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Abstract: There is a growing interest in leveraging the computational resources and storage capacities of remote compute
and storage infrastructures for data analysis. However, the loss of control over the data raises concerns about
data privacy. In order to remedy these concerns, data can be encrypted before transmission to the remote
infrastructure, but the use of encryption renders data analysis a challenging task. An important observation is
that it suffices to encrypt only certain parts of the data in various real-world scenarios, which makes it possible
to devise efficient algorithms for secure remote data analysis based on partially homomorphic encryption.
We present several computationally efficient algorithms for regression analysis, focusing on linear regression,
that work with partially encrypted data. Our evaluation shows that we can both train models and compute
predictions with these models quickly enough for practical use. At the expense of full data confidentiality,
our algorithms outperform state-of-the-art schemes based on fully homomorphic encryption or multi-party
computation by several orders of magnitude.

1 INTRODUCTION

There is a strong trend towards outsourcing both stor-
age and computation to remote infrastructures, e.g.,
cloud providers, in various industries. This trend is
driven by the facts that more and more data with
a large potential business value is being captured
and the cloud providers offer a convenient and cost-
effective solution for the archival and processing of
large volumes of data. Of course, machine learning
plays a major role in the analysis of this data. A fun-
damental application of data analysis is prediction and
forecasting, which is the focus of this work. More
precisely, we study the problem of outsourcing re-
gression analysis. We distinguish between two differ-
ent tasks in regression analysis: In the training phase,
we use input data (independent variables) together
with known output data (dependent variable) to train
a model. Afterwards, the model can be used to predict
output data for new input data, i.e., for input data for
which the output is unknown.

While outsourcing regression analysis provides
great benefits, many companies are reluctant or un-
willing to share business-relevant data, let alone pro-
vide access to a (third-party) cloud provider. Ob-

viously, simply encrypting the data using standard
encryption before shipping it off to the remote in-
frastructure does not solve the problem because the
encryption would prevent the provider from running
meaningful computation on the data. Handing over
the encryption keys is also not a satisfactory solution
because the data must be decrypted before any opera-
tion is carried out. More importantly, this solution re-
quires trust in the provider not to abuse its knowledge
of the key. In this case, the security level increases
marginally compared to fully trusting the provider
and sending data out in plaintext over encrypted chan-
nels. Thus, a significant challenge is to overcome the
security concerns due to the loss of control over data
when it is transferred to a remote infrastructure op-
erated by another party. This problem has received
considerable attention in the last couple of years and
various solutions have been proposed, based on ei-
ther multiple providers that are assumed to faithfully
execute the protocols (secure multi-party computa-
tion), or fully homomorphic encryption (FHE) (Gen-
try, 2009). The drawback of the first approach is that it
relies on the assumption that the providers do not col-
lude and the latter suffers from an impractically large
computational overhead.
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Figure 1: Devices send data to the remote service provider
(server S) for storage and processing. The beneficiary,
which resides on the client side, receives the processing re-
sults, either periodically or upon issuing a specific query.

We propose a new approach to do regression in
untrusted remote infrastructures that does not depend
on a non-collusion assumption and is several orders
of magnitude faster than existing solutions based on
FHE. The key insight is that not all data necessarily
needs to be encrypted in many practical scenarios, and
this fact can be exploited to build efficient regression
algorithms based on partially homomorphic encryp-
tion.

In this paper, two different regression scenarios
are considered, each keeping a different part of the
data unencrypted. In the first scenario, we use inde-
pendent variables in plaintext and encrypted depen-
dent variables to train an encrypted model, based on
the algorithm provided by the client, that can be used
to compute encrypted dependent variables. Thus, in
this scenario, the provider learns what independent
variables are used to build the model but the provider
cannot make sense of the computed model, nor can
the provider learn anything about the computed de-
pendent variables. This scenario has a wide range of
practical applications. For example, public wind and
weather data (plain text independent variables) can be
used to predict operational points of wind farms and
solar plants (encrypted dependent variables), or elec-
tricity consumption can be used to predict prices on
the electricity market (or the other way round). Other
examples are the use of social media data for sen-
timent analysis and current pricing information for
stock market prediction.

Of course, there are just as many applications
where both independent and dependent variables are
confidential. In this case, we propose to keep the
model in plaintext, and use the encrypted confidential
data (both independent and dependent variables are
encrypted) to train this model. The model can then be
used to compute encrypted dependent variables. The
provider cannot deduce anything about the computed
dependent variables since they are encrypted with the
client’s key to which the provider has no access.

The contributions of this work are the follow-

ing. We propose approaches to perform regression
analysis in a privacy-preserving manner where data
and model are partially encrypted and only one server
is needed (i.e., a non-collusion assumption is not
necessary). An additively homomorphic encryption
scheme is sufficient to implement these approaches.
To illustrate our mechanisms, we use linear regression
and provide a comparative evaluation using both real-
world and synthetic data sets. The evaluation shows
that our mechanisms are fast enough for many prac-
tical use cases by computing a model in the order of
seconds and predictions in the order of milliseconds.
Furthermore, the evaluation reveals that our approach
is considerably faster than any state-of-the-art imple-
mentation based on two-server solutions or FHE: we
can achieve a speed-up of 4 orders of magnitude or
more. Thus, tremendous performance gains are feasi-
ble when sacrificing full data privacy preservation by
encrypting only the most crucial parts of the data.

