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Abstract: In this work we focus on the tweakable block cipher Scream, We have analysed Scream with the techniques,
which previously have not been applied to this algorithm, that is differential-linear and impossible differential
cryptanalysis. This is work in progress towards a comprehensive evaluation of Scream. We think it is essential
to analyse these new, promising algorithms with a possibly wide range of cryptanalytic tools and techniques.
Our work helps to realize this goal.

1 INTRODUCTION

A block cipher is one of the most important primi-
tive of modern cryptography. A conventional block
cipher has two inputs — a plaintext (or message)
M∈ {0,1}n, a key K ∈ {0,1}k and produces a single
output — a ciphertext C ∈ {0,1}n (seeFigure 1(a)).
Therefore we can describe a block cipher as

E : {0,1}n×{0,1}k→{0,1}n (1)

Compared to conventional block cipher, a tweakable
block cipher takes an additional input called tweak
along with the usual inputs — message and key (see
Figure 1(b)) and maps the inputs to the ciphertext:

Ẽ : {0,1}n×{0,1}t ×{0,1}k→{0,1}n (2)

The tweak plays a very similar role as a nonce in
the OCB mode or an initialization vector in the CBC
mode.

Figure 1: (a) Standard block cipher encrypts a message M
under control of a key K to produce a ciphertext C. (b)
Tweakable block cipher encrypts a message M under con-
trol of a key K and a ”tweak” T to produce a ciphertext C.
(c) Here the key K is shown inside the box.

The main purpose behind introducing a tweak is to
bring functionality of a nonce (or initialization vector)
down to the primitive block-cipher level, instead of in-
corporating it only at the higher modes-of-operation
levels (Liskov et al., 2011). An extra cost of mak-
ing a block cipher ”tweakable” is small, so it is eas-
ier to design and prove modes of operation based on
tweakable block ciphers. In this work we focus on the
tweakable block cipher Scream (Grosso et al., ). An
interesting and distinctive feature of Scream is that the
algorithm has been designed to be secure against side-
channel attacks. A side-channel attack is a way of
exploiting information obtained from a physical im-
plementation of the cryptosystem. Such information
could be power or time consumption, area of memory
access, electromagnetic radiation or even sound made
by a device. Two techniques taken into consideration
by Scream designers are differential power analysis
(Kocher et al., 1999) and electro-magnetic analysis
(Gandolfi et al., 2001).
Related Work. Leander et al. presented a paper (Le-
ander et al., 2015), where they introduced a generic
algorithm to detect invariant subspaces and with this
technique they cryptanalysed iSCREAM — an au-
thenticated cipher based on a variant of Scream. Their
attack is on a full cipher yet in a weak- or related-
key model. A year later, at Asiacrypt 2016, an at-
tack called the non-linear invariant attack was in-
troduced (Todo et al., 2016). In that paper authors
showed how to distinguish the full version of tweak-
able block cipher i-Scream, Scream and Midori64 in
a weak key setting. For the authenticated encryption
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schemes SCREAM and i-SCREAM, the plaintext can
be practically recovered only from the ciphertext in
the nonce-respecting setting.
Our Contribution. To have a reliable evaluation
of a new promising ciphers, such as Scream, third-
party cryptanalysis is essential. Our goal is to anal-
yse Scream with the techniques, which have not been
considered or fully explored against Scream. In this
work we focus on differential-linear and impossible-
differential cryptanalysis and apply them to round-
reduced variants of the cipher. First we propose a lin-
ear approximation for 5 rounds with the bias ε= 2−49,
upon which we build the 5-round key recovery attack.
A linear approximation can be extended with a differ-
ential part, which is known as differential-linear anal-
ysis and it lets us mount the theoretical attack for 5
rounds with the complexity 2116. Finally, we show
an impossible differential path for 4 rounds obtained
through the miss-in-the-middle approach.

2 SCREAM DESCRIPTION

The tweakable block cipher Scream is based on the
LS-design variant (Grosso et al., 2014) known as
TLS-design. The state is represented as an s× l ma-
trix, where each element of the matrix represents a bit.
Therefore a size of the block is n = s× l and Scream
has a block size of 8× 16 = 128 bits. The state x is
updated by iterating Ns steps, where each step has Nr
rounds as shown in Algorithm 1. A number of steps
can vary and it serves as the security margin param-
eter. In the pseudo-code given below a plaintext is
denoted by P, whereas TK (tweakey) is a simple lin-
ear combination of a tweak T and the master key K.
In Scream, both key and tweak are 128 bits long.

