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Abstract: In some manufacturing industries, the task of assembling two parts is a time-consuming step in production. 

Bonding can be more or less easy depending on the parts relative geometry. In this case, it becomes interesting 

to carefully choose the two pieces to be paired among available parts. As one does not know exactly the 

geometrical characteristics of the items that will be produced in the future, the problem of wisely choosing, 

over the long haul, the pairs to be bonded is dynamic. Minimizing the cost of pairing operation can be 

formulated as a dynamic linear assignment problem. This paper presents different heuristics used to solve the 

dynamic linear assignment problem in the framework of a specific application in the aeronautics industry. 

The article highlights how strong characteristics of the case study are used to choose adapted heuristics. 

1 INTRODUCTION 

In a plant, the task of assembling two parts can be 

more or less easy depending on the parts relative 

geometry. In the Aeronautics Industry, the problem of 

slotting two parts is encountered during the 

production of Composite Fan Blades. The two parts 

to be paired are: the Composite Fan Blade and its 

Metallic Leading Edge (MLE). These two parts are 

illustrated on Figure 1.  
 

 

Figure 1: Engine Fan Blade and Metallic Leading Edge: the 

two parts to be paired. 

If the two parts fit well, the pairing can be easy. 

On the other hand, if the two parts do not fit, it can be 

necessary to make some adjustment by benching the 

blade before pairing. Benching is a time-consuming 

step one wants to avoid. Thus, the following question 

is raised every day 𝑡: given the sets of blades and 

MLEs available in the stock which 𝑁𝑡 pairs should be 

bonded so has to minimize, over the long haul, the 

cost of this production step? In our case, the static 

problem of choosing the best 𝑁𝑡 pairs for an optimal 

cost at date 𝑡, is easy: the sets of available blades and 

MLEs is small and there is no need for a quick online 

computation (choice of pair is done only once a day). 

On the contrary, optimizing in the long term is hard: 

we do not know the characteristic of the items which 

will be produced in the future and choices made at 

date 𝑡 have an impact on available choices at date 

𝑡 + 1. 

The static version of our problem, is in fact an 

extension of the Linear Sum Assignment Problem 

(LSAP): how to assign a number of tasks to a number 

of resources so as to minimize the total cost of the 

assignment where the global cost of the assignment 

corresponds to the sum of each individual 

assignment’s cost. The small difference with the 

classical LSAP is that, here, the number of tasks and 

resources is higher than the number of pairs to be 

done (cf. part 3.1.1). Linear Assignment Problem and 

its extensions are linear optimization problems which 
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have numerous applications in various fields: pairing 

weapons with targets (Ahuja et al., 2007), machine 

scheduling (Pinto and Grossmann, 1998), vehicle 

routing (Dantzig and Ramser, 1959) etc. It has been 

extensively studied and many algorithms have been 

proposed to solve it, among which the Hungarian 

algorithm (Kuhn, 1955) efficiently implemented in 

(Jonker and Volgenant, 1987). In our case, the 

dimension of the problem is small and computation 

time constraints are low, the static linear assignment 

is thus easily solved. 

The problem of wisely choosing pairs in a long 

run is referred to as the Dynamic Assignment 

Problem: choosing the best assignment at date 𝑡 

without knowing which resources and tasks will enter 

the system in the future. The mathematical 

framework of a general class of dynamic assignment 

problems is established in (Spivey and Powell, 2004). 

This paper explains how the framework of 

Dynamic Linear Assignment is applied to the specific 

case of pairing blades with MLE in a plant. We will 

highlight how some strong characteristics of the case 

study are taken advantage of to find satisfying 

heuristics for the optimization. 

In a first part, the characteristics of the case study 

are described in details: cost, constraints, parts’ flows 

in the plant and final cost function to be minimized. 

In a second part, different heuristics to solve the 

problem are proposed. In the last part the heuristics 

are tested on a set of real data coming from a plant so 

as to evaluate performances and compare strategies.  

2 PROBLEM FORMULATION 

In this part, the different costs and constraints of the 

case study are presented. Then the dynamic of the 

system is described. Finally, the total cost function 

function to be minimized is written. In a last parts, the 

specificities of our case study are highlighted.  

2.1 Pairing Cost 

The cost of pairing a MLE 𝑎 with a blade 𝑏 depends 

on two elements: 

- How much material has to be benched to make the 

pair. The contribution of benching to the total cost 

is thus a function of 𝑎 and 𝑏 geometrical 

characteristic that we will note: 𝐺ab. If the pair can 

be done without benching, 𝐺ab = 0. 

- The relative position of the bonded blade and 

MLE compared to nominal position. The relative 

position of blade and MLE is characterized by a 

few geometrical measures on the bonded blade 

noted 𝑋𝑎𝑏. We are aiming at having pairs with 

relative position as close as possible to the 

nominal 𝑋0. The distance to nominal is measured 

by a well-chosen norm (not detailed here): 
‖𝑋𝑎𝑏 − 𝑋0‖. 

