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Abstract: Genetic algorithms have proved their efficiency with many hard optimization problems, but in order to achive 
the best results they must be fine-tuned. One such method of fine-tuning is a synthesis of new genetic 
operators. Hyper-heuristics represent search techniques that can be used for automating the process of 
selecting or generating simpler heuristics with the aim of designing new metaheuristic algorithms. In this 
study, we have proposed a new hyper-heuristic based on genetic programming for the automated synthesis of 
a selection operator in genetic algorithms. Black-Box Optimization Benchmarking is used as a training set for 
the genetic programming algorithm and as a test set for estimating the generalization ability of a synthesized 
selection operator. The results of numerical experiments are presented and discussed. The experiments have 
shown that the proposed approach can be used for designing new selection operators that outperform standard 
selection operators on average with new, previously unseen instances of hard black-box optimization 
problems. 

1 INTRODUCTION 

Metaheuristics, such as genetic algorithms (GAs), 
have proved their efficiency over a wide range of real-
world search optimization problems. GAs realize the 
"blind" search strategy and do not require any specific 
information about the features of the search space and 
objectives. Nevertheless, the performance of a GA 
strongly depends on the algorithm’s structure, the 
chosen types of genetic operators and their 
parameters. Such fine-tuning of the GA can be 
performed using some a priori information on a given 
problem, through a series of numerical experiments 
with different algorithm settings or in an automated 
way during the algorithm’ run. The last option has 
become more popular in recent times and often 
outperforms traditional schemes of applying GAs. 
There exist many self-adaptive and self-configuring 
approaches in GAs (Eiben et al., 2007). 

The most recent studies in the field propose more 
complex approaches for the automated design of 
search metaheuristics, which are called hyper-
heuristics (HHs). Genetic programming (GP) has 
been proposed as a method for automatically 
generating computer programs. Today GP is used in 
the field of machine-learning for a wide range of 

applications. GP can be also applied as a hyper-
heuristic for generating search heuristics and 
metaheuristics (so-called GPHH) (Burke et al., 2013). 

In the field of GAs, the problem of configuring 
and fine-tuning an algorithm is usually solved only 
once for a given instance of an optimization problem. 
At the same time, machine-learning approaches are 
aimed to find or to build an algorithm (a classifier, a 
regression model, etc.) based on a set of training 
instances, which can deal efficiently with new 
instances of a problem. This concept can be 
transferred to the GPHH approach. An objective of 
the GPHH is to design a metaheuristic that 
demonstrates high performance on average over a set 
of complex optimization problems. Such feature is 
necessary for “black-box” optimization, because the 
synthesized metaheuristic should not adapt to a 
specific problem, but cover a range of problems. 

This study is devoted to improving the GA 
performance by generating and tuning new selection 
operators using the GPHH. We will focus on the 
standard binary GA for solving single-objective 
unconstrained “black-box” optimization problems. 
The well-known benchmark problems from the 
GECCO and IEEE CEC conferences (Black-Box 
Optimization Benchmarking (BBOB)) are used as a 
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training set. The benchmark contains GA-hard 
problems and combines many features of 
optimization problems. 

The rest of the paper is organized as follows. 
Section 2 describes related work. Section 3 describes 
the proposed approach. In Section 4, the results of 
numerical experiments are discussed. In the 
Conclusion the results and further research are 
discussed. 

2 RELATED WORK 

2.1 Hyper-heuristics for Automated 
Algorithm Synthesis 

Hyper-heuristic approaches perform a search over the 
space of heuristics or metaheuristics when solving 
optimization problems. In a HH approach, different 
heuristics or heuristic components can be selected, 
generated or combined to solve a given problem in an 
efficient way. In (Burke et al., 2010), a general 
classification of HHs is given according to two 
dimensions: the nature of the heuristic search space 
and the source of feedback during learning. The first 
characteristic defines the following two classes: 
 Heuristic selection: Methodologies for choosing 

or selecting existing heuristics. 
 Heuristic generation: Methodologies for 

generating new heuristics from components of 
existing heuristics. 
 

