
Knock-Knock: The Unbearable Lightness of Android Notifications

Constantinos Patsakis and Efthimios Alepis
Department of Informatics, University of Piraeus, 80, Karaoli & Dimitriou str.,18534, Piraeus, Greece

Keywords: Android, Notifications, Phishing, Local DoS.

Abstract: Android Notifications can be considered as essential parts in Human-Smartphone interaction and inextricable
modules of modern mobile applications that can facilitate User Interaction and improve User Experience. This
paper presents how this well-crafted and thoroughly documented mechanism, provided by the OS can be ex-
ploited by an adversary. More precisely, we present attacks that result either in forging smartphone application
notifications to lure the user in disclosing sensitive information, or manipulate Android Notifications to launch
a Denial of Service attack to the users’ device, locally and remotely, rendering them unusable. This paper
concludes by proposing generic countermeasures for the discussed security threats.

1 INTRODUCTION

Modern mobile devices have penetrated our daily
lives in the past years, making them an indispensable
part of our daily lives. Initially, their goal was to pro-
vide communication to users via various means e.g.
calls, short messages, video conference and chatting.
Nevertheless, currently, they have stormed other ac-
tivities such as infotainment, Internet browsing, fit-
ness monitoring, or even finance. The fact that these
devices are small enough to be seamlessly carried on
daily basis and the fact that they are able to perform
multiple tasks and process data from a plethora of em-
bedded sensors has enabled developers to create nu-
merous applications and a new niche market.

The interaction between users and mobile devices
increases over the years and as a result the means of
realizing this bi-directional communication has also
evolved. Back in 2014 a comprehensive study on mo-
bile phone notifications (Pielot et al., 2014) revealed
that users had to deal with 63.5 notifications on aver-
age per day, mostly from messengers and email. Ob-
viously, this number has been increased significantly
over the last years with the rise of apps such as What-
sApp and Facebook messenger and notification mes-
sages overpassing billions in daily basis (ZDNet, ).

At the same time recent studies reveal that push
notifications draw users’ attention, with user average
opening notification rates being over 90% (Biznes-
sapps, ). Notifications also allow developers to in-
crease user engagement with their app and improve
user retention rates (Biznessapps, ). Mobile notifica-

tions seem to clearly influence user engagement pos-
itively and also improve user conversion rates. As
stated in (Caitlin O’Connell, ):

“In 2015, users who enabled push notifica-
tions launched an app an average of 14.7
times per month, whereas users who did not
only launched an app 5.4 times per month. In
other words, users who opted in to push mes-
sages averaged 3x more app launches than
those who opted out.”

Equivalent findings are also reported in (Urban Air-
ship, ):

“Analysis of 63 million app users’ first 90-
days reveals more frequent messaging in-
creases mobile app retention rates by 3X to
10X”.

In view of the above this paper illustrates the ne-
cessity of providing mobile users with secured and
trusted mechanisms for their interaction with mobile
devices. Towards this end, this paper analyzes the ba-
sic interaction mechanisms available in Android, the
worlds’ most popular mobile platform to date. Our
research illustrates flaws in the Android’s notification
mechanisms which can lead to a number of attacks,
presented in this work. Subsequently, this paper also
discusses about countermeasures in order to provide
defense solutions to the attacks.
Main Contributions: The main contribution of this
work is to illustrate successful attacks in the most
recent versions of Android, using AOSP as a refer-
ence. These attacks can affect additively the majority

52
Patsakis, C. and Alepis, E.
Knock-Knock: The Unbearable Lightness of Android Notifications.
DOI: 10.5220/0006603200520061
In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018), pages 52-61
ISBN: 978-989-758-282-0
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



of Android users to date. More specifically, this pa-
per presents forging notification attacks that include
home-screen shortcuts, attacks in notifications that re-
sult in DOS and also attacks concerning web push no-
tifications. To the best of our knowledge, and accord-
ing to the malware samples of (Wei et al., 2017), no-
tifications are used for aggressive advertisement via
the malware families of Airpush and Kuguo. Over-
all, we aim in providing a thorough analysis in the
core means of realizing Human-Smartphone interac-
tion, both for providing a way to detect flaws and also
for better locating their corresponding working solu-
tions.
Organization of this Work: The rest of this work is
organized as follows. In the next section we present
the related work. Section 3 provides the background
and the basis for the problem setting. Then, Section
4 presents two distinct categories of attacks on An-
droid Notifications. Finally, the article concludes dis-
cussing possible countermeasures.

2 RELATED WORK

Android was designed to run in devices with con-
strained capabilities in terms of both computation or
size. The size of the device, as Android mainly targets
handheld devices, implies many restrictions in the UI.
As a result, the UI can be considered as a set of layers
which are stacked one on top of the other. However, as
highlighted in (Chin et al., 2011): “Phishing attacks
can be mounted convincingly because the Android UI
does not identify the currently running application.”.
This was exploited by (Niemietz and Schwenk, 2012)
who managed to create the first UI redressing attack
for Android. While drawing on top of other activities
and partially covering them, researchers have recently
started to find novel ways to do it. The bulk of the
attacks exploit a recently introduced Android permis-
sion, the System Alert Window (Ying et al., 2016a;
Fratantonio et al., 2017). According to Google De-
veloper resources (Android Developer, ): “Very few
apps should use this permission; these windows are
intended for system-level interaction with the user”.
Nevertheless, due to backward compatibility issues,
an adversary may easily use this permission without
the user’s knowledge or consent by targeting lower
API levels in the app. While the attacks have rather
severe impact, the apps that can exploit this feature
are rather limited and can be easily found by simply
scanning the manifest for the corresponding permis-
sions. On the contrary, a more stealth attack allows
an adversary to overlay activities without requesting
any permission from the user (Alepis and Patsakis,

2017b).