The paper is structured as follows. Our model is
explained in detail in §2. Our mechanisms are pre-
sented and evaluated in §3 and §4, respectively. Re-
lated work on privacy-preserving machine learning
and regression in particular is summarized in §5. Fi-
nally, §6 concludes the paper.

2 MODEL

In an industrial setting, there are three parties involved
in machine learning tasks: the devices generating the
data, the service provider carrying out demanding
computations and the beneficiaries receiving the re-
sults of the computations. Our model of this setting is
depicted in Figure 1. For simplicity, we consider the
parties providing the data and requiring the results as
one party, i.e., devices and beneficiary are merged in
a client role C. We assume that all clients subsumed
in client C belong to the same trust domain, i.e., they
are allowed to learn the same information in any pro-
cessing task. The service provider, on the other hand,
remains a separate untrusted party denoted by S. S is
assumed to be honest-but-curious, i.e., it follows the
protocol and does not attempt disruptions or fraud.
Moreover, we assume that S cannot break the used
cryptographic schemes for keys of reasonable length.

Typically, the devices are equipped with resource-
constrained hardware, both in terms of computational
power and storage, while the beneficiaries have more
computational resources, e.g., in the form of a pow-
erful computer, and the service provider has signifi-
cantly more computational resources and storage ca-
pacity in the form of a computer cluster or a data cen-
ter. Therefore, the data produced at the client C must
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be transferred to and stored at the service provider S.
In addition, as much computational load as possible
must be shifted from C to S. In particular, we con-
sider two tasks, which must be executed primarily by
S, a training task and a prediction task.

The training task consists of fitting a model to data
according to a function f . The data consists of m
samples, where each sample i contains a vector x(i) of
n features—the independent variables—and a scalar
y(i), which constitutes the dependent variable. Let
X and y denote the matrix and the vector of all in-
dependent and dependent variables, respectively. The
model computed in the training task is θ = f(X, y).

The prediction task uses the model θ, computed
from known X and y, to predict the dependent vari-
able for new independent variables. More formally,
a prediction is computed through some function g
based on the vector x of independent variables and
the model θ: y = g(x, θ). In this paper, we focus
on functions f and g that can be approximated by a
bounded-degree polynomial.

In order to ensure that the untrusted provider S
learns as little as possible during the course of the
computation, data is encrypted before being transmit-
ted to S. Note that there are fundamentally different
approaches such as obfuscating data, e.g., by adding
noise according to some predefined distribution. We
assume that the unaltered data must be stored in the
database, which prohibits the use of such schemes.
This situation occurs quite naturally when the remote
infrastructure is also used as a data archive, which
may be a regulatory necessity. When using asymmet-
ric cryptography, only the beneficiary C needs access
to the secret key whereas the data generating devices
solely use the public key for encryption. Our algo-
rithms require that the encryption scheme be addi-
tively homomorphic, i.e., sums can be computed on
encrypted values directly without access to the (de-
cryption) key. Formally, let [v]k denote the cipher
text corresponding to the plaintext value v encrypted
with key k. An encryption scheme is called addi-
tively homomorphic if there is an operator ⊕ such
that [v1]k ⊕ [v2]k is an encryption of v1 + v2 for
any key k and values v1 and v2.1 Since it is always
clear from the context which key is used, we omit the
index and simply write [v]. In addition, we require
homomorphic multiplication of an encrypted number
with a plaintext factor, resulting in an encryption of
the product of the encrypted number and the factor.
Several additively homomorphic encryption schemes
support this operation. For ease of exposition, we use

1Note that there may be many valid ciphertexts (en-
crypted values) corresponding to the same plaintext value
so we cannot assume that [v1]k ⊕ [v2]k = [v1 + v2]k.

homomorphic operators implicitly whenever at least
one operand is encrypted, e.g., [v1] + [v2] and v1[v2]
denote the homomorphic addition (where both terms
are encrypted) and multiplication (where one of the
terms is encrypted), respectively.

Our algorithms to train a model and predict depen-
dent variables are based on the exchange of plaintext
and ciphertext messages between S and C and local
computation at the two parties. The primary complex-
ity measure of an algorithm is the computational com-
plexity, which is the number of basic mathematical
operations, either on plaintext or on ciphertext, that
need to be carried out. As mentioned earlier, the goal
is to minimize the effort of C. Additionally, we dis-
cuss how many encrypted and plaintext values must
be exchanged during the execution of the algorithm.

3 PRIVACY-PRESERVING
LINEAR REGRESSION

3.1 Basic Concepts

Linear regression is a method to compute a model
θ representing a best-fit linear relation between x(i)

and y(i), i.e., we get that x(i) · θ = y(i) + e(i)

for all i ∈ {1, . . . ,m}, where e(i) are error terms.
More precisely, θ should minimize the cost function
J(θ) := 1

2m

∑m
i=1(x

(i) · θ − y(i))2. The model θ
can then be used to predict y for vectors x that are
obtained later by computing x · θ.

There are two commonly used approaches to com-
pute θ in such a way that the cost function J(θ)
is minimized. The first approach solves the normal
equation θ = (XTX)−1XT y, the second one uses
gradient descent. In the gradient descent-based ap-
proach, θ is updated iteratively, using the derivative
of J(θ), until J(θ) converges to a small value as fol-
lows:

θj := θj − α
∂J

∂θj
= θj − α

1

m

m∑

i=1

(x(i) · θ− y(i))x(i)j
(1)

The parameter α influences the rate of convergence.
The approach with normal equation requires the in-
version of an n × n-matrix. Therefore, gradient de-
scent can be significantly faster when the number of
features is large.