The first class is similar to the idea of the self-
configuration in evolutionary algorithms. The 
selection can be performed with a set of predefined 
evolutionary and genetic operators (for example, 
Population-level Dynamic Probabilities in GP 
(Niehaus and Banzhaf, 2001), Linear Genetic 
Programming for the Synthesis of Evolutionary 
Algorithms (Oltean, 2005)) or from a set of 
predefined algorithms (for example, the Population-
based Algorithm Portfolio (Tang et al., 2010), the 
Multiple Evolutionary Algorithm (MultiEA) (Yuen et 
al., 2013) or the  Self-configuring Multi-strategy 
Genetic Algorithm (Sopov, 2016)). 

In this study, we will focus on the second class of 
HHs. As we can see from many papers (a good survey 
of HHs is proposed in (Burke et al., 2013)), the 
majority of HHs have been proposed for solving 
combinatorial optimization problems. Nevertheless, 
there exist some examples of HHs for general 
optimization problems, and the best results are 
achieved with HHs based on GP (Burke et al., 2009). 

With  respect  to  the  source  of  feedback   during 

learning there exist: 
 Online learning HHs: Learn while solving a given 

instance of a problem. 
 Offline learning HHs: Learn from a set of training 

instances a method that would generalize to 
unseen instances. 

 No-learning HHs: Do not use feedback from the 
search process. 
 

In many real-world applications, a chosen heuristic 
optimization method is applied to find the best 
solution with respect to a single instance of a certain 
optimization problem. In such applications, the 
generalization ability of the method applied does not 
matter, as the problem should be solved only once. In 
this case, we can use a no-learning HH if there is 
presented a priori information on the problem, or we 
can use an online learning HH to solve the problem in 
an automated, adaptive way.  

In this study, we will use an offline learning 
approach to provide the generalization feature and to 
synthesize a GA with a new selection operator, which 
outperforms the standard GA on average. 

The application of GP as a HH is a rather new 
direction in the field of automated algorithm design. 
GP builds candidate solutions to the problem from a 
set of primitives, which are represented by single 
operators, functions or whole heuristics and 
metaheuristics. One of the main advantages of GP is 
that it simultaneously provides the structural 
synthesis of a solution and the tuning of its 
parameters. The solution can be a human-readable 
symbolic expression (a formula) or a computational 
algorithm (an executable computer program).  

In the majority of studies, GPHH is applied for the 
automated design of data mining tools and 
combinatorial optimization algorithms. There are 
only a small number of works on applying GPHH for 
the design of new operations in evolutionary and 
genetic algorithms. In (Hong et al., 2013), GPHH is 
used for the automated design of mutation operators 
for evolutionary programming and in (Woodward and 
Swan, 2012) the same problem is solved for GAs. In 
(Woodward and Swan, 2011), selection operators are 
synthesised using a register machine as a tool for 
automated programming.  

2.2 Selection Operator in GA 

A selection operator is an important component of 
any evolutionary or genetic algorithm. The selection 
operator is intended to improve the average fitness of 
a population by giving individuals with better fitness 
a higher probability to be copied into the next 
generation. From the point of view of search  



 

Figure 1: The probability distributions of commonly used selection operators: a) truncation, b) proportional, c) linear ranking, 
d) exponential ranking (base of the exponent is c=0.5), e) exponential ranking (c=0.8), f) exponential ranking (c=0.95). The 
horizontal axis contains ranks of an individual; the vertical axis is the probability of being selected. 

optimization, selection focuses the search process on 
promising regions in the search space, while 
recombination performs a random search within 
previously explored regions, and mutation discovers 
new points in the search space. 

Any selection operator can be viewed as a 
probability distribution that assigns the chance of 
being chosen for further operations to every 
individual in a population. Thus, selection can be 
defined as a mapping (of a function) s to the [0, 1] 
interval. The domain of the s function comprises 
ranks for the ranking, tournament and truncation 
selection schemes, and comprises fitness values for 
the proportional selection (1). The s function should 
satisfy the normalization requirement (2). 

 

௜݇݊ܽݎ	:ሺ݅ሻݏ → ሾ0,1ሿ, ௜݇݊ܽݎ ∈ Ժ 
ሺ	ݏሺ݅ሻ:	݂݅ݏݏ݁݊ݐ௜ → ሾ0,1ሿ, ௜ݏݏ݁݊ݐ݂݅ ∈ Թ	ሻ 

(1) 

෍ ሺ݅ሻݏ
௜∈௉௢௣

ൌ 1 (2) 

where Pop is a population and i is an individual in the 
population. 