However, in order to timely present the user a
screen which requires him to provide his credentials,
one needs to be aware of which is the foreground
activity. Methods to do this are discussed in (Chen
et al., 2014; Alepis and Patsakis, 2017b), however,
they are rendered useless as of Nougat, since access
to /proc has been significantly shrinked. To counter
this lack of knowledge, an adversary may resort to
other means, e.g. masquerade as a legitimate app and
convince the user to interact. Note that all apps are
aware of which apps are already installed in the de-
vice, so the adversary can easily find a target one. In
this regard, in (Xu and Zhu, 2012); a closely related
work to us, a set of attacks which exploit notifications
was proposed. The concept is that the user has been
tricked into installing a malicious app named Notish
which issues notifications that look like ones from
other legitimate apps luring them to disclose sensitive
information e.g. credentials. The attacks that the au-
thors demonstrate apply not only to Android, but iOS
and Blackberry, while a spam scenario also exists.

Perhaps the most relevant to ours can be consid-
ered the work of (Xu and Zhu, 2012), for this reason
it is further analyzed. Back in 2012 the authors where
supporting that they first presented a paper regarding
the security of notifications in mobile phones. Specif-
ically regarding Android, they covered platforms 2.3
and 4.0 (API level 14). Nevertheless, many years have
passed and considering the small mobile OS lifetime,
this period was quite significant for many reasons.
Most importantly, Android has changed a lot since
2012, providing 12 newer API levels to date, with
the introduction of Android Oreo, always hardening
its security. To this end, notification services can be
considered as much different compared with the sit-
uation in 2012. More specifically, not only are their
security mechanisms more improved, but also the at-
tacks described in (Xu and Zhu, 2012) do not actu-
ally apply in the settings of Android in its latest ver-
sions. The most basic reason is that these attacks de-
pended on hard-coded resource graphics, which, after
being submitted for publication to Google Play Store,
they would immediately be discarded by the Google
Bouncer as it would find them fraudulent. Moreover,
most of the notifications’ functionalities that are ex-
ploited in this paper, such as replacing the notifica-
tions’ icon, where introduced very recently. e.g. the
“Notification.Builder setSmallIcon (Icon icon)” func-
tion was added in API level 23. Furthermore, in the
last versions of Android, the app name has been sup-
plementarily added in notifications, enhancing their
security even more, once again rendering past attacks
useless.

Knock-Knock: The Unbearable Lightness of Android Notifications

53



The interested reader may refer to (Felt and Wag-
ner, 2011; Virvilis et al., 2014) for more on phishing
attacks on Android.

3 HUMAN-SMARTPHONE
INTERACTION

Analyzing the interaction between humans and smart-
phones, we may come up in itemizing the most pro-
found and basic reasons for humans using this “spe-
cial” computing device, namely the smartphone, that
has drown much of the users’ interest over the last
decade. The categorization of these actions could
inarguably differ, facilitating other points of view,
however, for the purposes of this study we split them
in the following four categories: (a) Communicat-
ing with others (calling, texting etc.) (b) Internet
browsing, (c) Using 3rd party applications (m-bank-
ing, infotainment etc.), (d) Responding to notifica-
tions To conclude to these four basic categories of ac-
tions in using a mobile device, we investigated why,
how, when and under what conditions an average user
might be using a smartphone. While there might be
overlaps in these categories, discussed in the follow-
ing paragraphs, we consider these reasons of realizing
human-smartphone interaction as distinct.

Communicating with others via calling, texting
etc. are basic and fundamental actions performed in
mobile devices even before the existence of smart-
phones, namely since the appearance of feature
phones. This kind of interaction is accomplished
through applications that accompany the OS and are
developed by the OS vendor. Certainly, both phone
calling and text messaging can be also realized by
third party applications, while VoIP solutions are also
rapidly appearing. Nevertheless, this can be consid-
ered as a fundamental reason for using a mobile de-
vice, since its very existence and before having these
devices being able to connect to the Internet.

Using the well-known mobile browsers for visit-
ing and interacting with web pages through mobile
devices is also considered as a very important reason
of human-smartphone interaction. Notably, in 2016
mobile phone users who visit the WWW overpassed
the corresponding number of personal computer users
(StatCounter GlobalStats, ). The latter not only high-
lights the importance of such an interaction, but it also
indicates the closer connection to humans’ lives that
smartphones have managed to acquire.