For gradient descent to work well, features should
have a similar scale. For the sake of simplicity, we
assume that numerical values in the data are normal-
ized, i.e., the mean is shifted to 0 and all values are
scaled to be in the range [−1, 1]. We further assume
that the mean µ or at least an approximate bound
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is known. Given (the approximation of) µ, the de-
vices can easily perform this normalization by setting
xi ← xi−µ

max{xmax−µ,µ−xmin} for all i ∈ {1, . . .m}.
This feature scaling and fractional numbers in

general pose a problem when working with encrypted
data as most encryption schemes operate on integers
in a finite field. We address this problem by trans-
forming the values into fixed-point numbers before
they are encrypted and processed. To this end, we
introduce an approximation step, where each value is
multiplied with a large factor and then rounded to the
closest integer, before encrypting the data. The mag-
nitude of the factor has an impact on the achievable
precision, as we will discuss in more detail in §4. For-
mally, we write

x̂ := approximate(x, λ),

where x is the independent variable, λ is the factor
that is multiplied with x, and x̂ is the rounded re-
sult. This subroutine approximate can naturally
be extended to take a vector or matrix as input by
applying the subroutine to each scalar in the vector
or matrix. We will use this extended definition of
the subroutine in our algorithms. The loss in preci-
sion becomes negligible when λ is large enough. For-
mally, if c = f(a, b) for some function f , we write
ĉ ' f(â, b̂). In other words, we almost get the same
result when applying the subroutine to the result of
a computation as when carrying out the computation
with approximated inputs. We further write ĉ ' λc,
which states that ĉ is λ times larger up to rounding.

As mentioned before, we consider encryption
schemes that support homomorphic multiplication of
encrypted values with plaintext values. Again, such a
multiplication is only possible with plaintext integers
but our mechanisms require the capability to multi-
ply encrypted values with arbitrary rational numbers.
There are two options to provide this operation. The
first option entails a loss of precision by converting
the factor into a fixed-point number using again the
approximation subroutine. The second option is to in-
volve the client in the computation by asking it to de-
crypt the value, carry out the multiplication, round the
result to the nearest integer, and send the encrypted re-
sult back to S. We use both options in our algorithms,
carefully selecting between them to minimize the pre-
cision loss and the communication and computational
load on the client.

3.2 Algorithms

All our proposed algorithms allow the client C to pre-
process each sample separately. In other words, the
algorithms can be used in environments with multiple

Client Server
X, [ŷ], λ

[r1] [r1] := M[�0] − T[ŷ]

d1 := α/m·r1 [d1]

[�1] := [�0] − [d1] 
[r2] := M[�1] − T[ŷ][r2]

d2 := α/m·r2 [d2]

.
.
.

M := approximate(XTX,λ)
T := approximate(XT,λ)

Figure 2: Encrypted θ&y using gradient descent.

data sources, without requiring them to communicate
with each other. Some of our algorithms involve C in
the computation as outlined in the previous section.

As discussed in §1, we consider two different sce-
narios, each scenario encrypting a different set of pa-
rameters.

1) Encrypted θ&y: The matrix of independent vari-
ables X is provided in plain text whereas the
model θ and the vector of dependent variables y
are encrypted.

2) Encrypted X&y: Both the matrix of independent
variables X and the vector of dependent variables
y are encrypted but the model θ is in plaintext.

For Scenario 1), we propose three methods to
compute θ in encrypted form: The first one uses gra-
dient descent and is thus particularly useful for sce-
narios where X contains many features. The sec-
ond method solves the normal equation, and the third
method requires the client to do some preprocessing
of the data in order to speed up the computation on the
server. After discussing these methods, we present an
algorithm for Scenario 2) based on gradient descent.

3.2.1 Encrypted θ&y using Gradient Descent

Initially, C sends the independent variable matrix X
in plaintext and the corresponding dependent variable
vector y in encrypted approximate form (

[
ŷ
]
) to S.

Thus, C sends mn plaintext values and m encrypted
values. S then applies Equation (1) iteratively on the
data. To this end, S performs the approximation for
XTX and XT :

M := approximate(XTX,λ)

T := approximate(XT , λ)

Subsequently, S computes
[
r1
]
:= M

[
θ0
]
− T

[
ŷ
]
,

where the initial model θ0 is set to a suitable starting
vector in encrypted form. In the next step, S sends
[r1] to the client, which decrypts it, applies the multi-
plication with α/m and sends back the result. This
operation is assigned to the client since α/m is a num-
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Algorithm 1: TRAINING: Encrypted θ&y using nor-
mal equation.

Input: X ,
[
ŷ
]
, λ

Output:
[
θ
]

1 A := approximate((XTX)−1XT , λ)

2
[
θ
]
:= A

[
ŷ
]

3 return
[
θ
]

ber close to zero if there are many samples, and thus
the precision loss by carrying out this multiplication
on S can be significant. These two steps are repeated
K times (or until the client decides that the value is
small enough). This scheme is illustrated in Figure 2.

It is easy to see that the model is updated accord-
ing to Equation (1). In each iteration, 2n ciphertext
values are transmitted from S to C and back. Thus,
O(Kn) ciphertexts are exchanged during gradient de-
scent. Overall, S must perform O(Kmn) homomor-
phic operations and O(Kn) operations on plaintext,
whereas C carries out O(Kn) plaintext, encryption,
and decryption operations.