Thus, if a MLE 𝑎 and a blade 𝑏 are pairable, the cost 

of the pair is defined as:  
 

𝐶(𝑎, 𝑏) = 𝐺ab + ‖𝑋𝑎𝑏 − 𝑋0‖ (1) 
 

For now, we suppose that given the geometrical 

characteristics of two parts 𝑎 and 𝑏, we are able to 

predict both how much material will have to be 

removed and the relative position of the two parts on 

the bonded blade. Predicting cost is a challenge by 

itself which can be done using different technics. 

Here we can mention in particular S. Flöry’s work on 

point clouds and surfaces matching (Flöry, 2010). In 

reality, cost prediction is imperfect and 𝐶(𝑎, 𝑏) is 

known with uncertainties: 𝐶(𝑎, 𝑏) is a random 

variable, we know only its expectation. This will limit 

the performance of any heuristics used to optimize 

pairs’ choices. 

2.2 Constraints on Production Flows 

2.2.1 Production Rate 

Most important constraint on production flow is the 

number of pairs which have to be done every day. Let 

𝑁𝑡 be the number of pairs to be done at date 𝑡. If the 

𝑁𝑡 pairs cannot be done at date 𝑡, the production is 

delayed. The cost of not being able to make a pair 

when we are asked to (there is not enough pairable 

parts available in the batch) is noted 𝑅. For example, 

on date 𝑡 if only 𝑁𝑡 − 2 pairs can be done, this will 

cost : 2 × 𝑅.  

If MLE, 𝑎, and blade, 𝑏, are not pairable, as an 

artefact in the computation, we can say that the cost 

of the pair is:  
 

𝐶(𝑎, 𝑏) = 𝑅 (2) 
 

Let 𝐾𝑎𝑏 be a Boolean giving the pairability of MLE 𝑎 

with blade 𝑏. For any pair nature (pairable or not 

pairable), the pair cost is: 
 

𝐶(𝑎, 𝑏) = {
𝑅 𝑖𝑓 𝐾𝑎𝑏 = 0

𝐺𝑎𝑏 + ‖𝑋𝑎𝑏 − 𝑋0‖ 𝑖𝑓 𝐾𝑎𝑏 = 1
 (3) 

2.2.2 MLE Limited Life 

Because of a surface treatment performed on MLEs 

to improve bonding quality, MLE cannot wait for too 

long in the batch at pairing post. If it stays more than 
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Δ𝑡𝑙𝑖𝑚
𝐿𝐸 = 90 𝑑𝑎𝑦𝑠, it will be scraped (i.e removed 

from the system).  

The cost of scraping a MLE is noted 𝑆𝐿𝐸 . 

2.2.3 Ordering of Blades Flow 

For production engineers, it is better if blades 

production order is not shuffled too much. This is an 

important constraint because, among others things, it 

helps detecting production crisis. 

This constraint was modeled as follows: if a blade 

stays more than Δ𝑡𝑙𝑖𝑚
𝐵 = 7 𝑑𝑎𝑦𝑠 at the pairing post, 

we get a delay penalty of 𝐷𝐵. Unlike MLEs, when a 

blade stays more than Δ𝑡𝑙𝑖𝑚
𝐵  at pairing post, it is not 

scraped and thus stays in the system.  

Note that we can get a penalty only once in a blade 

life: for it doesn’t cost more if a blades stays more 

than 7 days in the batch than if it spends exactly 7 

days. It is also important to notice that in our 

application Δ𝑡𝑙𝑖𝑚
𝐵  ≪  Δ𝑡𝑙𝑖𝑚

𝐿𝐸 . 

2.3 System Dynamic 

The production and parts flows at the plant are 

modelled as follows: 

- Each working day (5 days a week), 𝑛 pairs have 

to be done.  

- Every day, the pairs are chosen among the sets of 

MLEs and blades available at the pairing post. We 

call those parts “actionable parts”. There is 

constant buffers of 5 × 𝑛 MLEs and 2 × 𝑛 blades 

actionable in the batch. A larger buffer of MLEs 

is needed since MLEs present more geometrical 

variability than blades.  

- Every week, a batch of 5 × 𝑛 MLEs enters the 

plant. The 3D geometry of these MLEs is known 

immediately when it enters the plant. However, 

the MLEs are not instantly actionable because 

MLEs have to be inspected before entering the 

pairing post. These 5 × 𝑛 MLEs are progressively 

inspected during the week and become actionable 

little by little. A batch of known but not actionable 

MLE is always available. The number of MLEs in 

this batch  varies from 10 × 𝑛, at the beginning of 

the week, to 5 × 𝑛 at the beginning of the week.  

Following notation will be used later:  

- 𝒜(𝑡) is the set of actionable MLEs at date 𝑡. 

- 𝒜̅(𝑡) is the set of known but not actionable MLEs 

at date 𝑡. 

- ℬ(𝑡) is the set of actionable blades at date 𝑡. 
 

Figure 2 gives an overview of the production flows 

described above. What is important to remember here 

is that MLEs are known before being actionable 

(from one to two weeks beforehand). This is a rich 

information to be used for long term optimization. 
 

 

Figure 2: Blades and MLE flows at the plant. 𝑛is the 

number of pairs to be done at each working day 𝑡. 

𝒜(𝑡), 𝒜̅(𝑡)and ℬ(𝑡)are the different sets of available parts.  

