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Abstract: Brain cancer phenotyping and treatment is highly informed by radiomic analyses of medical images. 

Specifically, the reliability of radiomics, which refers to extracting features from the tumor image intensity, 

shape and texture, depends on the accuracy of the tumor boundary segmentation. Hence, developing fully-

automated brain tumor segmentation methods is highly desired for processing large imaging datasets. In this 

work, we propose a cooperative learning framework for multi-label brain tumor segmentation, which 

leverages on Structured Random Forest (SRF) and Bayesian Networks (BN). Basically, we embed both 

strong SRF and BN classifiers into a multi-layer deep architecture, where they cooperate to better learn 

tumor features for our multi-label classification task. The proposed SRF-BN cooperative learning integrates 

two complementary merits of both classifiers. While, SRF exploits structural and contextual image 

information to perform classification at the pixel-level, BN represents the statistical dependencies between 

image components at the superpixel-level. To further improve this SRF-BN cooperative learning, we 

‘deepen’ this cooperation through proposing a multi-layer framework, wherein each layer, BN inputs the 

original multi-modal MR images along with the probability maps generated by SRF. Through transfer 

learning from SRF to BN, the performance of BN improves. In turn, in the next layer, SRF will also benefit 

from the learning of BN through inputting the BN segmentation maps along with the original multimodal 

images. With the exception of the first layer, both classifiers use the output segmentation maps resulting 

from the previous layer, in the spirit of auto-context models. We evaluated our framework on 50 subjects 

with multimodal MR images (FLAIR, T1, T1-c) to segment the whole tumor, its core and enhanced tumor. 

Our segmentation results outperformed those of several comparison methods, including the independent 

(non-cooperative) learning of SRF and BN. 

1 INTRODUCTION 

The emergence of the new field of radiomics, which 

addresses the conversion of medical images into 

mineable data through the extraction of large 

amounts of quantitative features (Aerts et al.,2014), 

has led to major advances in tumor diagnosis, 

phenotyping, and patient treatment planning. 

Notably, the reliability of radiomics fundamentally 

depends on the accuracy of the tumor boundary 

segmentation, as radiomic features are generally 

extracted from within and around the tumor lesion. 

Hence, fully automated brain tumor segmentation 

methods are highly desired. This will in part 

alleviate the burden of manually segmenting tumor 

lesions on brain images, as well as facilitate the task 

of statistically analyzing big brain tumor image 

datasets for clinical studies. The large variation in 

tumor characteristics (shape, position, texture) 

makes the segmentation task very challenging. 

To solve this problem, several previous works 

considered tumor segmentation as a classification 

problem at the pixel, voxel, patch or region level 

(Havaei et al., 2017; Koley et al.,2016; Lefkovits et 

al.,2016; Christ at al., 2017; Folgoc et al., 2016). In 

particular, Random Forest (RF) was previously used 

for tumor segmentation, where basically each input 

intensity image patch is mapped to a class label at
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Figure 1: Proposed deep SRF-BN cooperative learning for multi-label tumor lesion segmentation.  In each layer, the SRF 

inputs different features extracted at the 2D patch-level and generates an intermediate segmentation result, while the BN 

inputs different features extracted at the superpixel-level. In the next layer, SRF has two inputs: the original patch features 

and the output segmentation result from the previous layer; while BN has three inputs: the original patch features, the output 

segmentation result from the previous layer and the output SRF segmentation map in the same layer. This deep multi-layer 

cooperative-learning architecture provides contextual information for both classifiers through the intermediate segmentation 

maps to gradually improve their learning. 

at the center pixel of the patch, thereby performing 

patch-to-pixel mapping (Breiman, 2001). As a 

variant of RF, Structured Random Forest (SRF) was 

used to take into account the image structure when 

producing the final segmentation maps, through 

estimating a patch-to-patch mapping. This allows 

integrating more spatial information through 

averaging neighboring output label patches. SRF 

demonstrated high-performance in different 

challenging classification tasks such as in (Zhang et 

al., 2016; Kontschieder et al., 2011; Zhang et al., 

2017).  