Using third party applications in a smartphone can
be considered as one of the most important and ba-
sic reasons of interaction between users and mobiles.
The incorporation of all kinds of applications that

are of the users’ interests has been perhaps the ba-
sic reason for smartphones having operating systems
that support this kind of functionality and thus make
them considerably distinguishable to “ordinary” fea-
ture phones. The extraordinary adoption of app stores
where users can browse and install applications of
numerous categories supports the aforementioned ar-
gument. Additionally, recent studies (Flurry Analyt-
ics, ) between smartphones provide strong indications
that mobile applications are the users’ preferred way
of interaction when using their smartphone for some
reason (e.g. play a game, buy tickets, check a per-
sonal bank account balance), compared with the cor-
responding services relying in web pages. The us-
age of third party applications of course implies the
existence of notifications in a high percentage of use
cases, such as receiving and consequently responding
to instant messages. This part of interaction, however,
is covered separately in the following paragraphs.

Finally, as already mentioned, we consider that re-
sponding to notifications is a special interaction be-
tween humans and smartphones. By using the term
“responding”, we consider both the cases when users
actually respond to received notifications by “open-
ing” them, as well as the cases of even more basic
actions, such as using the smartphones’ built-in noti-
fication drawer to see and/or read the messages of the
notifications, even if the users, in some cases, decide
not to “open” a notification and just “clear” it after
reading part of its message. This kind of interaction
can be considered of great importance as it forms a
very common reason of using the smartphone in mod-
ern human-smartphone interaction and because it is
expected to grow even more and become more im-
portant in the years to come. A smartphone can re-
ceive notifications for a large number of reasons that
include, yet are not limited to, the following:

• Having missed a phone call

• A newly received text message

• System automatically updated applications

• System automatically updated applications

• Results from periodically scheduled jobs such as
software update checking and virus scanning

• Messages from carriers

• Push notifications coming from external re-
sources, corresponding to installed applications.
Perhaps the most notable ones in this category
are instant messaging applications such as What-
sApp, Viber and Facebook messenger

• Web push notifications that constitute a quite “re-
cent” addition in most mobile browsers’ capabil-
ities, where even not used web pages are able to

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

54



transmit their notifications to targeted mobile de-
vices

• Local app notifications, where third party apps
create and issue a notification in order to be read
by the user, or require an action taken by the user

The aforementioned categories of notifications are
significant and basic, however one should investigate
the underlying reasons why this “kind” of interac-
tion is important more thoroughly. Thus the reader
may have both a rational explanation and also the ev-
idence deriving from the users’ experience about the
authors’ claims. Notifying in terms of mobile com-
puting means, at its fundamental definition, implies
finding a way to reach the user, gain his/her attention.
This can be variously achieved, aligned with the Op-
erating System’s supported corresponding functional-
ities. A foreground application being used by a smart-
phone user can change/update its Graphical User In-
terface (GUI) to provide new information to the user.
The same use-case may occur in a web environment,
where a web page may dynamically adjust its con-
tent. When considering applications that are not cur-
rently active, or are running in the background, or
are even closed since the mobile device is switched
off, the ways to accomplish user notification changes
significantly, since additional parameters have to be
taken into account. Notably, new information that
would change the contents of an Android activity but
would not be launched until a user actually opened the
corresponding application cannot be considered as a
timely, nor an acceptable way to realize user atten-
tion. On the contrary, modern mobile notifications try
to “force” user interaction and do not rely on wait-
ing when or whether the user decides to check their
corresponding app.

In this sense, native mobile applications may
choose among a variety of programmatically feasi-
ble solutions in order to draw users’ attention, such as
newly launched activities, opened web pages through
browsers, dialog messages, toast messages and of
course native Android notifications. The latter, how-
ever, has some considerable advantages to count, as it
will be further explained, thus may be chosen as the
prevailing solution in a majority of use cases where
an application is not being used, or when a device is
switched off.

Essentially, all the aforementioned “solutions”
can work towards the direction of informing the user
about something. Nevertheless, as it will be further
discussed, in the cases where users are either not us-
ing their mobile device, or a specific app, developers
may opt in favor of the native Android notifications to
accomplish user-app interaction. Toast messages in-
volve two basic drawbacks in these cases. First, they

are useless when a mobile device is switched off or
locked, since they will not appear. In the case where
the mobile device is unlocked and awaken, a dis-
played toast message can only provide short informa-
tion to a user, for only 5 seconds without necessarily
providing the identity of the issuer. Newly launched
activities, or launched mobile pages through mobile
browsers are definitely more “permanent” than toast
messages solutions, since they do not disappear af-
ter a specific period of time, nor get affected by the
state of the mobile device, namely when they are
closed and/or locked. However, both are invasive in
terms of user-mobile interaction since they impose
their presence as the foreground app in the mobile
device’s main User Interface (UI). Moreover, there
is no guarantee that they are going to be the fore-
ground app when the user unlocks the phone, since
other, newer, activities might have been launched,
putting them in the background. Android dialog mes-
sages suffer the same disadvantages too. Addition-
ally, dialog messages are required to hold the quite
“dangerous” system permission that allows them to
draw over other screens to accomplish the desirable
result, namely the SYSTEM ALERT WINDOW per-
mission, that can be maliciously used (Fratantonio
et al., 2017).