2.4 Total Cost Function 

2.4.1 Total Cost of Pairing Operation 

The total cost of pairing operation between dates 𝑡 =
0 and 𝑡 =  𝑇 (𝑇 is typically a value big in comparison 

with Δt𝑙𝑖𝑚
𝐿𝐸 , the limit time a MLE can stay in the 

batch before being scraped), 𝒞, can now be written as 

follows:  
 

𝒞 = ∑ (∑ 𝐶(𝑎𝑛
𝑡 , 𝑏𝑛

𝑡 )

𝑁𝑡

𝑛=1

)

𝑇

𝑡=0

+ 𝑛𝑠 ∙ 𝑆𝐿𝐸 + 𝑛𝐷

∙ 𝐷𝐵 

(4) 

 

With: 

- 𝑁t, the number of assignments to be done at date 

𝑡.  

- (𝑎𝑛
𝑡 , 𝑏𝑛

𝑡
), the 𝑛𝑡ℎ pair chosen at date 𝑡. MLE 𝑎𝑛

𝑡  

and blade 𝑏𝑛
𝑡  are chosen among the actionable 

parts at date 𝑡. 

- 𝐶(𝑎𝑛
𝑡 , 𝑏𝑛

𝑡 ), the cost of the pair (𝑎𝑛
𝑡 , 𝑏𝑛

𝑡
) as 

defined in equation (3). 

- 𝑛𝑆, the number of MLE which had to be scraped 

(spent more than Δ𝑡𝑙𝑖𝑚
𝐿𝐸  days in the stock) between 

0 and 𝑇.  

- 𝑛𝐷, the number of blades which were delayed 

(spent more than Δ𝑡𝑙𝑖𝑚
𝐵  days in the stock) between 

0 and 𝑇. 
 

𝒞 is the total cost to be minimized. Our problem is to 

find heuristics to choose the pairs (𝑎𝑛
𝑡 , 𝑏𝑛

𝑡 ) so as to 

minimize this total cost 𝒞. The pairs (𝑎𝑛
𝑡 , 𝑏𝑛

𝑡 ) are 
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chosen in the sets 𝒜(𝑡) and  ℬ(𝑡). Choice are made 

at date 𝑡 given the information on the system 

available at date 𝑡, i.e. only knowing 𝒜(𝑠), ℬ(𝑠) and 

𝒜̅(𝑠) for any date 𝑠 before 𝑡. 

2.4.2 Costs Hierarchy 

The orders of magnitude of the different sources of 

cost in 𝒞 are the following: 

- 𝑅, the cost of a delay in production, and SLE, the 

cost of scraping a MLE, are of the same order of 

magnitude. 

- 𝐷𝐵, the cost of having a blade delayed, is about 

𝑅/2. 

- 𝐺𝑎𝑏, the cost of benching varies between 𝑅/100 

and 𝑅/10 (except for pairs feasible without 

benching for which 𝐺𝑎𝑏 = 0). 

- ‖𝑋𝑎𝑏 − 𝑋0‖ the cost of being away from nominal 

position varies between 0 and 𝑅/1000. 

Costs are strongly hierarchical: it is much more 

important to avoid production delay or MLE scraping 

than to avoid benching which is also much more 

important than minimizing bonded blade distance to 

nominal. This hierarchical structure of costs will help 

a lot for choosing an adapted heuristic for long term 

optimization. 

2.5 Case Study Important Properties 

The constraints and costs of pairing for this specific 

problem has four strong characteristics which will 

help finding a satisfying heuristic to solve the 

problem: 

- The Nt pairs to be done at date t are chosen once 

all together at the beginning of the day. There is 

no computation time constraints. 

- Blades and MLEs play very asymmetrical roles: 

production flow properties and constraints are 

very different for the two parts. 

- The total costs of the pairing step is made up of 

different components (cost of not being able to 

keep production speed, cost of benching, cost of 

scraps etc.). The cost structure is very hierarchical 

so that it is easy to know which events should 

absolutely be avoided without taking any risk and 

which events are acceptable.  

- The MLEs entering the system are known in 

advance (before the MLEs become available for 

pairing). This helps taking decision at date t which 

will not badly impact the choices available at date 

t + n. 

3 HEURISTICS 

In this part, we first present some of the basic blocks 

composing the different strategies proposed to solve 

the problem. Then, we present in details five different 

heuristics: one simple myopic strategy serving as a 

reference, three other more sophisticated myopic 

strategies and one non-myopic strategy. We call 

myopic strategies those in which decisions are made 

without using information given by the set of known 

but not actionable MLEs, 𝒜̅(𝑡). 

3.1 Basic Blocks 

In this part, we first present three basic bricks which 

are part of the heuristics presented later. Then, in part 

3.1.4, the general structure of the heuristics described 

later is presented. 

3.1.1 A Static Linear Assignment 

The static linear assignment in our case, can be 

formulated as a generalization of the classical Linear 

Sum Assignment Problem. Given a set of 𝑁𝐴 

resources (MLE), a set of 𝑁𝑏 tasks (blades) and a 

number of pairs to be done 𝑁, the goal is to find the 

set of 𝑁 pairs which minimize total cost of the 

assignment.  