On one hand, the increasingly popular 

convolutional neural networks were used for tumor 

segmentation (Havaei et al., 2017). However, fine-

tuning of an entire deep network still requires a lot 

of efforts and resources, and SVM-based methods 

also involve time consuming grid search and cross 

validation to identify good regularization 

parameters. In addition, when multiple pre-trained 

deep CNN models are available, it is unclear which 

pre-trained models are appropriate for target tasks 

and which classifiers would maximize accuracy and 

efficiency. On the other hand, among all the 

graphical models as Neural Networks and decision 

trees, Bayesian Networks (BNs) nicely overcome 

these limitations. Indeed, they are powerful tools in 

first representing probabilistic dependencies and 

uncertainty between different image features (Zhang  

and Ji, 2008), second modeling and fusing complex 

relationships between image features of different 

natures (e.g., multimodal features), and third 

handling noisy as well as missing signals in images. 

Together, these facts made  

BNs well suited for multimodal image 

classification since they are easily adaptable for 

multi-label problems compared to other classifiers 

such as SVM, moreover they encode dependencies 

between the learned features of different class labels. 

While different object segmentation and action 

recognition problems in computer vision were 

solved based on Bayesian graphical representations 

(Panagiotakis et al., 2011; Zhang and Ji, 2011; Yang 

at al., 2015), the use of BN remains absent in tumor 

segmentation literature.  

Although regarded as strong classifiers, both 

SRF and BN might suffer from a few limitations 

when used separately. For instance, SRF does not 

perform well when classifying transitions between 

label classes, while BN parameter learning such as 

prior probabilities is challenging and 

computationally expensive. Combining them 

together, may help iron out the weaknesses of each 

when used separately as well as leverage on their 

strengths (i.e., preserving the learned structural 

information for SRF and the integration of 
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multimodal features for BN). Hence, we propose to 

combine both SRF and BN classifiers into a multi-

layer deep architecture, where they can cooperate to 

perform joint multi-label brain tumor segmentation. 

Our framework incorporates different features 

derived from different image components 

(superpixel and patch) such as intensity features. We 

further integrate contextual features, which capture 

semantic relations (i.e., label relations) between 

neighboring patches and enforce spatial consistency 

between patches within and around the tumor lesion. 

The proposed SRF-BN cooperative learning strategy 

ensures the transfer of the probability maps 

outputted from SRF to BN of the same layer, which 

enables the integration of both patch and superpixel 

level knowledge in a unified framework. 

Additionally, in the spirit of auto-context model, the 

output segmentation map of each layer is further 

aggregated with the original input features, thereby 

augmenting the inputs to subsequent layers. This 

allows boosting the classification performance of 

both classifiers and improving feature learning, 

which progressively refines the segmentation result 

from layer to layer. 

2 DEEP COOPERATIVE 

LEARNING FOR 

MULTI-LABEL 

CLASSIFICATION 

PREPARATION 

In the following, we present the main steps of our 

multi-label cooperative-learning based segmentation 

framework. Fig.1 illustrates the proposed multi-layer 

architecture composed of cascaded SRF-BN blocks, 

where each block ultimately outputs the BN 

posterior probability map fed as semantic context to 

the next SRF-BN block of the subsequent layer. 

Specifically, in each block excluding the first one, 

SRF inputs the intensity patch features of the 

original MR scans with the segmentation result (i.e., 

semantic context) of the previous layer. In turn, the 

prior probabilities required for BN learning are 

statistically computed using (1) the probability 

segmentation maps generated by SRF of the same 

layer and (2) the BN posterior probability of the 

previous layer. In the following sections, we will 

present the design of the two components (SRF and 

BN) making each block in our deep auto-context 

multi-label segmentation architecture. 

2.1 Structured Random Forest 

SRF is a variant of the traditional Random Forest 

classifier, which is able to handle and preserve the 

structure of different labels in the image 

(Kontschieder et al., 2011). While, standard RF 

maps an intensity feature vector extracted from a 2D 

patch centered at pixel x to the label of its center 

pixel x (i.e., patch-to-pixel mapping), SRF maps the 

intensity feature vector to a 2D label patch centered 

at x (patch-to-patch mapping). This is achieved at 

each node in the SRF tree, where the function that 

splits patch features between right and left children 

nodes depends on the joint distribution of two labels: 

a first label at the patch center x and a second label 

selected at a random position within the training 

patch (Kontschieder et al.,2011). We also note that 

in SRF, both feature space and label space nest 

patches that may have different dimensions. Despite 

its elegant and solid mathematical foundation as well 

as its improved performance in image segmentation 

compared with RF, SRF might perform poorly at 

irregular boundaries separating different label 

classes since it is trained using regularly structured 

patches (Kontschieder et al., 2011). Besides, it does 

not include contextual information to enforce spatial 

consistency between neighboring label patches.  

