us-
ing the deep learning network Inception-ResNet-V2
(Szegedy et al., 2017). The parameters for the image
keyword generation model are:

• Batch size = [1. Trainingphase = 32; 2. Training-

Figure 5: Overview of Long Short-Term Memory based Recurrent Neural Network Model applied for biomedical image
keyword generation.
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phase = 32]

• Number of Epochs = [1. Trainingphase = 194; 2.
Trainingphase = 583]

• Vocabulary size = 23,000 {Minimum word occur-
rence ≥ 4}

• Initial learning rate = 2

• Model optimizer = stochastic gradient descent

• Learning rate decay factor = 0.5

• Number of epochs per decay = 8

• Inception learning rate = 0.0005

• Inception model initialization = Inception-
ResNet-V2

• LSTM embedding size = 512

• LSTM units number = 512

• LSTM initializer scale = 0.08

• LSTM dropout keep probability = 0.7

For all other parameters not mentioned above, the de-
fault values as proposed in (Vinyals et al., 2015) and
implemented in the Tensorflow-Slim im2txt-model
(Abadi et al., 2015; Shallue, 2017) were adopted.

Several text preprocessing methods such as reduc-
tion of image captions to nouns and adjectives, re-
moval of stopwords (Bird et al., 2009) and special
characters, and word stemming (Porter, 1980) were
performed. These text preprocessing steps are further
detailed in (Pelka and Friedrich, 2017).

2.3 Classification

Visual Representation. For whole-image classifi-
cation tasks, the Bag-of-Keypoints (BoK) (Csurka
et al., 2004) approach has achieved high classifica-
tion accuracy results (Lazebnik et al., 2006; Zhang
et al., 2006). BoK is based on vector quantization of
affine invariant descriptors of image patches (Csurka
et al., 2004). The simplicity and invariance to affine
transformation are advantages that come with this ap-
proach.

All functions applied for visual representation
computation are from the VLFEAT library (Vedaldi
and Fulkerson, 2010). Dense SIFT (dSIFT) (Li and
Perona, 2005) applied at several resolutions were uni-
formly extracted with an interval of 4 pixels using the
VL-PHOW function. Computational time was sped
up by computing k-means clustering with Approxi-
mated Nearest Neighbor (ANN) (Indyk and Motwani,
1998) on randomly chosen descriptors using the VL-
KMEANS function. This partitions the observations
into k clusters so that the within-cluster sum of square
is minimized.

A maximum number of 20 iterations was defined
to allow the k-means algorithm converge and clus-
ter centers were initialized using random data points
(Hartigan and Wong, 1979). A codebook containing
1,000 keypoints was generated as k = 1,000. Using
the VL-KDTREEBUILD function, the codebook was
further optimized by adapting a kd-tree with metric
distance L2 for quick nearest neighbor lookup.

Text Representation. Utilizing the keyword gener-
ation model described in subsection 2.2, keywords
were generated for all radiology images in both Im-
ageCLEF 2009 Medical Annotation Task and Image-
CLEF 2015 Medical Clustering Task datasets. Fig-
ures 7 and 8 show generated keywords for randomly
chosen radiographs from the ImageCLEF 2009 Med-
ical Annotation Task Training Set and ImageCLEF
2015 Medical Clustering Task Training Set, respec-
tively. No further text preprocessing methods were
applied to the generated keywords, as this was done
before creating the keyword generation model.

Figure 7: Examples of keywords generated. All images are
from the ImageCLEF 2009 Medical Annotation Task Train-
ing Set. Keyword generation model was created using the
ImageCLEFcaption Prediction Task Training Set.

Figure 8: Examples of keywords generated. All images are
from the ImageCLEF 2015 Medical Clustering Task Train-
ing Set. Keyword generation model was created using the
ImageCLEFcaption Prediction Task Training Set.

For text representation, the Bag-of-Words (BoW)
(Salton and McGill, 1983) approach was adopted.
The basic concept is to extract features by counting
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the frequency or presence of words in the text to be
classified. These words have to be first defined in
a dictionary or codebook. The fifty words with the
highest occurrence were used as dictionary, hence ob-
taining a feature vector size of 50. Several dictionary
sizes as well the benefit of Information Gain (Guyon
and Elisseeff, 2003) were investigated, but not further
used as no relevant advantage was detected.

Random Forest. Random forest (RF) (Breiman,
2001) models with 1,000 deep trees were created as
image classifiers. These RF-models were trained us-
ing multi-modal image representation. This is the
concatenation of visual features derived with the BoK
approach and the text features computed using BoW.
To reduce computational time, feature dimension and
noise, Principal Component Analysis (PCA) (Jolliffe,
2011) was applied on the visual representation. Pa-
rameters used to tune BoK and RF are:

• Codebook size: 1,000

• Number of descriptors extracted: 1,000

• Visual representation size: 4,000 (2x2 grid)

• Feature size reduction: 4000 to 100 (Principal
Component Analysis)

• Number of trees (RF): 1,000

• Ensemble method (RF): Bag

Support Vector Machines. Multi-class Support
Vector Machine (SVM) (Burges, 1998) image clas-
sification models were created for comparison. These
SVM-models were trained using the same multi-
modal image representation applied with the Random
Forest models. Parameters used to tune the SVM-
Models are:

• Kernel type: Radial basis function

• Cost parameter: 10

• Gamma: 1 / Number-Of-Features

Classification Schemes. For the ImageCLEF 2009
Medical Annotation Task, 4 different classification
schemes were used for evaluation. These schemes are
derived by using the complete IRMA code, mentioned
in subsection 2.1, as well splitting the code to its’ four
axes.

