
Genetic Programming Hyper-heuristic for the Automated Synthesis
of Selection Operators in Genetic Algorithms

Evgenii Sopov
Department of Systems Analysis and Operations Research,

Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russia

Keywords: Genetic Algorithms, Genetic Programming, Constructive Hyper-heuristic, Selection Operator.

Abstract: Genetic algorithms have proved their efficiency with many hard optimization problems, but in order to achive
the best results they must be fine-tuned. One such method of fine-tuning is a synthesis of new genetic
operators. Hyper-heuristics represent search techniques that can be used for automating the process of
selecting or generating simpler heuristics with the aim of designing new metaheuristic algorithms. In this
study, we have proposed a new hyper-heuristic based on genetic programming for the automated synthesis of
a selection operator in genetic algorithms. Black-Box Optimization Benchmarking is used as a training set for
the genetic programming algorithm and as a test set for estimating the generalization ability of a synthesized
selection operator. The results of numerical experiments are presented and discussed. The experiments have
shown that the proposed approach can be used for designing new selection operators that outperform standard
selection operators on average with new, previously unseen instances of hard black-box optimization
problems.

1 INTRODUCTION

Metaheuristics, such as genetic algorithms (GAs),
have proved their efficiency over a wide range of real-
world search optimization problems. GAs realize the
"blind" search strategy and do not require any specific
information about the features of the search space and
objectives. Nevertheless, the performance of a GA
strongly depends on the algorithm’s structure, the
chosen types of genetic operators and their
parameters. Such fine-tuning of the GA can be
performed using some a priori information on a given
problem, through a series of numerical experiments
with different algorithm settings or in an automated
way during the algorithm’ run. The last option has
become more popular in recent times and often
outperforms traditional schemes of applying GAs.
There exist many self-adaptive and self-configuring
approaches in GAs (Eiben et al., 2007).

The most recent studies in the field propose more
complex approaches for the automated design of
search metaheuristics, which are called hyper-
heuristics (HHs). Genetic programming (GP) has
been proposed as a method for automatically
generating computer programs. Today GP is used in
the field of machine-learning for a wide range of

applications. GP can be also applied as a hyper-
heuristic for generating search heuristics and
metaheuristics (so-called GPHH) (Burke et al., 2013).

In the field of GAs, the problem of configuring
and fine-tuning an algorithm is usually solved only
once for a given instance of an optimization problem.
At the same time, machine-learning approaches are
aimed to find or to build an algorithm (a classifier, a
regression model, etc.) based on a set of training
instances, which can deal efficiently with new
instances of a problem. This concept can be
transferred to the GPHH approach. An objective of
the GPHH is to design a metaheuristic that
demonstrates high performance on average over a set
of complex optimization problems. Such feature is
necessary for “black-box” optimization, because the
synthesized metaheuristic should not adapt to a
specific problem, but cover a range of problems.

This study is devoted to improving the GA
performance by generating and tuning new selection
operators using the GPHH. We will focus on the
standard binary GA for solving single-objective
unconstrained “black-box” optimization problems.
The well-known benchmark problems from the
GECCO and IEEE CEC conferences (Black-Box
Optimization Benchmarking (BBOB)) are used as a

Sopov E.
Genetic Programming Hyper-heuristic for the Automated Synthesis of Selection Operators in Genetic Algorithms.
DOI: 10.5220/0006497002310238
In Proceedings of the 9th International Joint Conference on Computational Intelligence (IJCCI 2017), pages 231-238
ISBN: 978-989-758-274-5
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

training set. The benchmark contains GA-hard
problems and combines many features of
optimization problems.

The rest of the paper is organized as follows.
Section 2 describes related work. Section 3 describes
the proposed approach. In Section 4, the results of
numerical experiments are discussed. In the
Conclusion the results and further research are
discussed.

2 RELATED WORK

2.1 Hyper-heuristics for Automated
Algorithm Synthesis

Hyper-heuristic approaches perform a search over the
space of heuristics or metaheuristics when solving
optimization problems. In a HH approach, different
heuristics or heuristic components can be selected,
generated or combined to solve a given problem in an
efficient way. In (Burke et al., 2010), a general
classification of HHs is given according to two
dimensions: the nature of the heuristic search space
and the source of feedback during learning. The first
characteristic defines the following two classes:
 Heuristic selection: Methodologies for choosing

or selecting existing heuristics.
 Heuristic generation: Methodologies for

generating new heuristics from components of
existing heuristics.