This problem can be written in the form of a linear 

optimization problem:  
 

argmin
𝑋

∑ ∑ 𝑥𝑎,𝑏 ∙ 𝑐𝑎,𝑏

𝑁𝐵

𝑏=1

𝑁𝐴

𝑎=1

 (5.1) 

 

With 

- 𝑐𝑎,𝑏 the cost of pairing resource 𝑎 with task 𝑏.  

- 𝑥𝑎,𝑏 the decision variables with 𝑥𝑎,𝑏 = 1 if 

resource (MLE) 𝑎 is assigned with task (blade) 𝑏, 

0 otherwise.  
 

Under the constraints:  

- The decision variables 𝑥𝑎,𝑏 are Booleans: 

∀ (𝑎, 𝑏), 𝑥𝑎,𝑏 ∈ {0,1} (5.2) 

- Each resource is assigned at most once:  

∀ 𝑎,  ∑ 𝑥𝑎,𝑏

𝑏

≤ 1 (5.3) 

- Each task is assigned at most once:  

∀ 𝑏,  ∑ 𝑥𝑎,𝑏

𝑎

≤ 1 (5.4) 

- 𝑁 assignments have to be done: 
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∑ ∑ 𝑥𝑎,𝑏
𝑏𝑎

= 𝑁 (5.5) 

 

This linear optimization problem can be solved using 

any standard linear programing algorithms.  

3.1.2 Correction of Cost Matrix 

One other important block of our heuristics is the 

computation of a corrected cost matrix 𝐶̃(𝑡). The 

basic idea is to artificially reduce the cost of pairs 

containing old MLE or old blades. A static linear 

assignment (cf. part 3.1.1) will then be performed on 

the corrected cost matrix and oldest blades or MLEs 

will be favored. The goal is to anticipate MLEs’ 

scraps and blades’ delays. 

We can correct cost matrix in a simple way that 

we will call a myopic correction.  

At each time step 𝑡: 

- The cost of any pair realized with a “too old” (i.e 

close from being scraped) MLE 𝑎 is artificially 

reduced to favor this pair.  
Let 𝑎𝑔𝑒𝑎

𝑡  be the age of MLE 𝑎 at date 𝑡 and 𝐿𝐿𝐸 

be an age limit close to Δ𝑡𝑙𝑖𝑚
𝐿𝐸 . Cost is corrected 

as follows: 
 

∀ 𝑎 | 𝑎𝑔𝑒𝑎
𝑡 > 𝐿𝐿𝐸 , ∀ 𝑏 | 𝐾𝑎𝑏 = 1, 

  𝐶𝑎𝑏̃(𝑡) = 𝐶𝑎𝑏 – 𝑆𝐿𝐸 
(6) 

 

This accounts for the risk that, if MLE 𝑎 is older than 

𝐿𝐵 and not paired at time 𝑡, this will cost 𝑆𝐿𝐸  because 

the MLE will be scraped in the following days. 

- Similarly, for each blade 𝑏 which is too old, i.e 

close from Δ𝑡𝑙𝑖𝑚
𝐵  limit (older than an age limit 𝐿𝐵), 

the cost of feasible pairs is reduced (so as to favor 

these pairs): 
 

∀ 𝑏 | 𝑎𝑔𝑒𝑏
𝑡 > 𝐿𝐵,  ∀ 𝑎 | 𝐾𝑎𝑏 = 1, 

𝐶𝑎𝑏
𝑡̃ = 𝐶𝑎𝑏 – 𝐷𝐵 

(7) 

 

This accounts for the risk that, if this blade 𝑏 older 

than 𝐿𝐵 and not paired at time 𝑡, this will cost 𝐷𝐵 

because the blade will be considered as delayed in 

the following days. 
 

The values of 𝐿𝐿𝐸 and 𝐿𝐵 are tuned based on the 

problem characteristics: Δ𝑡𝑙𝑖𝑚
𝐿𝐸 , Δ𝑡𝑙𝑖𝑚

𝐵 , global 

proportion of not pairable pairs, sizes of blades and 

MLEs buffers etc. These parameters can be optimized 

by simulations similar to those presented in part 4. 

For the non-myopic strategy, the cost matrix is 

corrected in a more sophisticated way which will be 

described in part 3.2.5 but basic idea stays the same: 

favor oldest blades and MLEs by reducing the cost of 

their pairs. 

3.1.3 Maximum Cardinality Bipartite 
Matching 

In our strategies, it is often useful to answer following 

question: given a set of MLEs and a set of blades, 

what is the maximal number of feasible pairs?  

This can be done using a maximum bipartite 

matching algorithm like Ford-Fulkerson algorithm 

for example (Ford and Fulkerson, 1962). The sets of 

MLEs and blades are represented as a binary bipartite 

graph linking the set of MLEs with the set of blades. 

If the pair 𝑎, 𝑏 is feasible, edge 𝑎, 𝑏 exist. If the pair 

is not feasible, the edge does not exist. 

3.1.4 Structure of the Strategies 

The different strategies described in the following 

sections all have in common a four steps structure. At 

each time step 𝑡: 

- First a cost matrix is calculated using all 

actionable blades and MLEs.  