To address these limitations, we propose to 

embed SRF into a deep autocontext framework, 

where the contextual information is provided by a 

Bayesian network which learns to segment the 

image at the superpixel level, allowing to better 

capture irregular boundaries in the image. 

2.2 Bayesian Network 

Various BN-based models have been proposed for 

image segmentation (Zhang and Ji, 2008; 

Panagiotakis et al., 2011; Zhang and Ji, 2011; Guo et 

al., 2017). In our work, we adopt the BN architecture 

proposed in (Zhang and Ji, 2011). As a 

preprocessing step, we first generate the edge maps 

from the input MR image modalities (Fig. 1). The 

edge map consists of a set of superpixels {Spi 

},i=1,..,N (or regional blobs) and edge segments 

{Ej},j=1,..,L. 

We define our BN as a four-layer network, 

where each node in the first layer stores a 

superpixel. The second layer is composed of nodes 

each storing a single edge from the edge map. The 

two remaining layers store the extracted superpixel 

features and edge features, respectively. During the 

training stage, for BN parameters, we define the 

prior probability of p(Spi) as a uniform distribution 
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and then learn the conditional probability p(MSpi 

│Spi ) representing the relationship between the 

superpixel features and their corresponding labels 

using a mixture of Gaussians model. In addition, we 

empirically define the conditional probability 

modeling the relationships between each superpixel 

label and each edge state (i.e., true or false edge) 

p(Ej│Pa (Ej ) ), where Pa (Ej )  denotes the parent 

superpixel nodes of Ej. 

During the testing stage, we learn the BN 

structure encoding the contextual relationships 

between superpixels and edge segments. 

Specifically, each edge node has for parent nodes the 

two superpixel nodes that are separated by this edge. 

In other words, each superpixel provides contextual 

information to judge whether the edge is on the 

object boundary or not. If two superpixels have 

different labels, it is more likely that there is a true 

object boundary between them, i.e. Ej=1, otherwise 

Ej=0. Although automatic segmentation methods 

based on BN have shown great results in the state-

of-the-art, they may perform poorly in segmenting 

low-contrast image regions and different regions 

with similar features (Zhang and Ji, 2011). To 

further improve the segmentation accuracy of BN, 

we propose to include additional information 

through cooperative learning using SRF. 

2.3 SRF-BN Cooperative Learning 
(One Layer) 

To take advantage of the strengths of both classifiers 

and overcome their limitations, we first propose a 

one-layer cooperative learning strategy, where BN 

benefits from the learned patch-to-patch mapping by 

SRF. First, the trained SRF generates the 

segmentation result, using the feature patches 

extracted from the different MRI modalities of the 

testing subject. Then, BN uses the SRF segmentation 

result to define the prior probabilities p(Spi) for each 

superpixel region Spi. Hence, with this cooperative 

learning, the BN prior probabilities are estimated 

based on the input SRF segmentation probability 

maps. Such one-layer cooperative learning strategy 

only boosts the BN performance since it is 

performed in one way (from SRF to BN), while SRF 

does not benefit from BN learning. 

2.4 Deep SRF-BN Cooperative 
Learning (Two Layers) 

To address the aforementioned limitation of the one-

layer SRF-BN architecture, we further propose to 

deepen the cooperative learning between SRF and 

BN in the spirit of auto-context model (Tu and Bai, 

2010). Basically, in the proposed deep auto-context 

SRF-BN cooperative learning architecture, each 

layer inputs the segmentation result of the previous 

layer to boost the per formance of both SRF and BN 

classifiers. In each layer, excluding the first one, 

SRF classifier inputs the segmentation result of the 

previous layer along with the original input 

multimodal feature patches (Fig. 1). This allows the 

integration of contextual features learned at both the 

patch level (from SRF in the previous layer) and 

superpixel level (from BN in the previous layer). 

Similarly, BN inputs the segmentation result of the 

previous layer along with the original input 

multimodal superpixel features, while adding the 

probability segmentation map output of the SRF in 

the same layer. In this way, BN prior probabilities 

are updated in each layer based on the posterior 

probability of the previous layer and the SRF 

probability map in the same layer. 

2.5 Preprocessing and Features 

To improve the performance of our segmentation 

framework, we perform a few preprocessing steps. 