The first class is similar to the idea of the self-
configuration in evolutionary algorithms. The
selection can be performed with a set of predefined
evolutionary and genetic operators (for example,
Population-level Dynamic Probabilities in GP
(Niehaus and Banzhaf, 2001), Linear Genetic
Programming for the Synthesis of Evolutionary
Algorithms (Oltean, 2005)) or from a set of
predefined algorithms (for example, the Population-
based Algorithm Portfolio (Tang et al., 2010), the
Multiple Evolutionary Algorithm (MultiEA) (Yuen et
al., 2013) or the Self-configuring Multi-strategy
Genetic Algorithm (Sopov, 2016)).

In this study, we will focus on the second class of
HHs. As we can see from many papers (a good survey
of HHs is proposed in (Burke et al., 2013)), the
majority of HHs have been proposed for solving
combinatorial optimization problems. Nevertheless,
there exist some examples of HHs for general
optimization problems, and the best results are
achieved with HHs based on GP (Burke et al., 2009).

With respect to the source of feedback during

learning there exist:
 Online learning HHs: Learn while solving a given

instance of a problem.
 Offline learning HHs: Learn from a set of training

instances a method that would generalize to
unseen instances.

 No-learning HHs: Do not use feedback from the
search process.

In many real-world applications, a chosen heuristic
optimization method is applied to find the best
solution with respect to a single instance of a certain
optimization problem. In such applications, the
generalization ability of the method applied does not
matter, as the problem should be solved only once. In
this case, we can use a no-learning HH if there is
presented a priori information on the problem, or we
can use an online learning HH to solve the problem in
an automated, adaptive way.

In this study, we will use an offline learning
approach to provide the generalization feature and to
synthesize a GA with a new selection operator, which
outperforms the standard GA on average.

The application of GP as a HH is a rather new
direction in the field of automated algorithm design.
GP builds candidate solutions to the problem from a
set of primitives, which are represented by single
operators, functions or whole heuristics and
metaheuristics. One of the main advantages of GP is
that it simultaneously provides the structural
synthesis of a solution and the tuning of its
parameters. The solution can be a human-readable
symbolic expression (a formula) or a computational
algorithm (an executable computer program).

In the majority of studies, GPHH is applied for the
automated design of data mining tools and
combinatorial optimization algorithms. There are
only a small number of works on applying GPHH for
the design of new operations in evolutionary and
genetic algorithms. In (Hong et al., 2013), GPHH is
used for the automated design of mutation operators
for evolutionary programming and in (Woodward and
Swan, 2012) the same problem is solved for GAs. In
(Woodward and Swan, 2011), selection operators are
synthesised using a register machine as a tool for
automated programming.

2.2 Selection Operator in GA

A selection operator is an important component of
any evolutionary or genetic algorithm. The selection
operator is intended to improve the average fitness of
a population by giving individuals with better fitness
a higher probability to be copied into the next
generation. From the point of view of search

Figure 1: The probability distributions of commonly used selection operators: a) truncation, b) proportional, c) linear ranking,
d) exponential ranking (base of the exponent is c=0.5), e) exponential ranking (c=0.8), f) exponential ranking (c=0.95). The
horizontal axis contains ranks of an individual; the vertical axis is the probability of being selected.

optimization, selection focuses the search process on
promising regions in the search space, while
recombination performs a random search within
previously explored regions, and mutation discovers
new points in the search space.

Any selection operator can be viewed as a
probability distribution that assigns the chance of
being chosen for further operations to every
individual in a population. Thus, selection can be
defined as a mapping (of a function) s to the [0, 1]
interval. The domain of the s function comprises
ranks for the ranking, tournament and truncation
selection schemes, and comprises fitness values for
the proportional selection (1). The s function should
satisfy the normalization requirement (2).

௜݇݊ܽݎ	:ሺ݅ሻݏ → ሾ0,1ሿ, ௜݇݊ܽݎ ∈ Ժ
ሺ	ݏሺ݅ሻ:	݂݅ݏݏ݁݊ݐ௜ → ሾ0,1ሿ, ௜ݏݏ݁݊ݐ݂݅ ∈ Թ	ሻ

(1)

෍ ሺ݅ሻݏ
௜∈௉௢௣

ൌ 1 (2)

where Pop is a population and i is an individual in the
population.