3.2.2 Encrypted θ&y using Normal Equation

The second approach solves the normal equation on
S directly. In this case, no interaction with the client
is necessary after receiving X and

[
ŷ
]
.

Given X and λ, S first computes (XTX)−1XT

and applies the subroutine approximate. S can
then use this matrix together with

[
ŷ
]

to compute
[
θ
]
,

see Algorithm 1. This computation is obviously cor-
rect in principle but there is a loss in precision due to
the approximation.

Overall, O(mn2 + n2.373) plaintext operations
are performed to compute A. The second term
is the complexity of inverting XTX for optimized
variants of the Coppersmith-Winograd algorithm.For
problems with a large number of features, the inver-
sion can be computed by other methods, e.g., with LU
decompositions. In addition, O(nm) homomorphic
operations (additions of ciphertexts and multiplica-
tions of ciphertexts with plaintext values) are needed
to compute

[
θ
]
. If n is relatively small, e.g., 1000 or

less, the homomorphic operations are likely to dom-
inate the computational complexity as they are typi-
cally several orders of magnitude slower than equiv-
alent operations in the plaintext domain. A detailed
analysis is given in §4.

3.2.3 Encrypted θ&y with Preprocessing

The third approach is also based on solving the nor-
mal equation but reduces the number of homomorphic

operations on S for the case when the number of sam-
ples m is greater than the number of features n. This
reduction is achieved by preprocessing the data on the
client side as follows. As before, C sends the matrix
X to S. However, instead of sending

[
ŷ
]
,C computes

bi := X(i)T y(i), where X(i) denotes the ith row of
X , and transmits

[
b̂i
]

for each i ∈ {1, . . . ,m}.
The server S then computes

A := approximate((XTX)−1, λ).

Next, it sums up the vectors
[
b̂i
]

for all i ∈
{1, . . . ,m} homomorphically, which yields the en-
crypted vector

[
b̂
]
, where b = XT y. Finally, θ is

computed by multiplying A and
[
b̂
]

homomorphi-
cally. The algorithm is summarized in Algorithm 2.

The homomorphism with respect to addition im-
plies that

b̂ =

m∑

i=1

b̂i '
m∑

i=1

X(i)T ŷ(i) = XT ŷ.

Thus, Algorithm 2 solves the (approximate) normal
equation for θ correctly by multiplying A and

[
b̂
]
. If

m > n, the advantage of Algorithm 2 as opposed to
Algorithm 1 is that the number of homomorphic mul-
tiplications on S is reduced from O(nm) to O(n2).
Conversely, C must perform O(mn) additional oper-
ations to compute the vectors

[
b̂1
]
, . . . ,

[
b̂m
]
. In ad-

dition to transmitting the plaintext matrix X , C also
sends these m n-dimensional vectors, i.e., O(mn)
values are sent in total.

Since each vector [b̂i] is sent individually, using
the algorithm in a setting with multiple clients is
straightforward. If there is only one client that holds
X and y locally, the algorithm can be optimized:
The client computes b = XT y directly and sends

[
b̂
]

to S. In this case, the client must only encrypt b̂, i.e.,
n values in total, in contrast to encrypting all vectors
b̂i, which requires the encryption of nm values.
Moreover, S would not have to compute

[
b̂
]
.

3.2.4 Encrypted X&y using Gradient Descent

We now consider the scenario where X and y are
encrypted and the model θ is computed in plain-
text. Solving the normal equation directly involves
the multiplication of elements of X and y, which
is not possible using an additively homomorphic en-
cryption scheme. Gradient descent cannot be used
directly either because XT must be multiplied with
terms containing X and y. However, it is possible to
use gradient descent when the client performs some
preprocessing on the data: For each sample i, the
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Algorithm 2: TRAINING: Encrypted θ&y with pre-
processing.

Input: X , λ, {
[
b̂1
]
, . . . ,

[
b̂m
]
}

(bi = X(i)T y(i))
Output:

[
θ
]

1 A := approximate((XTX)−1, λ)

2
[
b̂
]
:=
∑m
i=1

[
b̂i
]

3
[
θ
]
:= A

[
b̂
]

4 return
[
θ
]

client prepares a vector [b̂i], where bi = X(i)T y(i),
and matrix [Âi], where Ai = X(i)TX(i), and trans-
mits them to S.

As in §3.2.1, the initial model θ0 is set to a suit-
able starting vector. In order to support values smaller
than 1 in the model, θ0 is scaled by λ. S sums up
all received encrypted vectors [b̂i] and multiplies the
sum with λ homomorphically, resulting in the en-
crypted vector [b̂]. The encrypted matrices [Âi] are
also summed up homomorphically, which yields the
encrypted matrix [Â]. Vector [b̂] and matrix [Â] are
used in each iteration i as follows: S sends

[
ri
]
:=[

Â
]
θi−1 −

[
b̂
]

to C, where it is decrypted and mul-
tiplied with α/m before being converted again to an
integer using the subroutine approximate. The re-
sult d̂i is sent back to S. The updated model θi is
computed by subtracting d̂i from θi−1. The algorithm
is depicted in Figure 3.

Again, due to the homomorphic property of the
encryption scheme, we have that

Â =

m∑

i=1

Âi ' λ
m∑

i=1

Ai = λXTX (2)

b̂ = λ

m∑

i=1

b̂i ' λ2
m∑

i=1

bi = λ2XT y, (3)

and thus

r′i '
1

λ2
ri =

1

λ2
(Âθi−1 − b̂)

(2),(3)' XTXθi−1 −XT y,

where r′i denotes the correct difference between the
two terms on the right-hand side. Hence, the algo-
rithm implements gradient descent correctly.

