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Abstract: A 6GS/s 8-bit current-steering DAC in 0.13μm CMOS technology is presented. The 5-31 binary to 
thermometer decoder and the switch drive signal are optimized, leading to obvious improvements in 
dynamic performance. A minimum spurious free dynamic range (SFDR) of 34 dB has been achieved over 
the full Nyquist bandwidth at 6GS/s. Total system power consumption is 95.44mW at 6GS/s with 2.98GHz 
input signal. Core area of DAC occupies 0.13mm2 without pads.

1 INTRODUCTION 

Advancement in applications in the area of video and 
ultra-wide-band (UWB) wireless communications 
needs high-speed and low- to moderate-resolution 
data converters so that the demand of DAC’s with 
sampling frequency up to multi-GS/s has drastically 
increased. In wide-band systems, analog 
reconstruction filters with high performance always 
increase complexity and power cost (Zhou et al., 
2003). To relax the stop-band slope requirement, it is 
necessary to choose a reasonable structure for DAC’s 
working at sampling data in the order of Gigahertz. 
The push towards Gigahertz frequencies has 
increased the demand for UWB DACs with maximal 
SFDR. At Gigahertz frequencies, the switch 
conversion time consumes a significant portion of the 
clock period, degrading SFDR. Thus, in order to 
improve dynamic performance, we proposes a novel 
switch driver. In addition, complex direct 
thermometer decoder will make drive and 
synchronizing requirements more difficult to meet, 
one method to solve the problems is to propose 
distributed-row-decoders topology. Moreover, design 
of high speed DAC’s are proven difficult (Bastos et 
al., 1999; Bavel et al., 1998; Bosch et al., 1998), 
tackling with process and parasitic problems. 

In this paper, a digital-to-analog converter with 
clock frequency up to 6GHz is presented. In section 
II, the architecture of the current-steering DAC will 
be discussed. In section III, some improvements to 
optimize the 5-31 decoder and drive signal for 

current switches and will be introduced along with 
other building blocks. The simulation results will be 
shown in section IV, and the conclusion will be given 
in section V including contrast with other works. 

2 ARCHITECTURE 

Current-steering DAC’s simply switch output unit 
current from one terminal to the other according to 
the drive signal, spending no time on charging scaled 
capacitors so they are fast and can reduce the cost 
considerably. Figure 1 shows the main structure used 
in the implemented DAC. In order to compromise 
between complexities versus static linearity, 5+3 
segmentation has been applied. The most significant 
5 bits (MSBs) are thermometer decoded generating 
31-bit unary code to control MSB logic current cells. 
Each one of logic cells has 4 physical current sources 
connected in parallel. The least significant 3 bits 
(LSBs) are also thermometer decoded, causing the 
same delay with MSB decoding and minimizing the 
output glitch. Each LSB physical current source is 
equally divided into two LSB logical sources. And 
the common gate MESFETs of LSB physical current 
sources are biased by an error amplifier. The analog 
block is powered separately from the digital block for 
the reduction of noise coupling. 
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3 CIRCUIT IMPLEMENTATION 

3.1 Current Cells Design 

Current source array occupies the most area of 
analog block because of restrain of static mismatch. 
Assume two variables, Aβ and Ath, as parameters of 
static current mismatch variance. Reference 
(Lakshmikumar et al., 1986) indicates that the 
mismatch parameters, Aβ and Ath, are inversely 
proportional to the size of scaled current sources. 
The relationship between current mismatch and 
transistor size is presented more quantitatively in the 
formula: 
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where σ(I) is the standard deviation of current 
mismatch and assigned 0.005 for the integral 
nonlinearity (INL)-yield up to 99.7% 
(Lakshmikumar et al., 1986). WL and Vov represents 
transistor size and overdrive voltage respectively.  

Reference (Schofield et al., 2001) introduces an 
ingenious way to reduce graded and symmetrical 
errors within the cell array in layout design. The 
31*4 MSB unary sources are assigned in 4 
concentric symmetrical cubes. Each cube has 6*6 
numbered cells and cells share the same order 
number over 4 cubes are connected in parallel. To 
minimize the glitch, 7 LSB unary sources are 
assigned in the center of the array (Figure 2). 

3.2 5-3 Thermometer Decoder and 
Optimization 

Since the circuit has to support up to the sampling 

rate of 6GHz, driving and timing constraint is 
imposed on the digital blocks. Complex direct 
thermometer decoder of the 5 MSBs will make drive 
and synchronizing requirements more difficult to 
meet, so it is necessary to divide the decoder into 
two stages. As shown in Figure 3, the first stage 
consists of a 3-bit thermometer decoder and a 2-bit 
thermometer decoder. The second stage is a routing 
matrix which generates the final thermometer codes. 

Each row decoder output drives 16 routing 
matrix units and 4-order tree line. The delay of the 
whole decoder is restrained less than one clock 
period, so the size of driver  chain between row 
decoder and routing matrix units is limited. 
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Figure 2: Current cells assignment. 