A comprehensive analysis of selection schemes in
GAs is presented in (Blickle and Thiele, 1996), where
selection operators are described and compared using
estimations of average fitness, fitness variance,
reproduction rate, loss of diversity, selection intensity
and selection variance. Unfortunately, the proposed
models are too complicated and can be applied only
for simple optimization problems such as the
ONEMAX function. Nevertheless, it can be seen that
the characteristics of probability distributions
presented by selection schemes are different and there
is no guarantee that the best-chosen scheme from a set
of traditional selection schemes will be optimal or
even efficient enough for solving an arbitrary
optimization problem.

We have visualized the probability distributions
of commonly used selection operators (Figure 1). We
have ranked solutions for all types of selection in such
a way that the first rank is assigned to the worst
solution. The tournament selection is not presented,
because it is asymptotically equal to the linear
ranking. As we can see, the probability distributions
are always monotonically increasing functions. The
functions for the ranking and tournament are smooth.
The function graph of the proportional selection
strongly depends on a distribution of the fitness
values. If the fitness distribution is uniform, the graph
is close to the graph of the linear ranking, otherwise
it is closer to the exponential ranking.

The traditional selection operators are inspired by
nature and use straightforward and simple ways for
calculating the probability of being selected. In this
study will use GPHH to synthesize new selection
operations, which maximize the average performance
of a GA.

3 PROPOSED APPROACH

In this study, we propose the following conception of
applying GP as a HH for the automated design of
selection operators. We will use a GP algorithm as a
problem, in which tree solutions represent probability
distributions. A raw solution is normalized, and after
that is executed as a selection algorithm in a certain
GA. For evaluating fitness of the GP solution, we
estimate the average performance of the GA with the
meta-procedure for solving a symbolic regression
designed selection operator over a series of runs. The
BBOB functions are used and they are divided into
training and test sets to estimate the generalization
ability of the solution. The proposed scheme of GHPP

Figure 2: The general scheme of the proposed GPHH for automated synthesis of selection operators in GAs.

is presented in Figure 2.
We will discuss the components and stages of the

approach in detail.
It is obvious that the proposed GPHH is a

computationally costly procedure. Thus, we will
introduce some modifications to the standard GP
algorithm. As was shown in the previous section, the
probability distributions of selection are rather
simple, smooth and increasing functions. We will
strongly control the bloat of the tree solutions by
limiting their maximum depth (Luke and Panait,
2006). In standard GP, a grow method on the
initialization step uses equal probabilities for all
elements of the functional set. We will use a higher
probability for the addition to get more simple and
smooth expressions. The same probabilities for
elements of the functional set will be used for a point-
mutation operation.

A terminal set in GP includes variables and
constants for a given problem. The selection
probability of a solution in the GA may depend on
many factors. Usually all requirements of an
optimization problem are presented in the fitness
function. Thus, we can include in the terminal set only
one input variable based on the fitness value. To
avoid fitness scaling, we will rank individuals in the
GA, and will use the ranks as the variable in the
terminal set (in this work, the first rank corresponds
to the worst individual). We will also include two
automatically defined functions (ADFs) in the

terminal set, which are the linear ranking and the
exponential ranking with с=0.8.

Each tree solution in the GP is a function with
arbitrary codomain (denoted as f(i), where i is the
rank of an individual after the ranking). We need to
provide some transformation of the function for
applying it as a selection operator s(i). We will bound
the domain with rank values and will apply
normalization (3).

ሺ݅ሻݏ ൌ
݂ሺ݅ሻ െ ௠݂௜௡ ൅ ∆

∑ ሺ݂ሺ݅ሻ െ ௠݂௜௡ ൅ ∆ሻሻ௉௢௣ௌ௜௭௘
௜ୀଵ

௠݂௜௡ ൌ min
௜∈ሾଵ,௉௢௣ௌ௜௭௘ሿ

݂ሺ݅ሻ
(3)

where PopSize – is the size of a population, i is an
individual in the population, ௠݂௜௡ shifts the function
into the positive range, ∆ is a parameter that
guarantees a non-zero probability for the worst
individual.

The GA used in this study is a standard GA with
standard binary representation. The crossover
operator is two-parent uniform recombination. The
mutation operator is a bit inversion and has average
intensity, which is calculated as
(1/chromosome_length) (one mutation per string on
average). The stop criterion is a limitation of fitness
evaluations in terms of the number of generations
with a fixed-sized population. Each new population is
formed by copying offspring into it. The worst
individual is replaced by the best-found solution

(elitism). The fitness function for a single run of the
GA is the same as the chosen objective from the
BBOB set, and it is to be maximized.