- Then we select a subset of blades and MLEs 

among all actionable ones so as to favor oldest 

blades and oldest MLEs (avoid MLE’s scrap and 

blade’s delay). We obtain a paring cost submatrix. 

In this part maximum cardinality bipartite 

matching algorithm plays an important role. 

- The paring cost submatrix is then corrected so as 

to favor again old blades and old MLEs. For 

myopic strategies, cost correction is done as 

described in part 3.1.2. For the non-myopic 

strategy, cost correction is performed in a more 

subtle way described in part 3.2.5 

- Finally a static linear assignment optimization 

(3.1.1) is performed on the corrected cost 

submatrix 𝐶̃(𝑡) to choose the 𝑁𝑡 assignments 

which minimize total cost of the assignment. 

3.2 Detailed Heuristics 

In this part, the different heuristics imagined to help 

choosing which 𝑁𝑡 pairs should be done at each time 

𝑡 are described in details. Each strategy is later 

evaluated on real data coming from the plant. Myopic 

strategies are strategies where no more future 

prediction than cost correction described in 3.1.2 is 

used. 

3.2.1 Myopic Linear Assignment (MLA) 

This strategy is the simplest strategy one can think of 

and will serve as a reference to evaluate efficiency of 

the others. Pairs are suggested in batch at each date 𝑡. 
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Among all actionable blades and MLEs at time 𝑡, 

we chose the 𝑁𝑡 pairs so as to minimize the total cost 

of pairing (optimization is done solving a static linear 

assignment as described in 3.1.1). The cost matrix 

used for the assignment, is the corrected cost matrix 

as described in 3.1.2 (i.e. anticipating the cost of 

scraped MLE and delayed blades).  

3.2.2 MLA with FIFO on Blades 

At each time step, we select a subset of all actionable 

blades. The subset is the smallest and oldest set of 

blades so that it is possible to make 𝑁𝑡 pairs between 

those blades and all actionable MLEs. This set is 

chosen so as to take oldest blades first and it is noted 

ℬ′(𝑡). The selection of ℬ′(𝑡) is done solving a 

succession of maximum cardinality bipartite 

matching (cf. part 3.1.3). In the set ℬ′(𝑡) and the set 

of all actionable MLEs 𝒜(𝑡), we choose the 𝑁𝑡 pairs 

minimizing the total cost of pairing (using corrected 

cost matrix as described in 3.1.2). 

This algorithm combine advantages of assigning 

pairs by batch and keeping FIFO (First In First Out) 

lines on blades so as to avoid blades delays. However, 

this strategy doesn’t favor oldest MLEs so that we do 

not avoid MLEs scrap (except through basic cost 

correction).  

3.2.3 Myopic Linear Assignment with FIFO 
on Blades and MLE 

A each time step, we first select ℬ′(𝑡), smallest and 

oldest set of blades so that it is possible to make 𝑁𝑡 

pairs with the set of all actionable MLE 𝒜(𝑡). Then, 

we select 𝒜′(𝑡) the smallest set of MLEs so that it is 

possible to make 𝑁𝑡 pairs with the set ℬ′(𝑡). 𝒜′(𝑡) is 

chosen so as to take oldest MLEs first. Then, amongst 

ℬ′(𝑡) and 𝒜′(𝑡), we choose the 𝑁𝑡 pairs so as to 

minimize the total cost of pairing. 

This algorithm combines the advantages of 

assigning pairs by batch, assigning oldest blades and 

oldest MLEs first. An advantage is given to oldest 

blades over oldest MLEs since the time before delay 

of a blade is a lot shorter than time before the scrap of 

a MLE. The drawback of this strategy, is that the 

static linear assignment is performed on narrowed 

sets of MLEs and blades (see Figure 3) with reduced 

choices for the pairs. 

3.2.4 MLA with FIFO on Blades and Partial 
FIFO on MLEs 

We select the set ℬ′(𝑡). With this set ℬ′(𝑡) and the set 

of all actionable MLE 𝒜(𝑡), it is possible to make a 

maximum of 𝑚(𝑡) pairs without benching the blades. 

We want to perform pairing on oldest MLEs without 

degrading the number of pairs which can be done 

without benching.  

We select 𝒜′′(𝑡) the smallest set of MLEs so that 

it is possible to make 𝑁𝑡 pairs and 𝑚(𝑡) pairs without 

benching with the sets ℬ(𝑡). 𝒜′′(𝑡) is chosen so as to 

take oldest MLEs first. Then, among  ℬ(𝑡) and 

𝒜′′(𝑡), we choose the 𝑁𝑡 pairs so as to minimize the 

total cost of pairing. 

This algorithm is a compromise between 

algorithms 3.2.2 and 3.2.3. It combines the 

advantages of assigning pairs by batch, assigning 

oldest blades first and giving advantage to oldest 

MLEs. With this strategy, we perform an optimal 

linear assignment on a larger sets of MLEs than with 

strategy 3.2.3 so that this gives more chance for 

optimization. However, more risk of MLE scrap is 

taken. This strategy takes advantage of the cost 

hierarchy to choose the set 𝒜′′(𝑡): the number of 

pairs done without benching is the same as the one for 

strategy 3.2.2, this implies that cost of the assignment 

is not degraded too much by the reduction of MLE 

set. 