The round constant C(r) is defined as

C(r) = 2199× r(mod 216) (3)

To calculate tweakeys (T K), first the tweak is divided
into 64-bit halves, i.e., T = t0||t1 and then tweakeys
are calculated as follows:

T K(σ = 3i) = K⊕ (t0 ‖ t1), (4)

T K(σ = 3i+1) = K⊕ (t0⊕ t1 ‖ t1), (5)

T K(σ = 3i+2) = K⊕ (t1 ‖ t0⊕ t1). (6)

3 LINEAR APPROXIMATION
FOR 5-ROUND SCREAM

Linear cryptanalysis was introduced by Matsui (Mat-
sui, 1993) and since then it has become a powerful

Algorithm 1: TLS-design with l−bit L-boxes and s−bit
S-boxes (n = l× s).

1: x = x⊕T K(0) . Set plaintext to all-zero vector
2: for 0 < σ≤ Ns do
3: for 0 < ρ≤ Nr do

r = 2.(σ−1)+ρ
4: for 0≤ j < l do . S-box Layer
5: x[∗, j] = S[x[∗, j]];
6: end for

x = x⊕Cr; . Constant addition
7: for 0≤ i < s do . L-box Layer
8: x[i,∗] = L[x[i,∗]];
9: end for

10: end for
x = x⊕T K(σ) . Tweakey addition

11: end for
12: return x

cryptanalytic technique. The main idea behind linear
cryptanalysis is to construct a linear approximation
which describes a relation between input (plaintext)
and output (ciphertext) bits. For a secure cipher we
expect that such a relation holds with probability 0.5
(bias ε= 0) and we try to find an approximation where
ε 6= 0. That would mean that the algorithm exhibits
a non-random behaviour and potentially it could be
converted to some attacks, such as the key recovery
attack.

To construct a linear approximation for (round-
reduced) Scream we proceed as follows. First, we ex-
amine the linear approximation table for the Scream
S-box and choose the approximation with the high-
est bias. We find that the approximation in8 = out8
(8th input bit of the S-box equals 8th output bit) has
the highest bias, namely 2−3. There are 16 columns
in the Scream state, hence 16 S-boxes in the S-box
layer. We examine 216 initial states for our linear ap-
proximation, where each S-box is either inactive or
its 8th bit is active. In the subsequent rounds we al-
ways use the same S-box approximation (in8 = out8).
A total bias is calculated using a formula introduced
by Matsui (Matsui, 1993).

ε1,2,3...15 = 2n−1
i=15

∏
i=0

εi (7)

For 5 rounds, the best approximation we found has
the bias ε = 2−49 with 24 active S-boxes. Table 1
shows this linear approximation.

We also investigate more rounds, for example 6-
round approximation obtained by the same method
has a total bias 2−65. However, as a number of plain-
text required for the key recovery attack is typically
proportional to ε−2, for 6 rounds (or more) we ex-
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Table 1: Linear approximation for the 5-round Scream
(Each column of the state is encoded as two hexadecimal
numbers).

00 80 00 00 80 00 00 00 00 80 00 00 00 00 80 00
↓

S-box Layer (active S-boxes: 4, bias: 2−9)
↓

00 80 00 00 80 00 00 00 00 80 00 00 00 00 80 00
↓

L-box Layer
↓

00 00 00 00 80 80 80 00 00 00 80 00 00 00 00 00
↓

S-box Layer (active S-boxes: 4, bias: 2−9)
↓

00 00 00 00 80 80 80 00 00 00 80 00 00 00 00 00
↓

L-box Layer
↓

00 80 00 80 80 00 00 80 80 00 00 80 00 80 00 80
↓

S-box Layer (active S-boxes: 8, bias: 2−17)
↓

00 80 00 80 80 00 00 80 80 00 00 80 00 80 00 80
↓

L-box Layer
↓

80 00 00 00 00 00 80 00 00 00 80 00 00 80 00 00
↓

S-box Layer (active S-boxes: 4, bias: 2−9)
↓

80 00 00 00 00 00 80 00 00 00 80 00 00 80 00 00
↓

L-box Layer
↓

00 00 80 00 00 80 00 00 00 80 80 00 00 00 00 00
↓

S-box Layer (active S-boxes: 4, bias: 2−9)
↓

00 00 80 00 00 80 00 00 00 80 80 00 00 00 00 00
↓

L-box Layer
↓

80 80 80 80 00 00 80 80 80 00 00 00 80 00 00 00

ceed the exhaustive search bound 2128 and analysis
becomes much less meaningful.