As far as the computational complexity is con-
cerned, S carries out O(mn2 +Kn2) homomorphic
additions andO(Kn2) homomorphic multiplications.
At the beginning, the client sends m(n2 + n) en-
crypted values. n encrypted values are exchanged in
each iteration. C has to decrypt them, carry out a mul-
tiplication and convert them to integers before send-
ing them back to S. Thus, O(mn2 +Kn) values are

Client Server
[Â1],..., [Âm], [b̂1],..., [b̂m],λ

[r1] [r1] := [Â]�0 − [b]̂

d1 := α/m·r1 d1

�1 := �0 − d1 

[r2] := [Â]�1 − [b]̂[r2]

d2 := α/m·r2 d2

.
.
.

[Â] := Σi [Âi]
[b]̂ := λΣi [b̂i]

Figure 3: Encrypted X&y using gradient descent.

exchanged in total. Note that S learns not only the
final model but also all intermediate models. It de-
pends on the use case whether this information leak-
age is acceptable. In other words, depending on the
data, S may or may not be able to extract information
from these models. In either case, it cannot directly
use them as they produce encrypted predictions.

3.2.5 Prediction

Having computed the model, the second fundamental
task is to predict y given a new input vector x. In Sce-
nario 1), x is not encrypted, so S can get the encrypted
prediction by computing [y] = x[θ]. Likewise, in Sce-
nario 2), the model θ is not encrypted, therefore S can
compute [y] = [x]θ. In both scenarios, S needs O(n)
homomorphic operations to compute a prediction.

3.3 Scalability

After having introduced the basic methods of our ap-
proach, we now describe optimizations, for both the
client and the server.

3.3.1 Packing

While most computational work is offloaded to the
server, the client is required to carry out many encryp-
tion and decryption operations in all proposed algo-
rithms. Since decryption is the most expensive oper-
ation, we will now discuss how we reduce the num-
ber of decryption operations at the client using a tech-
nique called packing (Brakerski et al., 2013; Ge and
Zdonik, 2007; Nikolaenko et al., 2013). The server
S packs multiple ciphertexts that must be sent to the
client into a single ciphertext by repeatedly shifting
and adding them, which can be done without knowl-
edge of the decryption key. However, S must know
how many bits are used to encode a single plain-
text. The client can then recover the plaintexts by
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decrypting the ciphertext and extracting each individ-
ual plaintext by shifting and applying a bit mask. For
example, for a key size of 2048 bit and 32-bit plain-
texts, up to 64 ciphertexts can be packed, reducing
the number of decryptions by the same factor. This
feature is used in both gradient-descent based algo-
rithms, where S sends the encrypted vector [ri] in
each iteration.

3.3.2 Iterative Model Computation

In many application scenarios, the client sends a
stream of samples to the server, which in turn is sup-
posed to update the computed model accordingly ().
Our approaches can be adapted easily to accommo-
date such requirements. E.g., the gradient-descent
based algorithm for Encrypted θ&y can be modified
as follows: instead of sending X and

[
ŷ
]
, the client

sends x(i) and
[
ŷ(i)
]

separately for each i. The server
then updatesM and T based on the new values (a fast
operation since X is not encrypted), computes

[
ri
]
,

and sends it back to the client. The client computes[
di
]

and returns it to the server, possibly together with
the next sample. Similarly, in Algorithm 1 and Algo-
rithm 2 the matrixA and vector

[
b̂
]

can be updated ef-
ficiently after receiving each sample. This also holds
for Encrypted X&y, where

[
Â
]
,
[
b̂
]

and
[
ri
]

can be
computed efficiently for each new sample.

Depending on the application, it might also make
sense for the client to send samples in batches; the
iterative approach outlined above can be adapted for
batched samples as well. The computation complex-
ity on the server can be reduced using optimization
methods decreasing the frequency with which a new
model is computed (Strehl and Littman, 2008) or a
recursive approach that assigns more weight to recent
samples (Gruber, 1997). In our evaluation, we inves-
tigate the performance of our methods without such
optimizations to gain an understanding of their basic
behavior in different scenarios.

4 EVALUATION

4.1 Experimental Setup

We use several data sets with different numbers of
samples and features to evaluate the performance.

Real-world data sets: In order to enable other re-
searchers to compare their methods to ours, we have
chosen 8 publicly available data sets.2 In this paper,
we focus primarily on two representative data sets:

2See https://archive.ics.uci.edu/ml/datasets/.

Set 1 contains data from a Combined Cycle Power
Plant (CCPP) with 9568 samples and 4 features. Set
2 is called Condition Based Monitoring (CBM) with
11,934 samples and 17 features. A summary of our
results for the other 6 data sets is provided as well.
Furthermore, we also generate synthetic data to ana-
lyze the impact of the number of samples and features
on the computational complexity.

Synthetic data sets: We generated synthetic data
sets with 10 to 80 features and 1000 to 64’000 sam-
ples, where the elements of X are floating point val-
ues chosen uniformly at random between 0 and 1 and
y is computed for a model vector θ with randomly
chosen floating point numbers and some noise.

We use the additively homomorphic Paillier en-
cryption scheme (Paillier, 1999) in our implementa-
tion, which supports the required homomorphic oper-
ations. In this encryption scheme, a homomorphic ad-
dition corresponds to a multiplication (of ciphertexts),
while a homomorphic multiplication corresponds to
an exponentiation, where the plaintext factor is the
exponent. All homomorphic operations are carried
out modulo a large number. The most expensive op-
erations, encryption and decryption, have been op-
timized using standard tricks such as precomputing
random factors and working in a subgroup generated
by an element of order αn (Jost et al., 2015).