3.2.5 Non-myopic Strategy 

In this non-myopic strategies, the goal is to correct 

cost matrix in a more subtle way than what was 

described in part 3.1.2. The goal is to favor pairing of 

MLEs and blades which are hard to pair over those 

which are easy. Most important contributors to final 

total price are MLE’s scraps and blade’s delays. Thus, 

we focused on anticipating those costs and avoiding 

it. This is why we try to pair blades and MLEs which 

are hardly pairable first (they have a higher risk to be 

delayed or scraped). 

In this strategy, no sub-matrix is selected, a static 

linear assignment is performed on all actionable 

MLEs and blades using a cost corrected matrix. At 

each date 𝑡, the goal is to subtract from the initial cost 

of a pair, 𝐶𝑎,𝑏, an estimation of how much it could 

cost if MLE 𝑎 and blade 𝑏 were not paired at 𝑡 and 

were thus kept in the system. The expectation of the 

cost of keeping MLE 𝑎 (blade 𝑏) in the system is 

estimated through the risk that the MLE 𝑎 (blade 𝑏) 

will be scraped (delayed). Cost correction is done for 

blade and MLE separately as described below. 

Cost Correction for MLE Scrap Anticipation 

For each actionable MLE 𝑎 of age 𝑎𝑔𝑒𝑎
𝑡  at time 𝑡, we 

denote: 

- 𝑁𝑎
𝑡 the number of blades which will become 

actionable before this MLE gets scraped. In other 
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words, this is the number of blades entering the 

system in the next Δ𝑡𝑙𝑖𝑚
𝐿𝐸 − 𝑎𝑔𝑒𝑎

𝑡  days. 

- 𝑝𝑎
𝑡  the probability that this MLE is pairable with a 

blade. 𝑝𝑎
𝑡  is estimated based on MLE’s pairability 

with blades which previously entered the system. 

It is re-estimated at each time step as new blades 

enter the system. 
 

The probability that none of the 𝑁𝑎
𝑡 incoming blades 

will be pairable with MLE 𝑖 is:  
 

 𝑃𝑎
𝑡 = (1 − 𝑝𝑎

𝑡 )𝑁𝑎
𝑡
 (8) 

 

The cost of keeping MLE 𝑎 in the system, is mainly 

driven by the increase of the risk for the MLE to be 

scraped (because scrap is the most expensive source 

of cost). Then, the cost of each pairable sets of MLE 

and blade is corrected as follows: 
 

∀ 𝑎, 𝑏 | 𝐾𝑎𝑏 = 1,    𝐶𝑎𝑏
0̃ (𝑡) = 𝐶𝑎𝑏 – 𝑆𝐿𝐸 × 𝑃𝑎

𝑡 (9) 

Cost Correction for Blade Delay Anticipation 

For each blade 𝑏, of age 𝑎𝑔𝑒𝑏
𝑡 , actionable at time 𝑡, 

we know which MLEs will enter the system before it 

gets too old. In other words, we know which MLEs 

will become actionable in the next Δ𝑡𝑙𝑖𝑚
𝐵 − 𝑎𝑔𝑒𝑏

𝑡  

days. This is thanks to the important batch of MLEs 

known but not actionable described in part 2.3. The 

set of MLEs which will become actionable in the next 

Δ𝑡𝑙𝑖𝑚
𝐵 − 𝑎𝑔𝑒𝑏

𝑡  is called 𝒜𝑏
̅̅ ̅̅ (𝑡). It is a subset of 𝒜̅(𝑡). 

The cost of keeping blade 𝑏 in the system, is 

mainly driven by the increase of the risk for the blade 

to be delayed (because delay is the most expensive 

source of cost generated by the blade).  

If there is no MLE in set 𝒜𝑏
̅̅ ̅̅ (𝑡) with which blade 

𝑏 is pairable we perform a cost correction. Otherwise 

no cost correction is done. 
 

∀ 𝑎 | (∄ 𝑚 ∈ 𝒜𝑏
̅̅ ̅̅ (𝑡) | 𝐾𝑚𝑎 = 1) 

∀ 𝑏 ∈ 𝒜(𝑡)  | 𝐾𝑎𝑏 = 1,  

Cab̃(t) = 𝐶𝑎𝑏
0̃ (t) – 𝐷𝐵 

(10) 

 

Remarks on Flows Anticipation 

Here it is important to highlight that practically, flows 

are not perfectly known:  

- In reality, 𝑁𝑎
𝑡 will have to be estimated.  

- In reality, we do not know precisely the order and 

when MLEs will become actionable: 𝒜𝑏
̅̅ ̅̅̅(𝑡) is not 

perfectly known.  

3.3 Summary of the Different 
Heuristics 

The different myopic strategies presented above are 

all very similar: assignment is performed by batch 

using static linear assignment. The difference 

between those strategies is only the sets of MLEs and 

blades on which the static linear assignment problem 

(3.1.1) is solved. Figure 3 presents a schematic view 

of the sets on which linear assignment algorithm is 

applied for the different strategies. The best strategy 

will depend on the proportion of non-pairable pairs, 

the proportion of pairable pairs without benching and 

the balance between the different costs. Moreover, 

Table 1 gives an overview of the different strategies 

pro and cons.  
 

