
SAT-based Cryptanalysis of Authenticated Ciphers from the
CAESAR Competition

Ashutosh Dhar Dwivedi1, Miloš Klouček2, Paweł Morawiecki1, Ivica Nikolić3, Josef Pieprzyk1,4

and Sebastian Wójtowicz1

1Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
2Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

3Nanyang Technological University, Singapore
4Electrical Engineering and Computer Science School, Science and Engineering Faculty,

Queensland University of Technology, Brisbane, Australia

Keywords: SAT Solvers, SAT-based Cryptanalysis, Logic Cryptanalysis, Authenticated Encryption, CAESAR.

Abstract: We investigate six authenticated encryption schemes (ACORN, ASCON-128a, ICEPOLE-128a, Ketje Jr,
MORUS, and NORX-32) from the CAESAR competition. We aim at state recovery attacks using a SAT
solver as a main tool. Our analysis reveals that these schemes, as submitted to CAESAR, provide strong resis-
tance against SAT-based state recoveries. To shed a light on their security margins, we also analyse modified
versions of these algorithms, including round-reduced variants and versions with higher security claims. Our
attacks on such variants require only a few known plaintext-ciphertext pairs and small memory requirements
(to run the SAT solver), whereas time complexity varies from very practical (few seconds on a desktop PC) to
‘theoretical’ attacks.

1 INTRODUCTION

A cryptographic algorithm which provides both con-
fidentiality and authenticity, is called an authenticated
encryption (AE) or simply an authenticated cipher. It
encrypts and authenticates messages using both a se-
cret key (shared by the sender and the receiver) as well
as a public number (called a nonce). AE algorithms
are often built as various combinations of block ci-
phers, stream ciphers, message-authentication codes
and hash functions. Several solutions have been stan-
dardised by ISO/IEC and one of the most widely used
is AES-GCM (National Institute of Standards and
Technology, 2007), which is an authenticated cipher
based on the Advanced Encryption Standard (AES)
(AES, 2001).

In many modern applications, performance and
security requirements are set so high that the current
AE standards established a decade ago struggle to
meet them. A good such example is VMWare View,
which is a remote desktop protocol supported by
low-cost terminals from various manufacturers. The
VMWare 2010 documentation recommends switch-
ing from AES-GCM to a faster cipher for “the best

user experience”. Additionally, the most efficient
hardware implementation of AES-GCM does not
reach the full potential due to the bottleneck caused
by slow multiplication in Galois fields. Apart from
efficiency issues, there are also security problems that
seem to plague legacy AE algorithms.

The great interest and importance of AE have
been manifested by the announcement of a new public
call for AE algorithms — the CAESAR competition
(CAESAR,). The contest has started in 2014 and has
received worldwide attention. In the first round, 57
algorithms were submitted and now (October 2016)
in the third round, 16 ciphers are still in the race. The
competition is planned to finish by the end of 2017
and “will identify a portfolio of authenticated ciphers
that (1) offer advantages over AES-GCM and (2) are
suitable for widespread adoption".

The primary concern for all AE schemes is a
sound security evaluation. As a rule, the initial evalu-
ation has been given by the designers of the schemes,
while possible improvements by third-party crypt-
analysis. Cryptanalysis of AE schemes is particu-
larly demanding as the attacker works with more con-
straints than in a typical cryptanalysis framework for

Dwivedi, A., Klouček, M., Morawiecki, P., Nikolić, I., Pieprzyk, J. and Wójtowicz, S.
SAT-based Cryptanalysis of Authenticated Ciphers from the CAESAR Competition.
DOI: 10.5220/0006387302370246
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 237-246
ISBN: 978-989-758-259-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

237

block ciphers or hash functions.

Our Contribution

We investigate the resistances of a chosen set of CAE-
SAR schemes against state recovery attacks. Our
analysis is based on SAT solvers and falls into the
so-called logic cryptanalysis. A state recovery attack
may pose a real threat to the scheme as the known
state often allows to forge tags or even to recover the
secret key. We follow a two-stage approach. First,
we construct a SAT problem that corresponds to the
state recovery of a scheme. Usually, we need only
a handful of ciphertext blocks and the analysis is in
the known plaintext framework. Then, we run a SAT
solver to find a solution of the problem. We use
lingeling or its parallel variant plingeling — one
of the best SAT solvers according to the latest SAT
competitions. For each problem, we typically run the
solver on 8 cores for a few days.