And the connection of row decoder and the 
matrix is very complex. One method to solve the 
problems is to adopt distributed-row-decoders 
topology (Figure 4). With the usage of reductant 
decoder, the drive burden and line density are 
effectively reduced. As a result, the decoder outputs 
are robust and the DAC performance is promoted. 
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Figure 1: Main block of the DAC. 
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Figure 3: 5 Bits binary to thermometer decoder. 
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Figure 4: Distributed-row-decoder topology. 

3.3 Optimizing the Current Switch 
Diver 

The massive size of the current cell leading to large 
parasitic capacitor at the source of differential 
switches makes it necessary to minimize the voltage 
glitch at the source, because strong glitch will 
drastically degenerate both static and dynamic index 
of output signals. One effective solution is to 
generate low-swing and high cross point differential 
drive waveform, such that the voltage vibration at 
the source will be diminished. Common drive circuit 
is depicted in Figure 5(a). Vp and Vn are the drive 
signals for switches, and they swing between VDD 
and the reference low level, Vref. By enlarging the 
size of M1, M4 and reducing the size of M2, M3, the 
optimal cross point of differential output waveform 
is attained, and the DAC linearity is maximized. 
Figure 6 shows the simulation result. However, the 
falling edge turns out to be too gentle while meeting 
swing and trip point requirements. Figure 5(b) 

shows the upgraded circuit. Transistors M5-8 copies 
the same on-off operation from M1-4. In invertors I1 
and I3 the size of P-FETs is much larger than that of 
N-FETs. On the contrary, in invertor I2 and I4, the 
size of N-FETs is much larger than that of N-FETs. 
As the results, V3 and V4 are asymmetric pulses, 
and the low-level period is shorter than that of the 
high-level. When low level comes at V3 or V4, M9 
or M10 will be opened accordingly, and the low 
level period should not last too long, in case that M9 
and M10 are still open as the signals at V3 and V4 
rise. By properly sizing invertors I5-8, the delay 
between the falling edge at Vn, Vp and turn-on 
window of M9, M10 can be adjusted and as a result, 
falling edge of driving signals will be optimized. 
Figure 6 shows the contrast of two drive signals. The 
upper signal is without optimization, and the lower 
signal is with optimization. The glitch is diminished 
and the low level step is clearer in the result with 
optimization. 
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Figure 5(a): Common switch driver. 
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Figure 5(b): Upgraded switch driver. 
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Figure 6: Contrast of drive waveforms. 

 

Figure 7: Comparison of dynamic performance. 

3.4 Comparison of Dynamic 
Performance of DAC with and 
without Optimization 

Figure 7 shows the comparison of dynamic 
performance of DAC with and without optimization. 
The clock rate is 6GSPs and input signal bandwidth 
is 2.96GHz. Apparently, the SFDR result with 
optimization is 34dB better than without 
optimization. 

4 POST SIMULATION RESULTS 

Figure 8 presents the step waveform when the input 
code increases from 00000000 to 11111111 with the 
code rate up to 4Gb/s. Associated differential 
nonlinearity (DNL) along with INL are calculated 
and results are shown in Figure 9. It is obvious that 
switching glitch is restrained about 1 LSB and static 

requirement is satisfied with both DNL and INL less 
than 0.5 LSB (Figure 9). Dynamic performance is 
simulated with different clock rate and different 
inputs (Figure 10). At 4GSPs clock rate, with the 
1.98GHz output signal bandwidth, SFDR is 53dB. 
At 6GSPs clock rate, with the 2.96GHz output signal 
bandwidth, SFDR is 33dB. 

 

Figure 8: Step waveform of differential output. 

 

Figure 9: Results of DNL and INL. 

Table 1: Comparison with other works. 

 This work 
(Zhao et 
al., 2011) 

( Li et al., 
2014) 

(Xiong et 
al., 2014)

Resolution 8 bits 14 bits 8 bits 6 bits
Sampling 

rate
6GS/s 2GS/s 2GS/s 8GS/s 

DNL(LSB) 0.2 0.3 0.12 0.04 
INL(LSB) 0.4 0.5 0.23 0.04

SFDR(dB) 
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Figure 10: SFDR results of 8-bit DAC. 

5 CONCLUSION 

This paper has presented a 6GS/s 8bit DAC in 
0.13μm CMOS technology. By properly sizing and 
arranging the current source array, good statistic 
performance has been achieved. By optimizing the 
decoder and switch driver, the DAC can work at 
6GSPs. The full scale output current of the DAC is 
3.825mA and the power consumption is 95.44mW at 
6G sampling rate with 2.96GHz input signal 
bandwidth. Table I summarizes the DAC 
performance and compares it with other recently 
published very high-speed DACs. It can be learned 
from the Table that the proposed DAC is able to 
work at higher sampling rate. With the optimized 
current switch, the proposed DAC achieves > 33dB 
SFDR up to 2.96GHz where the signal frequency of 
other reported DACs are limited to 2.7GHz.  
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