 

Figure 3: Graphical representation of the different 

strategies. The rectangles represent the sets of blades and 

MLEs on which static linear assignment is performed. 

Table 1: Summary of the different heuristics properties. This table highlights the pros and cons of the heuristics proposed.  

 
MLA, 

3.2.1 

MLA + FIFO on 

blades, 3.2.2 

MLA + FIFO on 

blades and MLE, 

3.2.3 

MLA + FIFO blades and 

partial FIFO MLA, 3.2.4 
Non-Myopic, 3.2.5 

FIFO blades No Yes Yes Yes No 

FIFO MLE No No Yes Partial No 

Favor pairing without 

benching 
Yes Yes No Yes Yes 

Improved prediction 

of MLE scrap 
No No No No Yes 

Improved prediction 

of Blades delay 
No No No No Yes 
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4 HEURISTICS COMPARISONS 

In this part, heuristics efficiencies are compared in 

two different cases:  

- The case where the algorithm to estimate the cost 

of a pair is supposed to be perfect:  

• We know if a pair is feasible or not. 

• If the pair is feasible, we know if it can be done 

without benching. 

• The cost of the pair is exactly known. 

- The case where algorithm to estimate the cost of a 

pair has uncertainties: 

• We know if the pair is feasible or not. 

• If the pair is feasible, we only know the 

probability that the pair is feasible with 

benching, 𝑝1, or feasible without benching, 

𝑝2 = 1 − 𝑝1. 

Let 𝐶1 be the expected cost of the pair knowing 

that it is feasible with benching and 𝐶2 be the 

cost of the pair knowing that it feasible 

without benching. The expected pair’s cost is:  

𝐶 = 𝑝1 × 𝐶1 + 𝑝2 × 𝐶2 (11) 

• In this part simulated uncertainties are 

representative of uncertainties encountered in 

practice. 

4.1 Simulation Description 

Simulations are based on data from a three week 

production at the plant: we know the geometrical 

characteristics and, thus, the expected cost matrix and 

the real cost matrix for a large set of blades and MLE. 

Strategies efficiencies are estimated by simulating 

400 weeks of production for each strategy (enough 

for the operation average cost to converge). The 

production is simulated as follows:  

- Ingoing and outgoing flows are simulated 

according to the flows described in part 2.3.  

- Ingoing MLEs (blades) are simulated with a 

random sampling (with replacement) among the 

input MLEs set (blades set) with known 

geometrical characteristics issued from 

production. This means that we make the 

hypothesis that the shape of MLEs (blades) 

entering the system at date 𝑡 is completely 

independent from the shape of MLEs (blades) 

entering the system at date 𝑡 + 1. This hypothesis 

was roughly verified on the 3 weeks production 

dataset which was studied. 

- Outgoing flows are the result of tested strategy. 

4.2 Results with Perfect Cost 
Predictions 

In this part, strategies efficiency are compared with 

the hypothesis that real cost (and real pair nature: non-

feasible, feasible with benching or feasible without 

benching) is known. 

The results are summarized in the Table 2. For 

each strategy, we have:  

- The proportion of blades delayed: the ratio of the 

number of blades which stayed in the system more 

than Δ𝑙𝑖𝑚
𝐵𝑙𝑎𝑑𝑒𝑠 over the number of pairs which were 

asked to be done (∑ 𝑁t)𝑡 ).  

- The proportion of inactivity: the ratio of the 

number of pairs which couldn’t be done over the 

number of pairs which were asked to be done 

(∑ 𝑁t𝑡 ). 

- The proportion of scraped MLEs: the ratio of the 

number scraped MLEs over the number of pairs 

which were asked to be done.  

- The proportion of benched pairs: the ratio of the 

number of pairs which were benched over the 

number of pairs which were asked to be done. 

- The average cost of a week of production. 

We see that every strategy enables to reach 0% of 

scraped MLEs and 0% of “inactivity”. This is, 

amongst other things, related to the fact that 

proportion of non-feasible pairs are rather rare in our 

dataset (5% of the pairs). We also see that the best 

strategy is the non-myopic one which enables to 

avoid all sources of high costs: inactivity, scraping, 

delay and benching. However, given the fact that 

proportion of non-feasible pairs in our data set is low, 

the performances of the non-myopic strategy are not 

much higher than those of the myopic strategies. 

4.3 Results with Uncertainties on Cost 
Predictions 

In this part the difference is that decision are made 

based on expected cost matrix instead of real cost 

matrix. 

Results are summarized in Table 3. We see that 

average cost of a week of production is much higher 

than when cost are known without uncertainty. With 

a perfect cost estimation, we can expect to bench 0% 

of the pairs whereas with uncertainties on cost 

estimation representative of real cost uncertainties, 

best strategy leads to 25% of benched pairs. This 

shows how important quality of cost prediction 

algorithm is.  We also see that with cost uncertainties, 

the differences between strategies efficiencies are 

much smaller.
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Table 2: Strategies comparison with exact cost predictions. This table summarises the results of the simulations used to 

compare the efficiency of the different heuristics. The simulation are done, in the theoretical case where we suppose that we 

are able to perfectly predict the cost of the pair before doing it.  