We have chosen the BBOB, because this
benchmark is widely used by other researchers. It is
well-developed and contains a wide range of complex
optimization problems with many different features.
This benchmark has also been used at the Black-box
Optimization Competition within the IEEE CEC and
GECCO conferences since 2009. More detailed
information and source codes can be found in
(http://coco.gforge.inria.fr/, 2017).

In this study, only noiseless functions have been
used. The set contains 24 benchmark problems, which
are grouped in 5 subsets: separable functions (the
subset contains 5 problems), functions with low or
moderate conditioning (4 items), functions with high
conditioning and unimodal (5 items), multi-modal
functions with adequate global structure (5 items) and
multi-modal functions with weak global structure (5
items).

To balance benchmark problems in the training
and test sets, we have divided the problems in the
following way: one random problem from each subset
has been chosen into the test set, and all the other
problems from the subsets have been added to the
training set. As result, the training set contains 19
problems, and the test set contains 5 problems. The
training set is used for evaluating the fitness function
in the GP algorithm. Finally, we will examine the
generalization ability of the best-found selection
operator with the test set.

All benchmark functions are scalable with the
dimension. In this work, we have set the dimension
for all problems equal to D=2. The accuracy for the
binary coding is ε=10E-3. The chromosome length is
equal to 28 (14 bits per one real-valued variable).

In order to estimate the average performance of
the GA over the training set, we have to evaluate a
quality metric for every problem in equal scale. In the
BBOB, the position of the global optimum for a
problem is initialized at random in [-5, 5]D. We can
estimate the GA performance by calculating the
distance between the best-found solution and the
global optimum position. The Euclidian metric is
used (4). As the search domain is given and we can
calculate the maximum and minimum values for the
metric, we will transform the metric in the following
way: it is equal to 1 if the global optimum has been
found and is equal to 0 if the distance is maximum.
Thus, we can represent the performance measure for
the GA as a percentage (5). Finally, we can assign the
fitness of a solution in the GP as in (6).

ݐݏ݅ܦ ൌ ฮீݔ஺ െ ௢௣௧ฮݔ ൌ (4)

ൌ ට൫ீݔ஺
ଵ െ ௢௣௧ݔ

ଵ ൯
ଶ
൅ ൫ீݔ஺

ଶ െ ௢௣௧ݔ
ଵ ൯

ଶ

௜௝ܣܩ݁ܿ݊ܽ݉ݎ݋݂ݎ݁ܲ ൌ
maxݐݏ݅ܦ െ ௞௟ݐݏ݅ܦ

maxݐݏ݅ܦ

݇ ൌ 1, ,തതതതതܨ ݈ ൌ 1, ܴതതതതത
(5)

൫ܲܩݏݏ݁݊ݐ݂݅ ௝ܽ൯ ൌ

ൌ
1
ܨ
෍ቌ

1
ܴ
෍ܲ݁ܣܩ݁ܿ݊ܽ݉ݎ݋݂ݎ௞௟ሺ ௝ܽሻ

ோ

௝ୀଵ

ቍ

ி

௜ୀଵ

(6)

where Dist is the distance between the best-found
solution ீݔ஺ and the global optimum position ݔ௢௣௧,
 ௞௟ is the GA performance estimatedܣܩ݁ܿ݊ܽ݉ݎ݋݂ݎ݁ܲ
with the k-th training problem on the l-th algorithm
run, F is the number of the training functions, R is the
number of runs, ݂݅ܲܩݏݏ݁݊ݐ൫ ௝ܽ൯ is the fitness
assigned in the GP to a solution ௝ܽ.

We will also estimate the performance of the
standard GA with proportional selection, linear
ranking and exponential ranking with с=0.8 and their
average. The average value can be viewed as the
average performance of the GA with a randomly
chosen selection operator. Such an estimate is very
useful for black-box optimization problems, because
we have no information about problem features and,
consequently, about what type of selection to use. The
Mann-Whitney-Wilcoxon Test at the significance
level α=0.05 is used for defining the statistical
significance of difference in the results.

4 EXPERIMENTAL RESULTS

All algorithms and benchmark problems have been
implemented in the R language. The BBOB source
codes in R are available in (http://coco.gforge.
inria.fr/, 2017). The GP algorithm is based on the R
genetic programming framework (RGP) from the
CRAN repository (RGP: R genetic programming
framework, 2017). The GA was realized in R by
authors.