Hence, we apply the N4 filter for inhomogeneity 

correction, and use the histogram linear 

transformation for intensity normalization. To train 

the previous models, we use conventional features 

(e.g., patch intensity) and we also propose a rich 

feature set as follows: 

▪ Statistical Features: First order operators 

(mean, standard deviation, max, min, median, 

Sobel, gradient); higher order operators 

(laplacian, difference of gaussian, entropy, 

curvatures, kurtosis, skewness); texture features 

(Gabor filter); spatial context features 

(symmetry, projection, neighborhoods) 

(Prastawa et al., 2004). 

▪ Symmetric Features: This is originally used to 

describe and to exploit the symmetrical 

properties of the brain structure. Thus, we define 

the symmetry descriptor characterizing the 

differences between symmetric pixels with 

respect to the mid-sagittal plane. The adopted 

symmetry measure is the intensity variance.  

3 RESULTS AND DISCUSSION 

In this section, we display the evaluation results of 

our proposed brain tumor segmentation framework 

on the Brain Tumor Image Segmentation Challenge 

(BRATS, 2015) dataset. It contains brain MRI scans
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Table 1: Segmentation results of the proposed framework and comparison methods averaged across 50 patients.(HT: whole 

Tumor; CT: CoreTumor; ET: Enhanced Tumor; L=i, i=1,_,3 denotes the number of layers; * indicates outperformed 

methods with p-values<0.05. 

Results Dice score 

Features Intensity 
Intensity+symmetry 

descriptor 

Intensity + statistical 

features 

Intensity + statisical 

features+symmetry 

descriptor 

Methods HT CT ET HT CT ET HT CT ET HT CT ET 

Deep-AC 

SRF-BN(L=3) 
86,8 75,9 73,8 87,2 76,3 75 89,09 78,4 78,9 89,1 80,92 79,2 

Deep-AC 

SRF-BN (L=2)* 
85 73,65 70,6 85,4 74,87 73,3 88,79 77,8 78,1 88,9 78,2 78,9 

SRF-BN (L=1)* 79,2 70,15 69 80 70,85 69 82,5 72,6 70 83,6 72,88 70,05 

AC-SRF* 75 58 32 75,29 58,69 32,5 80 70,05 37,12 80,23 73 37,5 

SRF* 72 56 31 72,9 57 31 75 60 35 75,8 61 35,2 

BN* 62,96 42 30 65 43 30,8 70,8 45 32 71,3 45 33 

 

for more than 200 patients with high-grade gliomas. 

For each patient, the four MRI modalities along with 

the corresponding manually labeled glioma's 

segmentation are available; they are rigidly 

coregistered and resampled to a common resolution. 

To generate the oversegmented MR image 

modalities we extract the edge-map from the FLAIR 

MRI using SLIC oversegmentation algorithm 

(Achanta et al., 2010) then we apply it for the 

corresponding T1.c and T2 MRIs. We fix the 

number of superpixels to 1000 and the compactness 

to 10. 

For the BN model, the conditional probabilities 

modeling the relationships between the superpixel 

labeling and the edge state are fixed as follows: 

p(Ej│Pa (Ej ) ) = 0.8 if the parent region nodes have 

different labels and  0.2 otherwise. For the SRF, we 

use a 10x10 feature patches and a 7x7 label patches 

to train 15 trees using 500 iterations for the node 

tests. 

In our experiments we show a comparison to 

several baseline methods: SRF and BN used solely, 

the auto-context SRF (AC-SRF) and SRF-BN 

cooperative learning approach (SRF-BN (L=1)). 

Besides, we test the influence of the layer's number 

on our deep auto-context SRF-BN framework. The 

classifiers were trained using leave-one-patient 

cross-validation experiments. The quality of the 

obtained segmentation was evaluated on the basis of 

the manually annotated ground truth using the well-

known Dice index. In Fig. 2, we show some 

qualitative segmentation results and in Table. 1 and 

Fig. 3 we provide the mean Dice index over 50 

testing subject randomly taken from the Brats 

dataset. 

According to the qualitative and quantitative 

results, the proposed segmentation approach clearly 

outperforms the baseline methods, independently of 

the number of layers, with highly statistical 

significance (p_value <0.05). This proves that (1) 

leveraging the two classifiers does alleviate their 

limitations (2) the integration of the superpixel 

features and patch features in a deep manner boosts 

the performance of the segmentation framework (3) 

the information fusion of multiple image modalities. 