3.1 5-round Key Recovery Attack

We can use a linear approximation we constructed to
recover the secret key. First, we partially encrypt the
first S-box layer by guessing some key bits, specifi-
cally the plaintext bits are XORed with the guessed

subkeys and the result is run forward through the S-
box. We need to guess these bits, which are needed
to calculate values of bits involved in the linear ap-
proximation. Table 2 shows the details. For each sub-
key guess we create a counter and it is incremented
once the linear approximation holds. A counter with
a value which differs the most from a half of a number
of plaintext/ciphertext pairs corresponds to the correct
subkey guess.

Table 2: Initial and final states of the 4.5-round linear ap-
proximation.

00 80 00 00 80 00 00 00 00 80 00 00 00 00 80 00
↓

4.5-Rounds
↓

80 80 80 80 00 00 80 80 80 00 00 00 80 00 00 00

The above approximation has a total bias ε = 2−41

and a number of plaintext/ciphertext pairs needed to
detect the bias is ε−2 = 282. Active input bits in
the linear approximation are placed in four different
columns of the state (see Table 2). Therefore, we need
to guess 4∗8 = 32 key bits, which gives 232 possible
combinations. For each combination we check 282

plaintext/ciphertext pairs, so the time complexity of
our key-recovery attack is 282+32 = 2114.

By this procedure and with the presented 4.5-
round linear approximation we extract 32 key bits.
To recover more bits, we just repeat the procedure
but with a different approximation, where input active
bits are placed in different columns.
Comparison With an Automated Tool. In (Dobrau-
nig et al., 2015) a heuristic tool for finding linear char-
acteristics was presented. The tool is inspired by SAT
solvers and it was applied to modern authenticated ci-
phers. We used this tool to find good linear approxi-
mations for Scream and compare the results with our
approach. For 5 rounds, the tool provides the approxi-
mation with bias 2−50.71 with 22 active S-boxes, while
our approach leads to the characteristic with bias 2−49

and 24 S-boxes. Generally, we find the results simi-
lar and we argue that our relatively simple procedure
for building linear approximations is comparable with
this much sophisticated tool.

4 DIFFERENTIAL-LINEAR
CRYPTANALYSIS OF
ROUND-REDUCED SCREAM

Differential cryptanalysis was introduced (publicly)
by Biham and Shamir (Biham and Shamir, 1990) in
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1990 and is still one of the most powerful attacks
on a wide range of cryptographic algorithms. In
1994 Langford and Hellman(Langford and Hellman,
1994) described a combination of linear and differen-
tial analysis known as differential-linear cryptanaly-
sis.

Table 3: 1.5-round differential path with probability 1.

00 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00
↓

S-box Layer
↓

00 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00
↓

L-box Layer
↓

?? ?? 00 ?? 00 00 ?? 00 00 ?? ?? 00 00 00 ?? 00
↓

S-box Layer
↓

?? ?? 00 ?? 00 00 ?? 00 00 ?? ?? 00 00 00 ?? 00

Table 4: Linear approximation covering 2.5 rounds.

00 00 80 80 00 00 00 00 00 80 00 80 80 00 80 00
↓

L-box Layer
↓

00 00 00 00 00 80 00 80 00 00 80 00 80 80 80 00
↓

S-box Layer (active S-boxes: 6, bias: 2−13)
↓

00 00 00 00 00 80 00 80 00 00 80 00 80 80 80 00
↓

L-box Layer
↓

00 00 00 00 80 00 00 00 00 00 00 80 00 00 00 00
↓

S-box Layer (active S-boxes: 2, bias: 2−5)
↓

00 00 00 00 80 00 00 00 00 00 00 80 00 00 00 00
↓

L-box Layer
↓

80 00 00 80 80 00 00 00 00 00 00 80 00 80 00 80

In this section we apply differential-linear crypt-
analysis to the round-reduced Scream cipher. We fol-
low a typical scheme in this kind of attacks, namely
first we create a differential path with probability 1
and then extend it by a linear part. Our differential
path covers 1.5 rounds, please see Table 3. After
the second S-box layer, there are still some bits with
known differences. Using these known bits, we build
the linear approximation as shown in Table 4.

5-round Key Recovery Attack

This attack uses a differential path with probability 1
to set up a linear relation between two parallel instan-
tiations of the cipher. A linear approximation involves
the bits after 1.5 rounds so we have not a direct access
to their values. However, we know the XOR differ-
ence between these bits and consequently the differ-
ence between ciphertext bits involved in the linear ap-
proximation. Therefore, to filter out the key guesses
we check the linear relation between ciphertext bits.