The experimental settings are presented in Table
1. Settings for the GP and the GA algorithms are
presented in Tables 2 and 3.

Table 1: The experiment settings.

Parameter Value

The BBOB problems in the
training set

{f1-2, f4-8, f10-11, f13-14,
f16-19,
f21-24}

The BBOB problems in the test set {f3, f9, f12, f15, f20}
The search domain for all problems [-5, 5]x[-5, 5]

Encoding accuracy ε=10E-3

Table 2: The GP settings.

Parameter Value
Population size NGP=50

The grow method Full
Max depth of trees 6

The functional set / probability
for initialization

{+/0.5, -/0.2,
*/0.1, %/0.1,

sin/0.05,exp/0.05}
The terminal set / probability for

initialization
{i/0.5, Constants/0.3,

ADF1/0.1, ADF2/0.1}

Constants
Random uniform

in [0,1]

ADF1 (the linear ranking)
2 ∙ ݅

ሺ ீܰ஺ ൅ 1ሻ ∙ ீܰ஺

ADF2 (the exponential ranking
with c=0.8)

ሺ1 െ ܿሻ ∙ ܿேಸಲି௜

ሺ1 െ ܿேಸಲሻ

Crossover / probability One-point / 0.95
Mutation / probability One-point / 0.01

Fitness function See (s6)
Max number of generations 1000

Table 3: The GA settings.

Parameter Value
Population size NGA=50

Chromosome length n=28

Initialization
Random in the binary search

space
Selection Based on GP solutions

Crossover / probability
Two-parent random uniform

/ 1.0

Mutation / probability Bits inversion /
ଵ

௡

Fitness function
Objectives from
the training set

Max number of generations 50
Number of runs 15

The fitness convergence diagram for the GP run
on the training set is presented in Figure 3. The bold
line corresponds to the best-found solution and the
thin line corresponds to the average of population.

Figure 3: The fitness convergence in the GPHH.

The expression of the best-found solution
ܲܩݏݏ݁݊ݐ݂݅) ൌ 0.83) is presented in (7). The
expression after normalization is presented in (8) and
its graph is shown in Figure 4.

Figure 4: The graph of the best-found selection operator.

݂ሺ݅ሻ ൌ 10 sinሺ0.1݅ െ 5ሻ ൅ ݅ (7)

ሺ݅ሻݏ ൌ
10 sinሺ0.1݅ െ 5ሻ ൅ ݅ െ 9.82453

707.405
 (8)

The performance of the GA with the standard
selection operators and the GPHH best-found
selection operator (7) on the test set is shown in Table
4.

Table 4: The experimental results for the test problems.

The test set Proportional selection Linear ranking Exponential ranking (c=0.8) Average GPHH best-found selection
f3 50.14/4.56 66.97/8.86 73.47/6.02 63.53/6.48 78.86/6.56
f9 76.71/7.64 81.64/6.84 82.93/6.24 80.24/6.91 90.55/5.11

f12 78.48/11.43 88.13/6.53 89.02/7.2 85.21/8.39 91.43/3.64
f15 64.43/11.10 85.17/5.37 79.48/8.20 76.36/8.22 82.26/7.86
f20 61.86/13.74 83.01/8.26 76.51/14.50 73.79/12.17 81.44/11.81

Table 5: The results of the Mann-Whitney-Wilcoxon tests.

The test set Selection Proportional selection Linear ranking Exponential ranking (c=0.8)
f3

GPHH best-found
selection

> > >
f9 > > >
f12 > = >
f15 > < =
f20 > = =

The table contains results over 15 independent
runs of the GA in the form of “mean/STD”. We have
also estimated the statistical significance of
differences in the results (Table 5). We use the
following notations: the sign “=” is used when the
difference is not significant, the sign “>” is used when
the GPHH best-found selection provides significantly
better results, and the sign “<” when the GPHH best-
found selection provides significantly worse results.
As we can see, the synthesized selection operator
performs better with 3 of the 5 problems. The linear
ranking performs better on f15 and f20, but the
difference is significant only with the f15 problem.
The proposed selection operator always outperforms
the proportional selection and it is better or equal to
the exponential ranking.

The synthesized selection operator outperforms
the average of three standard selection operators on
the whole range of test problems. Thus, we can
recommend it for black-box optimization problems.