We implemented our algorithms in C++ using the
library NTL3 and used 2048-bit encryption keys, cor-
responding to a 112-bit security level (Catalano et al.,
2001).

For comparison, we implemented the gradient de-
scent and matrix inversion methods for unencrypted
data using the Armadillo library4. We ran the tests
on a computer with an Intel Core i5-2400 CPU at 3.1
GHz and 24GB of RAM, running Ubuntu 14.04.

4.2 Precision

We normalized the data in the data sets as described
in §3.1. The number of bits used to represent real val-
ues as fixed-point integers is a compromise between
precision and overhead in storage and computation
time. In order to better understand this trade-off, we
measured the precision error, defined as the Euclidean
norm of the difference between θ obtained with ap-
proximated values and θ obtained with arbitrary pre-
cision floating point values, using different numbers
of bits for the approximation. The precision error
when computing with 64-bit floating point numbers is
in the order of 10−71 for CBM and 10−72 for CCPP.
We found that this level of precision can be matched

3See http://www.shoup.net/ntl/.
4See http://arma.sourceforge.net/.

Privacy-preserving Regression on Partially Encrypted Data

261



Table 1: Running times for computing the model without encryption. The first number is for the CCPP data set and the second
one in parentheses for the CBM data set.

Training plaintext, gradient descent, K=10 plaintext, normal equation

Server training total [ms] 11 (24) 0.15 (1.4)

Table 2: Running times and overhead factors for computing the model with Paillier encryption. The first number is for the
CCPP data set and the second one in parentheses for the CBM data set.

Training Encrypted θ&y Encrypted θ&y Encrypted θ&y Encrypted X&y
gradient descent normal equation preprocessing gradient descent

K=10 K=10

Client prep./sample [ms] 1.16 (1.98) 1.14 (1.99) 5.02 (17.731) 26.23 (106.23)

Client training/iter. [ms] 9.05 (20.11) - - 118.23 (143.91)
Server training/iter. [ms] 187.55 (949.24) - - 411.30 (3713.22)
Server training total [ms] 1966.01 (9693.32) 1553.66 (8748.05) 116.42 (571.23) 5550.35 (38314.80)

Server overhead 179 (404) 10,371 (6,249) 799 (408) 3,483 (1583)

using 50 bits for the approximation. Since measure-
ments themselves contain errors, such a high preci-
sion is typically not necessary. Therefore, we decided
to use 30 bits, which corresponds to precision errors
in the order of less than 10−35. Note that 20 bits are
used in relevant related work (Graepel et al., 2012;
Nikolaenko et al., 2013).

4.3 Time

We present results for the time needed to compute
the model and make predictions as averages over 100
runs. First, we analyze the performance of our algo-
rithms on real-world data sets. Afterwards, we study
how the two main parameters—the number of sam-
ples and features in the data set—affect performance
using randomly generated data.

4.3.1 Analysis Using Real-World Data Sets

The times for computing the model (training task)
without encryption and with encryption are given in
Table 1 and Table 2, respectively. Each method from
§3.2 is presented in a separate column, gradient de-
scent was performed for K=10 iterations. The rows
indicate the following: “Client preparation per sam-
ple” shows the time the client needs to preprocess and
encrypt a single sample, whereas “Client training per
iteration” shows how much time is spent at the client
to compute the update to the model in each gradi-
ent descent iteration. “Server training per iteration”
shows the time spent at the server for a single gradient
descent iteration, and “Server training total” shows
the total time needed by the server. This total time
includes the time spent at the client when performing
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Figure 4: Running time to compute one prediction for dif-
ferent numbers of bits used to approximate real numbers.

operations on behalf of the server in each gradient de-
scent iteration. However, the “Client per sample” time
is excluded as it is dominated by the time to encrypt
samples, which we do not consider a part of comput-
ing the model. “Server overhead” shows the overhead
factor, which is the ratio between the “Server training
total” times in Table 2 and Table 1.

The time for predictions is shown in Table 3. For
the scenario when X and y are encrypted, it com-
prises the time for encryption at the client and the time
for computing the prediction on the server. Recall that
we always use 30 bits to encode input values as fixed-
point numbers. It is important to understand how the
encoding affects performance. Figure 4 depicts the
dependence of the time required to make a prediction
on the number of bits used for the approximation.

As mentioned before, we also ran our algorithms
on six other data sets. Since these experiments did not
yield substantially different results, we omit a detailed
analysis and present a short summary in Table 4 and
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Table 3: Running times and overhead factors for predictions. The first two column use Paillier encryption, the last column no
encryption. The first number is for the CCPP data set and the second one in parentheses for the CBM data set.

Prediction Encrypted θ&y Encrypted X&y plain text

Client [ms] 0.523 (0.525) 4.631 (4.678) -

Server [ms] 0.244 (0.934) 0.347 (0.376) 0.000224 (0.0000711)

Server overhead [×104] 3.440 (4.176) 5.291 (1.552) -

Table 4: Average server overhead of training for 6 additional data sets (separate numbers for each proposed algorithm).