Deductively, we lead to reason why the Android
notifications are the preferred, and the suggested by
Google, way of realizing the communication between
a user and an unused app, or even more precisely, be-
tween a user and an application that is not in the fore-
ground. In addition, the internal design of Android
notifications provides them with some valuable assets
in terms of establishing an effective and accepted so-
lution for asynchronous or semi-synchronous back-
ground initiated communication between users and
apps. These assets include great levels of effective-
ness in terms of OSes resources usage, permanence
and user friendliness in terms of providing a nonin-
vasive way of notifying users. Nevertheless, there
are two points that require significant attention. All
kinds of notifications that are issued from a “back-
ground” process when either a device is locked or
when a user is using an irrelevant application also
means that the identity of the notification issuer is also
very critical. When a user is actually using an applica-
tion and the application’s content changes, users can
feel quite sure, presumably, that the changed content
originates from the application they use. On the con-
trary, when users receive incoming information from
an application they are not actively using, they ratio-
nally need to be able to verify its actual source. This
is the reason why, when receiving an email from an
unknown source requesting the bank credentials to

Knock-Knock: The Unbearable Lightness of Android Notifications

55



proceed to an action issued by a well-known bank,
most users, hopefully, consider this email as fake and
subsequently delete it. Accordingly, a mobile phone
user is expecting to be able to confirm a notifica-
tions’ issuer true identity before proceeding to an ac-
tion that could range from posting an unwanted mes-
sage to a social network, to exposing the user’s login
credentials for his/her bank account, or a company’s
server login. To this end, the notifications’ nature can
be considered as even more deceptive when they are
asynchronous to the users’ active interaction, since by
definition are not expected to appear when users are
using the issuing applications and respectively know
their origin.

As already mentioned, the aim of this paper is
twofold. One the one hand, provides evidence, re-
grettably, that Android notifications can be provably
be insecure in contrast to their wide adoption and in-
creased interest by both developers and users. On
the other hand, the authors also suggest solutions that
may address the arising security issues. Towards this
direction, even though applying the countermeasures
will not provide ground proof that Android notifica-
tions will subsequently become secure, closing secu-
rity holes still improves them and also helps towards
the direction of maturing an ever developing and con-
stantly evolving mobile operating system. For these
reasons, the analyzed underlying security issues and
not only statically illustrated, rather than the causes
of their origin are investigated and generic solutions
as countermeasures are proposed. Leaving the pro-
gramming level and anatomizing the more abstract
level of the Android Notifications’ infrastructure in
terms of Human-Smartphone interaction not only re-
veals this “mechanism’s” profound architecture, but
also projects both its strengths and weaknesses.

4 ATTACKS ON ANDROID
NOTIFICATIONS

In this section we discuss attacks on Android Notifi-
cations. More specifically, our main focus will be to
illustrate the feasibility of forging application notifi-
cations, which expose the users’ privacy and security.
Secondly, we present how Android’s notifications can
be exploited to launch a Denial of Service (DoS) at-
tack, both locally and remotely.

4.1 Forging App Notifications

As already analyzed in the previous section, the in-
teraction between smartphone apps and users is bidi-
rectional. In the case of users’ initiated interac-

tion, namely user-to-app, users are having knowledge
about the applications that they launch and use. In
this paper we are going to prove that by designing a
fine-tuned, yet based of evidence, attack to Android
users, the app-to-user interaction can be exploited. In
particular, the attack that is illustrated in this section
involves a number of steps from the attacker’s side,
involving fundamental Android components and ser-
vices. The impact of forging notifications can be con-
sidered rather high, as it can be used to deceive them
to collect user credentials, perform user profiling, or
even blackmailing. The steps of the attack are illus-
trated in Figure 2. Following, a use case is also pre-
sented and analyzed. For the purposes of highlighting
the dangers that accompany this attack, in our step-
by-step use case scenario we have chosen “PayPal”
as the “target” app. The steps are the following:

• A user installs a zero-permission app through
Google Play. The apps name is BobApp and re-
quires only Internet access (even this permission
can by bypassed if necessary).

• The installed app retrieves the list of installed ap-
plications in the victim’s device. The list is com-
municated to a service owned by the attacker.

• The attacker determines whether an app that he
would like to make an attack to is available in vic-
tims’ devices. In this scenario it is “PayPal”.

• The attacker issues an update for the app, through
Google Play, where the app’s name is replaced,
namely “BobApp” becomes “PayPal”. The up-
date is expected to be launched automatically,
usually by night, when the device is unattended
(e.g. probably left charging and connected to a
Wifi).

• After a successful application update, the mali-
cious app’s name has been changed, while the user
(owner) has no way to know about it.

• To build a complete notification, the malicious
app requires a title, a text and also the target app’s
icon. This is accomplished by utilizing the actual
genuine target app’s resources. More specifically,
the target app’s package is located and the app’s
graphics are retrieved through the application’s re-
sources and the application’s metadata. As a re-
sult, a new notification is triggered, with an iden-
tical to the genuine app interface.

• After triggering the malicious notification, the
user is expected to select it and subsequently
launch a malicious activity. The malicious activ-
ity can further utilize the genuine app’s resources
in order to provide a UI that will lure the user.

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

56



Figure 1: A forged notification from another app.

• Finally, the user is asked for some private info
(credentials) compromising her/his account.