5 CONCLUSIONS

In this study, we have proposed a hyper-heuristic
approach based on genetic programming which is
used for the automated synthesis of selection
operators in genetic algorithms. The approach
implements the generalization conception taken from
the machine-learning field. A selection operator is
designed in order to maximize the average
performance of a GA with a given set of training
instances of black-box optimization problems.

As numerical experiments have shown, the
approach can deal with the problem of automated
synthesis. Moreover, the synthesized selection
operator provides statistically significant better
performance or at least performance not worse than
standard operators do. It also performs well on a test
set with new, previously unseen instances of
optimization problems, and thus, the generalization
feature of the proposed GPHH is proved.

In our further works, we will extend training and
test sets and will perform more numerical
experiments. We will also try to apply the approach
to the problem of the automated synthesis of other
genetic operators such as crossover and mutation. The
standard GP algorithm can be substituted with
Grammatical Evolution in order to better control the
syntax of synthesized operators.

ACKNOWLEDGEMENTS

This research is supported by the Ministry of
Education and Science of Russian Federation within
State Assignment № 2.1676.2017/ПЧ.

REFERENCES

Blickle, T., Thiele, L., 1996. A comparison of selection
schemes used in evolutionary algorithms. In: Evol.
Comput. 4(4). pp. 361-394.

Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G.,
Ozcan, E., Qu, R., 2013. Hyper-heuristics: A survey of
the state of the art, Journal of the Operational Research
Society, 64 (12), pp. 1695-1724.

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E.,
Woodward, J., 2009. Exploring hyper-heuristic
methodologies with genetic programming, In:
Computational Intelligence: Collaboration Fusion and
Emergence, New York, Springer. pp. 177-201.

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E.,
Woodward, J.R., 2010. A classification of hyper-
heuristic approaches. In Handbook of metaheuristics.
International Series in Operations Research &
Management Science, Vol. 146. pp. 449-468.

Eiben, A.E., Michalewicz, Z, Schoenauer, M., Smith, J.E.,
2007. Parameter Control in Evolutionary Algorithms,
In: Parameter Setting in Evolutionary Algorithms,
Volume 54 of the series Studies in Computational
Intelligence. pp. 19-46.

Hong, L., Woodward, J., Li, J., Ozcan, E., 2013. Automated
design of probability distributions as mutation
operators for evolutionary programming using genetic
programming, In: Genetic Programming: 16th
European Conference, EuroGP 2013. pp. 85-96.

Luke, S., Panait, L., 2006. A comparison of bloat control
methods for genetic programming, Evolutionary
Computation, 14(3). pp. 309-344.

Niehaus, J., Banzhaf, W., 2001. Adaption of Operator
Probabilities in Genetic Programming, EuroGP 2001,
LNCS 2038. pр. 329.

Oltean, M., 2005. Evolving evolutionary algorithms using
linear genetic programming, Evol. Comput., 13. pp.
387–410.

RGP: R genetic programming framework, 2017 [online]
Available at: https://cran.r-project.org/web/packages/
rgp/index.html.

Sopov, E., 2016. A Self-configuring Multi-strategy
Multimodal Genetic Algorithm, Advances in Nature
and Biologically Inspired Computing, Volume 419 of
the series Advances in Intelligent Systems and
Computing. pp. 15-26.

Tang, K., Chen G., Yao, X., 2010. Population-Based
Algorithm Portfolios for Numerical Optimization, In
IEEE Transactions on Evolutionary Computation,
14(5). pp. 782-800.

The Black-Box-Optimization-Benchmarking (BBOB)
documentation and source codes, 2017. [online]
Available at: http://coco.gforge.inria.fr/

Woodward, J.R., Swan, J., 2011. Automatically designing
selection heuristics, In: Proceedings of the 13th annual
conference companion on Genetic and evolutionary
computation (GECCO '11). pp. 583-590.

Woodward, J.R., Swan, J., 2012. The automatic generation
of mutation operators for genetic algorithms, In:
Proceedings of the 14th annual conference companion
on Genetic and evolutionary computation (GECCO
'12). pp. 67-74.

Yuen, S.Y., Chow, Ch.K., Zhang, X., 2013. Which
Algorithm Should I Choose at any Point of the Search:
An Evolutionary Portfolio Approach, In: the
Proceedings of the 15th annual conference on Genetic
and evolutionary computation, GECCO '13. pp. 567-
574.