Data set Training
Name Features Samples Encr. θ&y Encr. θ&y Encr. θ&y Encr. X&y

grad. descent normal eq. preprocessing grad. descent

Auto-mpg 8 394 558 16,307 2,957 13,415
Forestfire 10 518 533 14,414 2,054 15,156
BCW 10 684 711 11,921 1,036 15,280
Concrete 14 1031 323 4,142 467 4,460
Red Wine 12 1600 678 9,767 935 9,533
White Wine 12 4899 386 5,118 361 2,549

Table 5. The table contains the number of features
and samples for each data set. Moreover, it shows the
server overhead for each of the four proposed algo-
rithms when training the model and the server over-
head to compute predictions for both considered sce-
narios (encrypting θ and y or X and y).

4.3.2 Analysis Using Synthetic Data Sets

Since all cryptographic operations (encryption, de-
cryption, and homomorphic operations) take roughly
the same amount of time independent of the actual
data values, the performance depends primarily on a)
the chosen algorithm and b) the number of features
and samples in the data set.5 It is thus worth investi-
gating how varying the number of features and sam-
ples affects the performance of each algorithm. To
this end, we generated random data sets with F fea-
tures and S samples where F ∈ {10, 20, 40, 80} and
S ∈ {1000, 2000, 4000, . . . , 32000}. As before, we
are interested in the overhead for training and pre-
dicting. Ideally, the running times increase in a simi-
lar fashion when increasing the number of features or
samples for both unencrypted and encrypted data. In
other words, the server overhead remains constant re-
gardless of the dimensions of the input. Figure 5 and
Figure 6 show the running time for the training phase
and predictions when increasing the number of sam-
ples and features, respectively. The number of fea-
tures is set to 10 in Figure 5, and 1000 samples are

5Note that the time for encryption per value is also more
or less constant as we always use 30 bits to encode data
values.

used in Figure 6.

4.4 Discussion

In comparison to training a model without encryption,
the overhead factor is between 179 and 600 for gradi-
ent descent when y and θ are encrypted and between
2500 and 15000 when X and y are encrypted. Note
that the overhead decreases with higher numbers of
samples. When solving the normal equation, the over-
head is roughly between 5000 and 17000 without pre-
processing and drops to about 300 to 3000 with pre-
processing. Thus, solving the normal equation is sub-
stantially faster for a small number of features than
gradient descent. What is more, the overhead on the
server can be lowered by an order of magnitude by
imposing some work on the client for preprocessing
or divisions.

The overhead for predictions is higher. However,
these operations are typically performed on single
samples rather than bulk data and therefore the ab-
solute time per prediction is still fairly small and ac-
ceptable for practical use. More importantly, the com-
munication cost is often several orders of magnitude
larger than the cost of prediction, which implies that
the end-to-end slow-down is negligible.

When y and θ are encrypted our algorithms com-
plete training the model in less than 10 seconds on
all datasets. For the use case where X and y are en-
crypted, the largest dataset requires 38 seconds for
training. Predictions can be executed in the subsec-
ond range. We conclude that the running times of our
methods on both data sets are within a range accept-
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Table 5: Average server overhead of prediction for 6 additional data sets (Encrypted θ&y and Encrypted X&y).

Data set Prediction
Name Features Samples Encr. θ&y Encr. X&y

Auto-mpg 8 394 2,640 4,840
Forestfire 10 518 3,657 6,479
BCW 10 684 3,818 6,835
Concrete 14 1031 1,640 2,975
Red Wine 12 1600 3,465 6,120
White Wine 12 4899 3,427 6,327
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Figure 5: The running time for each algorithm to train
the model in both considered scenarios is given for
1000, 2000, 4000, . . . , 32, 000 samples. Each data set con-
tains 10 features.

able for practical use.
Encrypted θ&y methods applying the normal

equation directly with or without preprocessing ex-
hibit the following benefits: (i) No interaction with
the client is needed during the computation of the
model. (ii) The results are very accurate and the user
does not need to decide on parameters such as learn-
ing rate and number of iterations. This makes the
process of choosing parameters easier—in the case of
gradient descent, a wrong learning rate could result in
the method not converging. On the contrary, the com-
plexity and feasibility of all methods incorporating
gradient descent strongly depends on the choice of pa-
rameters, particularly the learning rate α and the num-
ber of iterations K. If α is too large, the method does
not converge. If it is too small, many iterations are re-
quired to achieve an acceptably small error J(θ). The
number of iterations could be decreased by automati-
cally tuning α between iterations based on the rate at
which the error J(θ) is decreasing. This optimization
would require sending additional encrypted values to
the client in order to compute the error of the updated
model. It depends on the data whether this overhead
is less than the time saved by reducing the number of
iterations. The gradient descent approaches perform
particularly well on larger data sets, where the num-
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Figure 6: The running time for each algorithm to train the
model and for computing predictions in both considered
scenarios is given for 10, 20, 40, 80 features. Each data set
contains 1000 samples.

ber of samples is in the order of ten thousand features.
When looking at the synthetic data sets (see Fig-

ure 5 and Figure 6) we can observe the behavior of
our methods for a growing number of samples. In the
plotted range all running times increase roughly lin-
early both with the number of samples and with the
number of features (note that the x-axis of the plots
is in log-scale). The number of features has a large
impact on the running times, thus it is best to keep
the number of features small, which can typically be
achieved using techniques such as principal compo-
nent analysis. We can further clearly see the differ-
ence between all the proposed algorithms with respect
to running time. In particular, the scenario when X is
in plaintext yields significantly smaller running times.
Recall that optimizations are possible with iterative
processing as described in §3.3.2.