The above scenario has been tested both locally
and through Google Play. A forged notification for
PayPal on Nougat is illustrated in Figure 1. More in-
terestingly, since the ID for an app located in Google
Play consists only of its package name, one can very
easily find numerous apps in Google Play sharing the
same name. Moreover, after thorough research we
have come up with the conclusion that bypassing a
notification’s actual app name is almost impossible by
other means in AOSP. Achieving this programmati-
cally requires the “substitute notification app name’’́
signature permission, which only 2-3 system apps ac-
tively have. Indeed, our research revealed that these
apps are “Easter Eggs”, “Google Play” and “Shell”.
The combination of using other apps’ resources and
changing the app name arbitrarily through back-
ground silent updates, makes the described attack sce-
nario both effective and real. Indeed, the described
attack proves to the readers that Android users can
be led to a situation where they would not be able to
reason about the origin of their smartphones’ notifica-
tions.

Finally, another part of the Android’s user interac-
tion mechanism that has been found to have flaws is
the home-screen application shortcuts. Home-screen
shortcuts are coupled to notifications in many cases
since once one or more notifications have been is-
sued by an application, an indicative change appears
in the corresponding app’s shortcut (e.g. an indicating
number of unread notifications). Nonetheless, home-
screen shortcuts are also being frequently used by
users to initiate an interaction with an app. Our in-
dependent research has revealed that Android home-
screen app shortcuts can be easily forged and a ma-
licious application can appear on a device’s home-

screen as another application, with identical icon and
name. Both the home-screen icon and also the name
of the shortcut are not hard-coded and do not originate
from the app’s resources. As a result every applica-
tion is able to create a home-screen shortcut as being
another app. In this sense, forged app notifications
can “cooperate” with forged app home-screen short-
cuts to further deceive the user. Even without having
notifications issued, home-screen shortcuts provide
attackers with another attack-vector in the human-
smartphone interaction.

Both security issues, regarding forged notifica-
tions and forged home-screen shortcuts, have been
responsibly disclosed to Google’s Android Security
Team.

4.2 DoS through Notifications

Following another approach, notifications can be used
to launch a denial of service both locally and re-
motely. The attack exploits a bug in NotificationMan-
ager when allocating memory for creating a Notifica-
tion. The notification’s builder object expects a spe-
cific size of the icon, yet allocates memory for any
given image graphic. Potentially, this bug may allow
arbitrary code execution, however, to this point, we
were not able to execute it. As a result, the attack;
currently being patched by Android Security Team,
is launched when a properly crafted notification is
sent to the NotificationManger class. After launching
the attack, the System UI process repeatedly crashes
blocking the user from making any other interaction
apart from answering a call and rebooting. Notably,
while answering calls is allowed, the UI does not re-
vert to the original state. Furthermore, by registering
a broadcast receiver Android object waiting for the
“BOOT COMPLETED” event and re-issuing the ma-
licious notification makes the device unusable, since
the device will immediately fall to the previous loop-
ing state. Possible countermeasures, before a patch is
applied by Google, is to uninstall the malicious appli-
cation through a possible “safe mode” device state, or
re-flashing the whole device.

To launch this attack, actually almost no code is
required, since only a “big” image of high resolu-
tion is needed to be sent to NotificationManager for
rendering. In our tests we used a high resolution
(4096x4096) PNG file, of rather low file size (2.79
KB), however larger graphics have the same effect.
Such a “malicious” image can either be stored in
the application’s resources, or be loaded dynamically.
Nevertheless, some critical issues arise by its actual
capability to be able to be loaded dynamically, from
other resources than the actual application that is fir-

Knock-Knock: The Unbearable Lightness of Android Notifications

57



Figure 2: Attack overview.

ing the notification.
Clearly, the above scenario is triggered locally,

by a malicious installed app. Nonetheless, this
can also be triggered remotely. As of API level
23, the Notification.Builder class includes a new
method, namely “Notification.Builder setSmallIcon
(Icon icon)”, which accepts an icon rather that a re-
source. This way, many apps (e.g. Youtube), use
Internet resources to download their graphics. Since
this information is not private and servers want to take
advantage of caching, such graphics are mostly trans-
mitted via plain HTTP. Using a simple man-in-the-
middle attack, an adversary can replace the requested
graphic with a high resolution graphic and brick the
devices remotely.

Even when examining the case where a device is
targeted in API levels less than 23, where the new
“setSmallIcon” function was not available and even if
there was the possibility of pre-checking the resources
of each app that could be used as icons, the problem
still exists. Namely, since apps’ resources are “pub-
lic” to other installed apps, a malicious application
could very easily scan the device for all installed apps’
resources and select a high resolution image and use
it for the attack.

4.3 Web Push Notifications

Recently, the ability to fire notifications has been also
given to web pages, with a big number of modern and
popular mobile browsers supporting this feature. In
our tests we have successfully tested web push noti-
fications on Android devices running Chrome version
≥ 42, Mozilla version ≥ 44 and Samsung Internet
browser version ≥ 4.0. Having the ability to notify a
user asynchronously was one of the very basic advan-
tages that native mobile applications had in the past,
in contrast to web pages, whose lifetime of interaction

with the user was bounded to the time the user spent
in browsing on a specific web page.