In the attack we peel off the 5th round by guess-
ing 48 key bits. Then we check a linear relation be-
tween bits in the 4th round, which serves as a filter. A
bias for the approximation is ε = 2−17 and we need
we need ε−4 = 268 chosen plaintexts to detect the
bias. Therefore the time complexity of the attack is
248+68 = 2116.

5 IMPOSSIBLE DIFFERENTIAL
OF ROUND REDUCED
SCREAM

An impossible differential path is a differential path
which can not occur. Typically we build such a path
by the miss-in-the-middle approach, that is showing a
contradiction somewhere in the middle of character-
istics.

Consider we have a 4-round characteristic of
Scream. Each round consists of an S-box followed by
an L-box. After each 2 rounds 128-bit key is added.
We use a path shown in the figure 1. In the given path
as shown in figure 1, each symbol represents a byte.
In our notation ’00’ denotes the zero difference, ’∗∗’
denotes non zero difference and ’??’ denotes an un-
certain difference.

We have selected the given characteristic to get the
contradiction in the middle. Here, the conflict will oc-
cur after 2 rounds. When we encrypt the plaintext for
2 rounds we get 7th byte is as non-zero while oth-
ers are uncertain. On the other hand side we decrypt
ciphertext for 2 rounds and get 7th byte as inactive,
therefore it will lead to contradiction.
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Table 5: 4-round impossible differential path.

00 00 00 ** 00 00 00 00 00 00 00 00 00 00 00 00
↓

S-box Layer
↓

00 00 00 ** 00 00 00 00 00 00 00 00 00 00 00 00
↓

L-box Layer
↓

** 00 00 00 00 00 ** ** 00 ** ** 00 ** 00 00 **
↓

S-box Layer
↓

** 00 00 00 00 00 ** ** 00 ** ** 00 ** 00 00 **
↓

L-box Layer
↓

?? ?? ?? ?? ?? ?? ** ?? ?? ?? ?? ?? ?? ?? ?? ??

Contradiction

?? ?? ?? 00 00 ?? 00 00 00 00 ?? 00 00 00 00 ??
↑

S-box Layer
↑

** ** ** 00 00 ** 00 00 00 00 ** 00 00 00 00 **
↑

L-box Layer
↑

00 00 ** 00 00 ** 00 00 00 00 00 00 00 00 00 00
↑

S-box Layer
↑

00 00 80 00 00 80 00 00 00 00 00 00 00 00 00 00
↑

L-box Layer
↑

80 80 00 00 80 00 80 00 80 00 00 00 00 00 80 00

Extracting Key Bits. Here we encrypt many plain-
texts to get the required ciphertext which satisfy our
characteristic. The number of plaintexts required to
encrypt, to get at least one pair of plaintext-ciphertext
is 2n/2 = 2128/2 = 264 (where n is the size of state)by
using birthday paradox. For all the pairs of plaintext-
ciphertext which satisfy the above differential char-
acteristic, we decrypt the ciphertext for 1 round by
guessing all possible values of key in 4th round and by
applying the inverse L-box followed by the inverse S-
box. Here we interchanged the L-Box position with
key addition. In case of Scream the L-box is work-
ing with row bits and S-box is working with column
bits. Therefore for L-box we need 216 combination of
target subkeys and again for S-box we need 28 combi-

nation of target subkeys, hence we need all the keys to
decrypt. To avoid this condition of guessing all keys,
we interchange the L-Box position with key addition.

We are interested in those pairs where differences
at 3rd and 6th byte after applying inverse S-box in
round 4 are same and non-zero, while other differ-
ences are zero. This is only possible when S-box in-
verse in round 4 gives two identical differences. If
this is the case, 7th byte before round 3 will be inac-
tive. Therefore, guessed key will lead to a contradic-
tion and we can discard that key. Each time we will
halve the remaining candidates for key while always
retaining the correct one. The complexity to guess
keys and decrypt 2 rounds is 216. We have calculated
from the difference distribution table for S-box and
found probability that the transition through the S-box
in the 4th round gives two identical differences is ap-
proximately 2−7. Therefore the total complexity is
214×264 = 278.

6 CONCLUSION

We have analysed Scream with the techniques, which
previously have not been applied to this algorithm,
that is differential-linear and impossible differential
cryptanalysis. This is work in progress towards a
comprehensive evaluation of Scream. We think it is
essential to analyse these new, promising algorithms
with a possibly wide range of cryptanalytic tools and
techniques. Our work helps to realize this goal.
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