A comprehensive analysis of selection schemes in 
GAs is presented in (Blickle and Thiele, 1996), where 
selection operators are described and compared using 
estimations of average fitness, fitness variance, 
reproduction rate, loss of diversity, selection intensity 
and selection variance. Unfortunately, the proposed 
models are too complicated and can be applied only 
for simple optimization problems such as the 
ONEMAX function. Nevertheless, it can be seen that 
the characteristics of probability distributions 
presented by selection schemes are different and there 
is no guarantee that the best-chosen scheme from a set 
of traditional selection schemes will be optimal or 
even efficient enough for solving an arbitrary 
optimization problem. 

We have visualized the probability distributions 
of commonly used selection operators (Figure 1). We 
have ranked solutions for all types of selection in such 
a way that the first rank is assigned to the worst 
solution. The tournament selection is not presented, 
because it is asymptotically equal to the linear 
ranking. As we can see, the probability distributions 
are always monotonically increasing functions. The 
functions for the ranking and tournament are smooth. 
The function graph of the proportional selection 
strongly depends on a distribution of the fitness 
values. If the fitness distribution is uniform, the graph 
is close to the graph of the linear ranking, otherwise 
it is closer to the exponential ranking. 

The traditional selection operators are inspired by 
nature and use straightforward and simple ways for 
calculating the probability of being selected. In this 
study will use GPHH to synthesize new selection 
operations, which maximize the average performance 
of a GA. 

3 PROPOSED APPROACH 

In this study, we propose the following conception of 
applying GP as a HH for the automated design of 
selection operators. We will use a GP algorithm as a 
problem, in which tree solutions represent probability 
distributions. A raw solution is normalized, and after 
that is executed as a selection algorithm in a certain 
GA. For evaluating fitness of the GP solution, we 
estimate the average performance of the GA with the 
meta-procedure for solving a symbolic regression 
designed selection operator over a series of runs. The 
BBOB functions are used and they are divided into 
training and test sets to estimate the generalization 
ability of the solution. The proposed scheme of GHPP 



 

Figure 2: The general scheme of the proposed GPHH for automated synthesis of selection operators in GAs. 

is presented in Figure 2. 
We will discuss the components and stages of the 

approach in detail. 
It is obvious that the proposed GPHH is a 

computationally costly procedure. Thus, we will 
introduce some modifications to the standard GP 
algorithm. As was shown in the previous section, the 
probability distributions of selection are rather 
simple, smooth and increasing functions. We will 
strongly control the bloat of the tree solutions by 
limiting their maximum depth (Luke and Panait, 
2006). In standard GP, a grow method on the 
initialization step uses equal probabilities for all 
elements of the functional set. We will use a higher 
probability for the addition to get more simple and 
smooth expressions. The same probabilities for 
elements of the functional set will be used for a point-
mutation operation. 

A terminal set in GP includes variables and 
constants for a given problem. The selection 
probability of a solution in the GA may depend on 
many factors. Usually all requirements of an 
optimization problem are presented in the fitness 
function. Thus, we can include in the terminal set only 
one input variable based on the fitness value. To 
avoid fitness scaling, we will rank individuals in the 
GA, and will use the ranks as the variable in the 
terminal set (in this work, the first rank corresponds 
to the worst individual). We will also include two 
automatically defined functions (ADFs) in the 

terminal set, which are the linear ranking and the 
exponential ranking with с=0.8. 

Each tree solution in the GP is a function with 
arbitrary codomain (denoted as f(i), where i is the 
rank of an individual after the ranking). We need to 
provide some transformation of the function for 
applying it as a selection operator s(i). We will bound 
the domain with rank values and will apply 
normalization (3). 

 

ሺ݅ሻݏ ൌ
݂ሺ݅ሻ െ ௠݂௜௡ ൅ ∆
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௜ୀଵ

 

௠݂௜௡ ൌ min
௜∈ሾଵ,௉௢௣ௌ௜௭௘ሿ

݂ሺ݅ሻ 
(3)

 

where PopSize – is the size of a population, i is an 
individual in the population, ௠݂௜௡ shifts the function 
into the positive range, ∆ is a parameter that 
guarantees a non-zero probability for the worst 
individual. 