Web push notifications were introduced to fill
this gap. This functionality is established through a
“bridge” between the native app world and the web
pages ecosystem, provided by the mobile browser. A
mobile browser is a “special” kind of software entity.
Since it operates in both of these “worlds”, it is actu-
ally a native mobile application installed in a smart-
phone, while simultaneously its basic purpose is to
serve web pages. As a result, having some special
permissions given by the user explicitly, a web page is
able to send a push notification asynchronously to the
browser and consequently, the browser is responsible
for “communicating” this notification to the user’s de-
vice, utilizing the OSes native mechanisms.

However, the latter introduces another attack vec-
tor for phishing attacks. Assume the case of a user ac-
cepting notifications from a malicious web page from
his mobile browser. The web page then can push an
arbitrary notification to the device at any given point.
Practically, in our phishing scenario, the malicious
web page pushes a notification with the icon of an
app with millions of downloads, expecting users to
respond. The notification redirects the user to a web-
page which replicates the UI of the targeted app re-
questing for sensitive information, e.g. credentials.
While the notification may verbally state that the no-
tification originates from the browser, yet the visual
identity, the displayed icon and the notification text,
may lure many users. Under the precondition that a
web page is able to determine which applications a
user has installed in her/his device, recently published
in (Alepis and Patsakis, 2017a), a forging app notifi-
cation use case could be able to appear in web push
notifications too. Both text and graphics can be easily
arbitrarily be loaded through web resources. How-
ever, the actual notifications “issuer” in these cases is

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

58



always the name of the browser (e.g. Chrome), ac-
companied by the notification’s title. In this sense, a
user may be lured and open a malicious notification
believing that one of her/his installed mobile apps has
fired it by seeing the graphic and the text involved.
However, as already mentioned, a more attentive ex-
amination by the user could reveal that the notifica-
tion was fired by the browser and not by the actual
installed app. Nonetheless, since a web notification
containing information about an installed app is not
very common, users may more easily be deceived in
such a scenario.

The case of issuing a DoS attach to a device
through web push notifications has been also inves-
tigated. However, in our experiments, this kind of at-
tack was unsuccessful. The graphic is probably firstly
“rendered” by the browser to meet the proper size,
thus blocking the attack. Processing a very high defi-
nition graphic by a mobile app would require process-
ing time, which could eventually lead to an Applica-
tion not Responding (ANR) situation. The browsers
in our tests seem to properly handle these situations
and result in either firing the notification with its
graphic scaled, or providing a “default”, “harmless”
icon for the notification to be issued.

5 DISCUSSION AND
CONCLUSIONS

Due to size constraints, Android UI lacks the source
verification of graphic components, exposing the
users to many risks. In the literature, several ap-
proaches have been proposed to counter such issues.
For instance, a third party framework named “Secure-
View” was proposed in (Xu and Zhu, 2012). Secure-
View allows the user to choose a security image as
well as writing a text-based security greeting after in-
stalling an application in her/his device. This way,
whenever a sensitive view is displayed, the applica-
tion can show the security image and greeting on the
sensitive view to provide view authentication to the
user. These kinds of countermeasures can also be
found to have drawbacks. One the one hand, using
such a framework from applications implicitly means
trusting a third party company. On the other, having
users supply both different security images and greet-
ings for a number of their installed applications might
not work for obvious reasons, including user frustra-
tion and negative user experience.

In (Bianchi et al., 2015) the researchers propose
the introduction of a visual identity to facilitate the
user identify which app he is actually interacting.
Their solution tracks the origin of the app that created

the displayed dialog and presents it in the notification
bar. Wu et al. monitor the WindowManagerService
to determine the presence of a floating window by re-
calculating the Z-order of all windows and hooking all
the calls which are triggered when creating and click-
ing on a window (Wu et al., 2016a). This approach
may not counter UI replication attacks, but it defends
many overlay attacks. Ying et al. propose a similar
visual identity to Bianchi et al. for identifying the
source of a UI element also tweaking Window Man-
ager (Ying et al., 2016b). WindowGuard hooks the
Activity Manager, the Window Manager and Package
Manager services to monitor overlaying UI elements
and activity transition in order to detect possible at-
tacks (Ren et al., 2017).

An automated screenshot mechanism is proposed
in both (Malisa et al., 2016; Malisa et al., 2017) to
find similarities between apps and determine whether
a UI attack is being made by an app.

Other solutions to UI attacks are presented in (Fer-
nandes et al., 2016; Marforio et al., 2016; Wu et al.,
2016b). For more on phishing attacks and counter-
measures the interested reader may refer to (Heart-
field and Loukas, 2016; Aleroud and Zhou, 2017)

From the aforementioned defense mechanisms it
is clear that only some of the proposed mechanisms
can provide only partial measures against our attacks.
The main reason is the context awareness of our app
and the renaming of the app. In this regard, the dis-
played UI is rendered according to the targeted ap-
plications that are already installed in the device, so
screenshot mechanisms are rendered useless. A very
important aspect that needs to be taken into consid-
eration is that the paper’s described attacks are actu-
ally triggered by the user. Consequently, there are no
overlays to be detected by the system and due to the
renaming, all the appropriate visual signatures can be
easily circumvented.