  
MLA, 

3.2.1 

MLA + 

FIFO on 

blades, 

3.2.2 

MLA + FIFO 

on blades and 

MLE, 3.2.3 

MLA + FIFO 

blades and partial 

FIFO MLA, 3.2.4 

Non-

Myopic, 

3.2.5 

Algorithm 

parameters 

Correction horizon MLE, 𝐿𝐿𝐸 7 days 7 days 7 days 7 days NA 

Correction horizon blades, 𝐿𝐵 1 day 1 day 1 day 1 day NA 

Results 

Proportion of blades delayed 0,00475 0 0 0 0 

Proportion of inactivity 0 0 0 0 0 

Proportion of scraped MLEs 0 0 0 0 0 

Proportion of pairs benched 0 0,00181 0,0463 0 0,00012 

Average cost of a week of 

production 
10,5 6,15 24,4 5,88 5,47 

Table 3: Strategies comparison with uncertainties on cost predictions. This table shows the results of the simulations used to 

compare heuristics efficiency. The simulation are done in the case where algorithm to predict pairs’ cost is not perfect: real 

cost of a pair can be different from what was predicted before pairing.  

 MLA, 3.2.1 

MLA + 

FIFO on 

blades, 

3.2.2 

MLA + FIFO 

on blades and 

MLE, 3.2.3 

MLA + FIFO blades 

and partial FIFO 

MLA, 3.2.4 

Non-Myopic, 

3.2.5 

Proportion of blades delayed 0,00881 0 0 0 0 

Proportion of inactivity 0 0 0 0 0 

Proportion of scraped MLEs 0 0 0 0 0 

Proportion of pairs benched 0,26 0,256 0,256 0,254 0,262 

Average cost of a week of production 120 110 110 109 111 

 
5 CONCLUSIONS 

This article shows how the framework of dynamic 

linear assignment was applied to the specific problem 

of pairing blades with MLEs in a plant. The strong 

characteristics of the studied system were taken 

advantage of so as to design a few adapted pairing 

strategies. Among the strategies, one was a simple 

myopic strategy serving as a reference, three were 

adapted myopic strategies and one was a non-myopic 

heuristic.  

The different strategies were tested on a set of real 

data in the case where exact pairs costs are known 

before pairing and in the case where there is 

uncertainties on cost prediction. We highlighted the 

fact that strategies efficiency is strongly related to the 

quality of cost estimation. We also showed that the 

fours strategies proposed (three myopic, one non-

myopic) enable to significantly reduce the cost of 

pairing operation. If costs are perfectly known, the 

non-myopic heuristic is the best one. However, this 

strategy is harder to implement in reality since more 

inputs (about the incoming flows of blades and 

MLEs) are needed.  

Future work on the subject will include, influence 

studies to see how system reacts to changes on some 

key inputs of the model: buffer size for MLE and 

blade stocks, proportion of non-feasible pairs in the 

simulation, proportion of pairs feasible without 

benching in the simulation etc.  

Some work should also be done to analyze the 

effect on the system to have time dependency 

between geometrical attributes of blades (MLEs) 

entering the system a 𝑡 and those entering at 𝑡 + 1. 

The fact that time series of blades (MLEs) attributes 

are not completely random makes a lot of sense since 

two blades (MLEs) entering the system roughly at the 

same date will tend to come from the same batch of 

production and thus to share more similarities than 

two blades (MLEs) coming from different batches. 

REFERENCES 

Ahuja, R., Kumar, A., Jha, K. C. and Orlin, J. B., 2007. 

Exact and Heuristic Algorithms for the Weapon-Target 

Assignment Problem. Operations Research, 55(6), p. 

1136–1146. 

Dantzig, G. and Ramser, J., 1959. The Truck Dispatching 

Problem. Management Science, 6(1), pp. 80-91. 

ICORES 2018 - 7th International Conference on Operations Research and Enterprise Systems

262



Flöry, S., 2010. Constrained Matching of Point Clouds and 

Surfaces, TU Wien: PhD Thesis. 

Ford, L. R. and Fulkerson, D. R., 1962. Flows in Networks. 

Princeton University Press. 

Jonker, R. and Volgenant, A., 1987. A shortest augmenting 

path algorithm for dense and sparse linear assignment 

problems. Computing, Volume 38, p. 325. 

Kuhn, H., 1955. The Hungarian Method for the Assignment 

Problem. Naval Research Logistics Quaterly 2, pp. 83-

97. 

Pinto, J. M. and Grossmann, I. E., 1998. Assignment and 

sequencing models for the scheduling of process 

systems. Annals of Operations Reasearch, Volume 81, 

pp. 433-466. 

Spivey, M. Z. and Powell, W. B., 2004. The Dynamic 

Assignment Problem. Transportation Science, 38(4), 

pp. 399-419. 

 

Dynamic Linear Assignment for Pairing Two Parts in Production - A Case Study in Aeronautics Industry

263