Using a leveled or fully homomorphic encryption
scheme would allow us to encrypt X, y, and θ. How-
ever, communication with the client would still be
necessary for the gradient descent iteration steps be-
cause the known leveled and fully homomorphic en-
cryption schemes do not support division. This lim-
itation further entails that an approach based on the
normal equation is hard to implement. If X, y, and
θ must be encrypted, the multiplication of two ci-
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phertext values is necessary for linear regression. Li-
braries such as HElib6 offer this operation, yet the
size of messages and keys and also the running time
are large. For example, one could apply the method
of Encrypted X&y with θ encrypted. In this case,
the most costly operation per gradient descent itera-
tion step is the multiplication of an encrypted n-by-n
matrix with an encrypted vector of length n. Imple-
menting this as proposed in (Halevi and Shoup, 2014),
gives a lower bound of the running time per iteration
of 25s for CBM and 8s for CCPP with HElib’s default
configuration for 32-bit plaintext integers. Thus, this
method is at least 10,400 (178,000) times slower than
plaintext operations for CCPP (CBM).

With a naive encoding of numbers (e.g., HElib’s
current encoding), around 9GB of encrypted data
would need to be sent for the training task with CCPP.
Different methods to compute the inverse of a matrix
would need to be considered to decrease the commu-
nication cost. These results clearly show the substan-
tial difference in performance when either X or θ is
left in plaintext as opposed to encrypting X , y, and θ.

5 RELATED WORK

Privacy-preserving techniques for outsourcing ma-
chine learning tasks received a lot of attention in
a variety of scenarios. In this section, we discuss
the most closely related approaches for regression.
To the best of our knowledge, existing work em-
ploys either protocols with additional parties, e.g.,
two-server or multi-party-computation solutions un-
der non-collusion assumptions, e.g., (Damgard et al.,
2015; Du et al., 2004; Hall et al., 2011; Karr et al.,
2009; Nikolaenko et al., 2013; Peter et al., 2013;
Samet, 2015), or protocols based on fully homomor-
phic encryption, e.g., (Graepel et al., 2012; Bost et al.,
2014).

Nikolaenko et al. consider the scenario where both
the dependent and independent variables are confi-
dential and the model is computed in plaintext (Niko-
laenko et al., 2013). They propose a two-server solu-
tion for ridge regression using the partially homomor-
phic Paillier cryptosystem (Paillier, 1999) and garbled
circuits (Goldwasser et al., 1987; Yao, 1986). Under
the assumption that the two servers do not collude,
they provide methods for the parameter-free Cholesky
decomposition to compute the pseudo inverse. On
the same data sets and on data sets of similar di-
mensions, their approach can take 100-1000 times
longer, despite the fact that they use shorter keys.

6See https://github.com/shaih/HElib.

Other solutions for the privacy-preserving computa-
tion with multiple servers include encryption schemes
with trapdoors (Peter et al., 2013), multi-party-
computation schemes or shared data, e.g., (Damgard
et al., 2015; Du et al., 2004; Hall et al., 2011; Karr
et al., 2009; Samet, 2015).

Graepel et al. present an approach enabling the
computation of machine learning functions as long as
they can be expressed as or approximated by a poly-
nomial of bounded degree with leveled homomorphic
encryption (Graepel et al., 2012), using the library
HElib based on the Brakerski-Gentry-Vaikuntanathan
scheme (Brakerski et al., 2012). They focus on binary
classification (linear means classification and Fisher’s
linear discriminant classifier). Moreover, they assume
that it is known for two encrypted training examples
whether they are labeled with the same classification
(without revealing which one it is). In contrast, we
apply simpler encryption methods that are several or-
ders of magnitude faster on the data set BCW. Bost
et al. consider privacy preserving classification (pre-
dictions but no training) (Bost et al., 2014). They
combine different encryption schemes into building
blocks for the computation of comparisons, argmax,
and the dot product. These building blocks require
messages to be exchanged between the client and the
server, which is not necessary in the computation of
predictions with our algorithms.

6 CONCLUSION

We have proposed methods to train a regression
model and use it for predictions in scenarios where
part of the data and the model are confidential and
must be encrypted. By exploiting the fact that not
everything is encrypted, our methods work with par-
tially homomorphic encryption and thereby achieve
a significantly lower slow-down factor than state-of-
the-art methods applicable to scenarios where every-
thing must be encrypted. We have further presented
an evaluation of our methods on two data sets and
found the times needed to train a model and make
predictions small enough for practical use. Our main
contribution is hence addressing the problem in ways
that enable the use of partially homomorphic encryp-
tion and a single server. To the best of our knowledge,
there is no existing work for scenarios where indepen-
dent variables can be public and the dependent vari-
ables and model must be encrypted. The trade-offs of
the different methods we propose are of interest since
they are suitable for different dataset properties.

In this paper, we have provided the details for lin-
ear regression only; however, it is important to note
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that our techniques can be extended to functions that
can be approximated well by bounded-degree polyno-
mials. To this end, models are trained with powers of
the independent and dependent variables, where the
polynomials can be evaluated homomorphically by
multiplying the plaintext coefficients of the bounded-
degree polynomials with powers of the sampled val-
ues and summing up the encrypted terms. While this
approach incurs additional cost in terms of computa-
tion and communication, it allows our techniques to
be applied to other problems, e.g., logistic regression
or support vector machines. Implementing privacy-
preserving equivalents of other algorithms based on
our techniques and evaluating their applicability in
practice is a valuable direction for future work.
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