Therefore, when the interaction between human
and smartphone is initiated by the user, then it is of
utmost importance to ensure that the user is actu-
ally launching the application s/he intended to launch.
While using the applications’ basic shortcuts it seems
that s/he is protected, since an application using an-
other apps graphic as a the app’s launcher icon re-
quires it being placed in the apps resources, which
consequently would give Google Bouncer the ability
to “intercede” when another apps graphic has been
detected in Google Play. Unfortunately, this is not the
case with home-screen app shortcuts. As already dis-
cussed, home-screen app shortcuts can be easily ar-
bitrarily created by other apps, producing “identical”
forged app shortcuts. In this case, the OS must pro-
vide some new rules and/or checks to overpass this

Knock-Knock: The Unbearable Lightness of Android Notifications

59



problem e.g. test whether a specific icon matches the
resources of another app.

In the cases where the interaction between hu-
man and smartphone is implicitly initiated by appli-
cations, the problem seems a little more complicated.
As it is already mentioned, some “ways” that evolve
in user notification, such as activity launches, dialogs
and toasts, have clear disadvantages and are rejected
by developers in most cases. The major contribution
of this work is the investigation of the Android No-
tifications’ mechanism from its security perspective.
Generically, notifications are not tightly coupled to
their issuer, since they refer to a way of “leaving a no-
tice” for the user through the OSes features, both en-
hancing user experience and also preserving the valu-
able smartphone resources. Consequently, this notice
is left to be opened by the user end navigate her/him
to another UI to continue her/his interaction, presum-
ably a native mobile app, or even a web page. It may
be considered as “common sense” that anyone who
“picks up” a notice in either her/his mailbox or her/his
mobile navigation drawer, should be able to identify
the sender. As a result, all involved parties in software
development should work towards this direction, safe-
guarding the users, as their ultimate aim.

Having these in mind, regarding the notifications’
issues, there are several solutions that could be pro-
posed for the OS vendor. Being able to prove the no-
tification’s issuer id, would involve an id to be passed
either to the notifications current app name, or the the
required graphic or even to both. As we have proven
both the name of the notification and also the graph-
ics could be easily being forged. The apps’ package
name can be considered as a candidate that identi-
fies each app, which also cannot exist as duplicate in
Google Play. Nevertheless, it has some drawbacks,
since while enhancing users’ security, it negatively
affects user experience. Forcing the icons/graphics
of notifications originating only from local resources
is another option, which would nevertheless require
the OS to rollback to a previous solution, with clear
negative results in the market. Other kinds of side-
countermeasures could include removing the poten-
tial from apps to being able to determine which apps
are installed in users’ devices, or making a special
check for Google Play apps who are making a change
in their app name and consequently removing them
for the automated updated app list.

The presented work has resulted in four respon-
sibly disclosed to Google security issues that are not
public yet at the time of writing. More specifically,
two issues regard the described methods in forging
app notifications in all Android versions from Marsh-
mallow to Oreo, one issue regarding forging home-

screen shortcuts, affecting all Android versions and
one issue regarding the illustrated DoS attack, affect-
ing all Android versions. The authors have followed
all the guidelines regarding the disclosure of the is-
sues, both in terms of following the security proce-
dures and also in terms of giving the company enough
time to be able to prepare patches.

ACKNOWLEDGMENTS

This work was supported by the European Commis-
sion under the Horizon 2020 Programme (H2020), as
part of the OPERANDO project (Grant Agreement
no. 653704) and is based upon work from COST
Action CRYPTACUS, supported by COST (European
Cooperation in Science and Technology). The au-
thors would like to thank ElevenPaths for their valu-
able feedback and granting them access to Tacyt.

REFERENCES

Alepis, E. and Patsakis, C. (2017a). The all seeing eye: Web
to app intercommunication for session fingerprinting
in android: submission title. In The 10th International
Conference on Security, Privacy and Anonymity in
Computation, Communication and Storage (SpaCCS
2017). Springer.

Alepis, E. and Patsakis, C. (2017b). Trapped by the ui:
The android case. In Proceedings of the 20th Interna-
tional Symposium on Research in Attacks, Intrusions
and Defenses. Springer. (To appear).

Aleroud, A. and Zhou, L. (2017). Phishing environments,
techniques, and countermeasures: a survey. Comput-
ers & Security.

Android Developer. Manifest.permission – SYS-
TEM ALERT WINDOW. https://developer.android.
com/reference/android/Manifest.permission.html#
SYSTEM ALERT WINDOW. Date retrieved:
28/03/2017.

Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y.,
Kruegel, C., and Vigna, G. (2015). What the app is
that? deception and countermeasures in the android
user interface. In Security and Privacy (SP), 2015
IEEE Symposium on, pages 931–948. IEEE.

Biznessapps. What is a push notification? and why should
you care? https://www.biznessapps.com/blog/what-
is-a-push-notification/. Accessed on 27/07/2017.

Caitlin O’Connell. 2015: The year that push notifica-
tions grew up. http://info.localytics.com/blog/2015-
the-year-that-push-notifications-grew-up. Accessed
on 01/09/2017.

Chen, Q. A., Qian, Z., and Mao, Z. M. (2014). Peeking into
your app without actually seeing it: Ui state inference
and novel android attacks. In USENIX Security Sym-
posium, pages 1037–1052.