• (T) Technical-Code: 6 classes

• (D) Directional-Code: 34 classes

• (A) Anatomical-Code: 97 classes

• (B) Biological-System-Code: 11 classes

For the ImageCLEF 2015 Medical Clustering Task, a
classification scheme of four (4) classes was used.

3 RESULTS

Table 2 shows generated keywords grouped to the Im-
ageCLEF 2015 Medical Clustering Task classification
scheme. Figure 9 displays the keywords and corre-
sponding UMLS CUIs, and prediction performance
of the random forest classification model is shown in
table 1.

Table 2: Keywords frequently generated for radiology im-
ages of the ImageCLEF 2015 Medical Clustering Task
Training Set. The keywords are grouped to the classifica-
tion scheme accordingly.

Body Head-
Neck

Lower-
Limb

Upper-
Limb

bodi massiv ray posterior
obstruct right ulna acromion
level neck union ulna
lesion effus humerus shoulder
plain pleural shaft carpus
abdomen disc radius end
distal fractur embrochag midshaft

Table 1: Prediction accuracies obtained using the random forest classification and support vector machine models. Column
’Visual Features’ shows accuracy with visual representation whereas ’Multi-Modal’ shows performance accuracies obtained
with the combination of visual and text representations.

Classification Scheme Visual Features Multi-Modal Test Set
Random Forest SVM Random Forest SVM

Technical-Code 97.00% 86.84% 97.75% 95.35% 1,732
Directional-Code 61.64% 55.31% 62.41% 61.26% 1,732
Anatomical-Code 51.15% 54.16% 54.62% 57.79% 1,732
Biological-Code 90.76% 81.12% 91.74% 82.47% 1,732
Medical Clustering 65.60% 66.40% 70.40% 68.80% 250
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Figure 9: Generated keywords and the corresponding Uni-
fied Medical Language Systems (UMLS) Concept Unique
Identifiers (CUI). The radiograph used for demonstration
was randomly chosen from the ImageCLEF 2009 Medical
Annotation Task Training Set.

4 DISCUSSION

It can be seen from table 1, that substituting the gen-
erated keywords as text representation improves the
classification prediction accuracy in both datasets and
all classification schemes. This positive increase is
obtained regardless of the classification method, as
both RF-models and SVM-models predicted better
with multi-modal representations.

The prediction performance varies to classifica-
tion scheme and method. The hierarchical approach
of splitting the IRMA-code to its four axes, proved
to be the better way to address this image annotation
task.

As Deep Convolutional Neural Networks have
proven the obtain improved prediction accuracies, an
approach combining generated keywords with fea-
tures extracted from the activation of a deep convo-
lutional network (DeCAF) (Donahue et al., 2014) is
intended. Positive results regarding biomedical image
classification using DeCAF were reported in (Koitka
and Friedrich, 2016).

The presented approach can be utilized for image
structuring and tagging of semantic information. The
generated keywords can be transformed to Unified
Medical Language Systems (UMLS) Concept Unique
Identifiers (CUIs), which is displayed in figure 9. The
conversion was obtained by applying QuickUMLS
(Soldaini and Goharian, 2016). The converted CUIs
are valuable and essential in terms of image retrieval
purposes.

5 CONCLUSION

As multi-modal image representation has proven to
obtain higher prediction results and some image
dataset lack text representation, an approach to gener-
ate keywords utilizing transfer learning was proposed.
To create a keyword generation model, image-caption
pairs of 164,614 biomedical figures distributed at
the ImageCLEFcaption 2017 Caption Prediction Task
was adopted to train Long Short-Term Memory based
Recurrent Neural Network models. The image cap-
tions were preprocessed by removing compound fig-
ure delimiters, single digits, special characters, word
stemming and reducing the captions to nouns and ad-
jectives.

Utilizing the keyword generation model, text rep-
resentation were created for two distinct radiology
datasets: ImageCLEF 2009 Medical Annotation Task
and ImageCLEF 2015 Medical Clustering Task. The
ImageCLEF 2015 Medical Clustering Task training
set contains 500 high resolution radiographs, 250 in
the test set and has a classification scheme with 4
classes. The ImageCLEF 2009 Medical Annotation
Task has 12,671 radiographs in the training set, 1,732
radiographs in the test set, and four classification
schemes with 5, 34, 97, 11 classes, respectively.

The generated keywords were further applied for
image classification purposes. In both image datasets
and all classification schemes, the prediction accura-
cies obtained with multi-modal image representation
outperformed those achieved using just visual fea-
tures. Using these generated keywords, semantic in-
formation in form of Unified Medical Language Sys-
tems (UMLS) Concept Unique Identifiers (CUIs) can
be tagged to the images, which is beneficial and of
assistance to image retrieval solutions. The proposed
work can be further enhanced by extracting image vi-
sual representation using Deep Convolutional Neural
Networks and optimized Bag-of-Words.
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