The GA used in this study is a standard GA with 
standard binary representation. The crossover 
operator is two-parent uniform recombination. The 
mutation operator is a bit inversion and has average 
intensity, which is calculated as 
(1/chromosome_length) (one mutation per string on 
average). The stop criterion is a limitation of fitness 
evaluations in terms of the number of generations 
with a fixed-sized population. Each new population is 
formed by copying offspring into it. The worst 
individual is replaced by the best-found solution 



(elitism). The fitness function for a single run of the 
GA is the same as the chosen objective from the 
BBOB set, and it is to be maximized. 

We have chosen the BBOB, because this 
benchmark is widely used by other researchers. It is 
well-developed and contains a wide range of complex 
optimization problems with many different features. 
This benchmark has also been used at the Black-box 
Optimization Competition within the IEEE CEC and 
GECCO conferences since 2009. More detailed 
information and source codes can be found in 
(http://coco.gforge.inria.fr/, 2017). 

In this study, only noiseless functions have been 
used. The set contains 24 benchmark problems, which 
are grouped in 5 subsets: separable functions (the 
subset contains 5 problems), functions with low or 
moderate conditioning (4 items), functions with high 
conditioning and unimodal (5 items), multi-modal 
functions with adequate global structure (5 items) and 
multi-modal functions with weak global structure (5 
items).  

To balance benchmark problems in the training 
and test sets, we have divided the problems in the 
following way: one random problem from each subset 
has been chosen into the test set, and all the other 
problems from the subsets have been added to the 
training set. As result, the training set contains 19 
problems, and the test set contains 5 problems. The 
training set is used for evaluating the fitness function 
in the GP algorithm. Finally, we will examine the 
generalization ability of the best-found selection 
operator with the test set. 

All benchmark functions are scalable with the 
dimension. In this work, we have set the dimension 
for all problems equal to D=2. The accuracy for the 
binary coding is ε=10E-3. The chromosome length is 
equal to 28 (14 bits per one real-valued variable). 

In order to estimate the average performance of 
the GA over the training set, we have to evaluate a 
quality metric for every problem in equal scale. In the 
BBOB, the position of the global optimum for a 
problem is initialized at random in [-5, 5]D. We can 
estimate the GA performance by calculating the 
distance between the best-found solution and the 
global optimum position. The Euclidian metric is 
used (4). As the search domain is given and we can 
calculate the maximum and minimum values for the 
metric, we will transform the metric in the following  
way: it is equal to 1 if the global optimum has been  
found and is equal to 0 if the distance is maximum. 
Thus, we can represent the performance measure for 
the GA as a percentage (5). Finally, we can assign the 
fitness of a solution in the GP as in (6). 
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where Dist is the distance between the best-found 
solution ீݔ஺ and the global optimum position ݔ௢௣௧, 
 ௞௟ is the GA performance estimatedܣܩ݁ܿ݊ܽ݉ݎ݋݂ݎ݁ܲ
with the k-th training problem on the l-th algorithm 
run, F is the number of the training functions, R is the 
number of runs, ݂݅ܲܩݏݏ݁݊ݐ൫ ௝ܽ൯ is the fitness 
assigned in the GP to a solution ௝ܽ. 

We will also estimate the performance of the 
standard GA with proportional selection, linear 
ranking and exponential ranking with с=0.8 and their 
average. The average value can be viewed as the 
average performance of the GA with a randomly 
chosen selection operator. Such an estimate is very 
useful for black-box optimization problems, because 
we have no information about problem features and, 
consequently, about what type of selection to use. The 
Mann-Whitney-Wilcoxon Test at the significance 
level α=0.05 is used for defining the statistical 
significance of difference in the results. 

4 EXPERIMENTAL RESULTS  

All algorithms and benchmark problems have been 
implemented in the R language. The BBOB source 
codes in R are available in (http://coco.gforge. 
inria.fr/, 2017). The GP algorithm is based on the R 
genetic programming framework (RGP) from the 
CRAN repository (RGP: R genetic programming 
framework, 2017). The GA was realized in R by 
authors. 

The experimental settings are presented in Table 
1. Settings for the GP and the GA algorithms are 
presented in Tables 2 and 3. 

Table 1: The experiment settings. 

Parameter Value 

The BBOB problems in the 
training set 

{f1-2, f4-8, f10-11, f13-14, 
f16-19,  
f21-24} 

The BBOB problems in the test set {f3, f9, f12, f15, f20}
The search domain for all problems [-5, 5]x[-5, 5]

Encoding accuracy ε=10E-3 



Table 2: The GP settings. 