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

60



Chin, E., Felt, A. P., Greenwood, K., and Wagner, D.
(2011). Analyzing inter-application communication in
android. In Proceedings of the 9th international con-
ference on Mobile systems, applications, and services,
pages 239–252. ACM.

Felt, A. P. and Wagner, D. (2011). Phishing on mobile de-
vices. In Proceedings of the Web 2.0 Security and Pri-
vacy 2011 Workshop.

Fernandes, E., Chen, Q. A., Paupore, J., Essl, G., Halder-
man, J. A., Mao, Z. M., and Prakash, A. (2016). An-
droid ui deception revisited: Attacks and defenses. In
International Conference on Financial Cryptography
and Data Security, pages 41–59. Springer.

Flurry Analytics. U.s. consumers time-
spent on mobile crosses 5 hours a day.
http://flurrymobile.tumblr.com/post/157921590345/us-
consumers-time-spent-on-mobile-crosses-5. Ac-
cessed on 01/09/2017.

Fratantonio, Y., Qian, C., Chung, S., and Lee, W. (2017).
Cloak and Dagger: From Two Permissions to Com-
plete Control of the UI Feedback Loop. In Proceed-
ings of the IEEE Symposium on Security and Privacy
(Oakland), San Jose, CA.

Heartfield, R. and Loukas, G. (2016). A taxonomy of at-
tacks and a survey of defence mechanisms for seman-
tic social engineering attacks. ACM Computing Sur-
veys (CSUR), 48(3):37.

Malisa, L., Kostiainen, K., and Capkun, S. (2017). Detect-
ing mobile application spoofing attacks by leveraging
user visual similarity perception. In Proceedings of
the Seventh ACM on Conference on Data and Appli-
cation Security and Privacy, pages 289–300. ACM.

Malisa, L., Kostiainen, K., Och, M., and Capkun, S. (2016).
Mobile application impersonation detection using dy-
namic user interface extraction. In European Sympo-
sium on Research in Computer Security, pages 217–
237. Springer.

Marforio, C., Jayaram Masti, R., Soriente, C., Kostiainen,
K., and Čapkun, S. (2016). Evaluation of personalized
security indicators as an anti-phishing mechanism for
smartphone applications. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Sys-
tems, pages 540–551. ACM.

Niemietz, M. and Schwenk, J. (2012). Ui redressing attacks
on android devices. Black Hat Abu Dhabi.

Pielot, M., Church, K., and de Oliveira, R. (2014). An in-
situ study of mobile phone notifications. In Proceed-
ings of the 16th International Conference on Human-
computer Interaction with Mobile Devices &#38; Ser-
vices, MobileHCI ’14, pages 233–242, New York, NY,
USA. ACM.

Ren, C., Liu, P., and Zhu, S. (2017). Windowguard: Sys-
tematic protection of gui security in android. In Net-
work and Distributed System Security Symposium.

StatCounter GlobalStats. Mobile and tablet internet
usage exceeds desktop for first time worldwide.
http://gs.statcounter.com/press/mobile-and-tablet-
internet-usage-exceeds-desktop-for-first-time-
worldwide. Accessed on 01/09/2017.

Urban Airship. New urban airship study re-
veals app publishers that dont message users
waste 95 percent of their acquisition spend.
https://www.urbanairship.com/company/press-
releases/new-urban-airship-mobile-app-retention-
study. Accessed on 01/09/2017.

Virvilis, N., Tsalis, N., Mylonas, A., and Gritzalis, D.
(2014). Mobile devices: A phisher’s paradise. In Se-
curity and Cryptography (SECRYPT), 2014 11th In-
ternational Conference on, pages 1–9. IEEE.

Wei, F., Li, Y., Roy, S., Ou, X., and Zhou, W. (2017).
Deep ground truth analysis of current android mal-
ware. In International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment,
pages 252–276. Springer.

Wu, L., Brandt, B., Du, X., and Ji, B. (2016a). Analysis of
clickjacking attacks and an effective defense scheme
for android devices. In Communications and Network
Security (CNS), 2016 IEEE Conference on, pages 55–
63. IEEE.

Wu, L., Du, X., and Wu, J. (2016b). Effective defense
schemes for phishing attacks on mobile computing
platforms. IEEE Transactions on Vehicular Technol-
ogy, 65(8):6678–6691.

Xu, Z. and Zhu, S. (2012). Abusing notification services
on smartphones for phishing and spamming. In Pro-
ceedings of the 6th USENIX conference on Offensive
Technologies, pages 1–1. USENIX Association.

Ying, L., Cheng, Y., Lu, Y., Gu, Y., Su, P., and Feng, D.
(2016a). Attacks and defence on android free floating
windows. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Secu-
rity, ASIA CCS ’16, pages 759–770, New York, NY,
USA. ACM.

Ying, L., Cheng, Y., Lu, Y., Gu, Y., Su, P., and Feng, D.
(2016b). Attacks and defence on android free floating
windows. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Secu-
rity, pages 759–770. ACM.

ZDNet. Whatsapp: Now one billion peo-
ple send 55 billion messages per day.
http://www.zdnet.com/article/whatsapp-now-one-
billion-people-send-55-billion-messages-per-day/.
Accessed on 27/07/2017.

Knock-Knock: The Unbearable Lightness of Android Notifications

61