The feature set highly influences the 

classification results of our framework as well as the 

baseline methods. In this respect, the weak effect of 

the symmetry descriptor can be explained by the 

miss-detection of the mid-sagittal plane for some 

subjects. 

In addition, we have performed 5-cross 

validation on the whole dataset (220 subjects) to 

benchmark our results against (Zhao et al., 2016) 

which integrated a Fully Convolutional Neural 

Network and Conditional Random Fields for 

BRATS 2015 segmentation. Our deep SRF-BN 

cooperative learning still outperformed all 

comparison methods (p-value <0.05) and in 

particular the proposed method in (Zhao et al., 

2016): 0.88 vs 0.8 for whole, 0.78 vs 0.68 for core, 

and 0.68 vs 0.65 for enhanced tumor. Although our 

results slightly dropped using using 5-fold cross-

validation, they still achieve the best performance. 
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Figure 2: Qualitative segmentation results for four representative subjects using different segmentation methods: (a) the BN 

segmentation result; (b) the SRF segmentation result, (c) the auto-context SRF; (d) SRF+BN segmentation result; (e) our 

method (2 layers); (f) our method (3 layers); (g) the ground truth segmentation map. 

Also, all proposed and comparison methods 

significantly improved when using 3 modalities 

compared with 1 by 8-9%. The training time took 

about 5 hours and testing on one image took about 4 

minutes. 

We would like to note that the use of the term 

learning ‘transfer’ and ‘deep’ learning was meant in 

the broad sense of both words: (1) mutual 

autocontext information (semantic map) transfer 

between BN and SRF classifiers for progressively 

improving their performances, and (2) ‘deepening’ 

our SRF-BN architecture to gradually improve their 

cooperative learning differs from deep neural 

networks, although both architectures can go deeper. 

However, unlike deep one-step CNN architectures, 

our method is able to consider appearance and 

spatial consistency between neighboring superpixels 

and patches via the gradual autocontext feed 

between SRF and BN. We also stopped at layer 

(L=3) in depth since the improvement became 

negligible at L>3. 

Although the proposed framework showed good 

segmentation results thanks to the deep cooperation 

between the two classifiers (BN and SRF); a few 

limitations can be pointed out for further 

improvements: 

(1) Edge-map estimation. The considered edge-map 

is estimated from a single modality (i.e., 

FLAIR), which limits the learned Bayesian 

mapping to one type of imaging data. 

Estimating edge-maps from different modalities 

(e.g., T1.c and T2 MRIs) will help capture 

different radiomic properties of the tumor lesion 

especially around its boundary.  

(2) Unidirectional flow between classifiers. The 

learning transfer between the classifiers of the 

same block as well as through the pipeline is 

unidirectional, which means it can only go from 

one classifier to the next one. Hence there is no 

mutual benefit between the classifiers of the 

same block. 

(3) Hemispheric brain symmetry detection. The 

brain symmetry method that we used (Loy and 

Eklundh, 2006) fails in detecting the mid-sagittal 

plane in a few cases. This might produce 

unreliable symmetric features. 

We anticipate that addressing these limitations will 

further boost up the performance of our proposed 

framework. We plan to investigate these in our 

future work on a larger dataset. 
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Figure 3: Average Dice index across 50 subjects using our proposed framework and all comparison methods for the three 

tumor tissue classes (whole:HT, core:CT, and enhanced:ET). 

4 CONCLUSIONS 

In this paper, we proposed an automatic brain tumor 

segmentation method based on a cooperative 

learning between two classifiers, Structured RF and 

BN, embedded within a deep auto-context 

architecture. The experimental results prove the 

efficiency of our proposed concept. Thus, SRF-BN 

cooperative learning method outperforms the two 

classifiers used solely, which proves that their 

combination alleviates their limitations. Moreover, 

the application of the deep auto-context architecture 

has shown better performances for both the 

quantitative and the qualitative results demonstrating 

its effectiveness to boost the two classifiers and to 

improve the feature learning.  

Since the obtained results showed the 

effectiveness of stacking SRF and BN within a 

multi-label segmentation framework, we intend to 

explore other architectures composed of these two 

classifiers while addressing the limitations of our 

proposed framework. Besides we will compare our 

method with deep learning methods using multiple 

BRATS testing datasets, including BRATS 2013. 
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