Parameter Value
Population size NGP=50

The grow method Full 
Max depth of trees 6 

The functional set / probability 
for initialization 

{+/0.5, -/0.2, 
*/0.1, %/0.1, 

sin/0.05,exp/0.05}
The terminal set / probability for 

initialization 
{i/0.5, Constants/0.3, 

ADF1/0.1, ADF2/0.1}

Constants 
Random uniform  

in [0,1]

ADF1 (the linear ranking) 
2 ∙ ݅

ሺ ீܰ஺ ൅ 1ሻ ∙ ீܰ஺
 

ADF2 (the exponential ranking 
with c=0.8) 

ሺ1 െ ܿሻ ∙ ܿேಸಲି௜

ሺ1 െ ܿேಸಲሻ
 

Crossover / probability One-point / 0.95
Mutation / probability One-point / 0.01

Fitness function See (s6)
Max number of generations 1000 

Table 3: The GA settings. 

Parameter Value
Population size NGA=50

Chromosome length n=28 

Initialization 
Random in the binary search 

space 
Selection Based on GP solutions

Crossover / probability 
Two-parent random uniform 

/ 1.0 

Mutation / probability Bits inversion / 
ଵ

௡
 

Fitness function 
Objectives from  
the training set

Max number of generations 50 
Number of runs 15 

 

The fitness convergence diagram for the GP run 
on the training set is presented in Figure 3. The bold 
line corresponds to the best-found solution and the 
thin line corresponds to the average of population. 

 

Figure 3: The fitness convergence in the GPHH. 

The expression of the best-found solution 
ܲܩݏݏ݁݊ݐ݂݅) ൌ 0.83) is presented in (7). The 
expression after normalization is presented in (8) and 
its graph is shown in Figure 4. 

 

 

Figure 4: The graph of the best-found selection operator. 

݂ሺ݅ሻ ൌ 10 sinሺ0.1݅ െ 5ሻ ൅ ݅ (7)
 

ሺ݅ሻݏ ൌ
10 sinሺ0.1݅ െ 5ሻ ൅ ݅ െ 9.82453

707.405
 (8)

 

The performance of the GA with the standard 
selection operators and the GPHH best-found 
selection operator (7) on the test set is shown in Table 
4.  

Table 4: The experimental results for the test problems. 

The test set Proportional selection Linear ranking Exponential ranking (c=0.8) Average GPHH best-found selection
f3 50.14/4.56 66.97/8.86 73.47/6.02 63.53/6.48 78.86/6.56 
f9 76.71/7.64 81.64/6.84 82.93/6.24 80.24/6.91 90.55/5.11 

f12 78.48/11.43 88.13/6.53 89.02/7.2 85.21/8.39 91.43/3.64 
f15 64.43/11.10 85.17/5.37 79.48/8.20 76.36/8.22 82.26/7.86 
f20 61.86/13.74 83.01/8.26 76.51/14.50 73.79/12.17 81.44/11.81 

Table 5: The results of the Mann-Whitney-Wilcoxon tests. 

The test set Selection Proportional selection Linear ranking Exponential ranking (c=0.8)
f3 

GPHH best-found 
selection 

> > > 
f9 > > > 
f12 > = > 
f15 > < = 
f20 > = = 

 



The table contains results over 15 independent 
runs of the GA in the form of “mean/STD”. We have 
also estimated the statistical significance of 
differences in the results (Table 5). We use the 
following notations: the sign “=” is used when the 
difference is not significant, the sign “>” is used when 
the GPHH best-found selection provides significantly 
better results, and the sign “<” when the GPHH best-
found selection provides significantly worse results. 
As we can see, the synthesized selection operator 
performs better with 3 of the 5 problems. The linear 
ranking performs better on f15 and f20, but the 
difference is significant only with the f15 problem. 
The proposed selection operator always outperforms 
the proportional selection and it is better or equal to 
the exponential ranking. 

The synthesized selection operator outperforms 
the average of three standard selection operators on 
the whole range of test problems. Thus, we can 
recommend it for black-box optimization problems. 

5 CONCLUSIONS 

In this study, we have proposed a hyper-heuristic 
approach based on genetic programming which is 
used for the automated synthesis of selection 
operators in genetic algorithms. The approach 
implements the generalization conception taken from 
the machine-learning field. A selection operator is 
designed in order to maximize the average 
performance of a GA with a given set of training 
instances of black-box optimization problems. 

As numerical experiments have shown, the 
approach can deal with the problem of automated 
synthesis. Moreover, the synthesized selection 
operator provides statistically significant better 
performance or at least performance not worse than 
standard operators do. It also performs well on a test 
set with new, previously unseen instances of 
optimization problems, and thus, the generalization 
feature of the proposed GPHH is proved. 

In our further works, we will extend training and 
test sets and will perform more numerical 
experiments. We will also try to apply the approach 
to the problem of the automated synthesis of other 
genetic operators such as crossover and mutation. The 
standard GP algorithm can be substituted with 
Grammatical Evolution in order to better control the 
syntax of synthesized operators. 

ACKNOWLEDGEMENTS 

This research is supported by the Ministry of 
Education and Science of Russian Federation within 
State Assignment № 2.1676.2017/ПЧ. 

REFERENCES 

Blickle, T., Thiele, L., 1996. A comparison of selection 
schemes used in evolutionary algorithms. In: Evol. 
Comput. 4(4). pp. 361-394. 

Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., 
Ozcan, E., Qu, R., 2013. Hyper-heuristics: A survey of 
the state of the art, Journal of the Operational Research 
Society, 64 (12), pp. 1695-1724. 

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., 
Woodward, J., 2009. Exploring hyper-heuristic 
methodologies with genetic programming, In: 
Computational Intelligence: Collaboration Fusion and 
Emergence, New York, Springer. pp. 177-201. 

Burke, E., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., 
Woodward, J.R., 2010. A classification of hyper-
heuristic approaches. In Handbook of metaheuristics. 
International Series in Operations Research & 
Management Science, Vol. 146. pp. 449-468. 

Eiben, A.E., Michalewicz, Z, Schoenauer, M., Smith, J.E., 
2007. Parameter Control in Evolutionary Algorithms, 
In: Parameter Setting in Evolutionary Algorithms, 
Volume 54 of the series Studies in Computational 
Intelligence. pp. 19-46. 

Hong, L., Woodward, J., Li, J., Ozcan, E., 2013. Automated 
design of probability distributions as mutation 
operators for evolutionary programming using genetic 
programming, In: Genetic Programming: 16th 
European Conference, EuroGP 2013. pp. 85-96. 

Luke, S., Panait, L., 2006. A comparison of bloat control 
methods for genetic programming, Evolutionary 
Computation, 14(3). pp. 309-344. 

Niehaus, J., Banzhaf, W., 2001. Adaption of Operator 
Probabilities in Genetic Programming, EuroGP 2001, 
LNCS 2038. pр. 329. 

Oltean, M., 2005. Evolving evolutionary algorithms using 
linear genetic programming, Evol. Comput., 13. pp. 
387–410. 

RGP: R genetic programming framework, 2017 [online] 
Available at: https://cran.r-project.org/web/packages/ 
rgp/index.html. 

Sopov, E., 2016. A Self-configuring Multi-strategy 
Multimodal Genetic Algorithm, Advances in Nature 
and Biologically Inspired Computing, Volume 419 of 
the series Advances in Intelligent Systems and 
Computing. pp. 15-26. 

Tang, K., Chen G., Yao, X., 2010. Population-Based 
Algorithm Portfolios for Numerical Optimization, In  
IEEE Transactions on Evolutionary Computation, 
14(5). pp. 782-800. 



The Black-Box-Optimization-Benchmarking (BBOB) 
documentation and source codes, 2017. [online] 
Available at: http://coco.gforge.inria.fr/ 

Woodward, J.R., Swan, J., 2011. Automatically designing 
selection heuristics, In: Proceedings of the 13th annual 
conference companion on Genetic and evolutionary 
computation (GECCO '11). pp. 583-590. 

Woodward, J.R., Swan, J., 2012. The automatic generation 
of mutation operators for genetic algorithms, In: 
Proceedings of the 14th annual conference companion 
on Genetic and evolutionary computation (GECCO 
'12). pp. 67-74. 

Yuen, S.Y., Chow, Ch.K., Zhang, X., 2013. Which 
Algorithm Should I Choose at any Point of the Search: 
An Evolutionary Portfolio Approach, In: the 
Proceedings of the 15th annual conference on Genetic 
and evolutionary computation, GECCO '13. pp. 567-
574. 