We analyse six CAESAR schemes, namely
ACORN (Wu,), ASCON-128a (Dobraunig et al.,
), ICEPOLE-128a (Morawiecki et al., 2014), Ketje
Jr (Bertoni et al., b), MORUS (Wu and Huang,),
and NORX-32 (Aumasson et al., 2014b). All ex-
cept ICEPOLE-128a are the third-round candidates1

from the CAESAR competition. We omit the CAE-
SAR candidates with large, 8-bit S-boxes2 as the al-
gorithms with big and complex S-boxes are known to
be very difficult for SAT solvers and give very little
hope for a successful attack.

Our analysis reveals that all the algorithms (their
full variants, as submitted to the CAESAR competi-
tion) are resistant against SAT-based state recovery.
That is, attacking these schemes with SAT solver is
infeasible even when one is given impractically large
time (but not more than the claimed security level).
Next we focus on approximating their security mar-
gin, and thus we consider weakened versions of the
schemes. We do this by either reducing the number
of rounds or by simplifying the round function. Al-
ternatively, we artificially increase the security level
expected from ciphers and use it to benchmark our
attacks. In Table 1, we summarize our main results.
For instance, we are able to launch a state recovery
against ICEPOLE-128a when it uses 4 rounds (in-
stead of the original 6). Similarly, we can recover the
state of Ketje Jr, if the claimed security level is higher
than 165 bits (in the original submission, the claimed
security level is 96 bits).

1Note, we have started the analysis before the announce-
ment of the third-round candidates and then ICEPOLE-
128a was still in the race.

2Recall that several CAESAR candidates are based on

Table 1: SAT-based state recovery.
Cipher Key size Rounds Complexity Reference

ICEPOLE-128a 128 (128) 4 (6) 2108 Section 3.2
ASCON-128a 128 (128) 2 (8) 232 Section 3.3

NORX-32 128 (128) 1.5 (4) 296 Section 3.4
Ketje Jr >165 (96) full 2165 Section 3.1
MORUS >370 (128) full 2370 Section 4.1

Related Work

As a tool, SAT solvers have been used in the CAE-
SAR competition. Lafitte et al.(Lafitte et al., 2016)
perform SAT-based state recovery of ACORN, but
end up with a state recovery which requires higher
complexity than a simple brute force attack. Stoffelen
(Stoffelen, 2016) used SAT solvers to find optimized
S-box implementations for several proposals includ-
ing ASCON, ICEPOLE, Ketje and many others. An
interesting work is a new automated tool for finding
linear characteristics, where some developed heuris-
tics are inspired by modern SAT solvers (Dobraunig
et al., 2015b). The tool was applied to some schemes
from the CAESAR competition. Note that references
regarding the analysed ciphers are given right after a
description of a given cipher (Section 3).

Outline

After this brief introduction to authenticated encryp-
tion, SAT-based cryptanalysis and a summary of our
results, the paper is organized as follows. In Section
2 we first show how authenticated encryption is re-
alised with the sponge/duplex construction. Next, we
describe the CICO problem and its relevance to our
SAT-based state recovery attacks. Section 3 is our
main contribution, where we give details on the anal-
ysis and experiments we carried out. Concluding re-
marks are given in the last section.

2 PRELIMINARIES

2.1 Sponge-based Authenticated
Encryption Schemes

Bertoni et al. introduced the sponge function
in (Bertoni et al., a). The sponge function and its sister
construction called the duplex construction (Bertoni
et al., 2011) can be used to design a wide range of
cryptographic algorithms including authenticated en-
cryption schemes. The duplex construction is used
for a relatively large group of algorithms submitted

AES (which uses 8-bit S-boxes)

SECRYPT 2017 - 14th International Conference on Security and Cryptography

238

r
f

c

pad

K || nonce
ciphertext Co

pad

plaintext Po

f

ciphertext C1

pad

plaintext P1

f

ciphertext Cn

pad

plaintext Pn

f

tag T

Figure 1: Authentication encryption scheme based on the duplex construction.

to the CAESAR competition. We analyse four such
algorithms: ASCON, ICEPOLE, NORX and Ketje.

The duplex construction is based on a fixed per-
mutation (or transformation) determined by the fol-
lowing two parameters: bitrate r and capacity c. The
sum of the two parameters gives the input/output
length or the state size. For a fixed state size, differ-
ent values for bitrate and capacity provide trade-offs
between speed and security. A higher bitrate gives a
faster algorithm with lower security and vice versa.
The duplex construction absorbs input blocks (plain-
text) into the bitrate part of the permutation f . If an
input block is smaller than r bits, it gets padded to the
full r bits. After processing by the permutation f , r-
bit output blocks (ciphertext) are squeezed out. Note
that the capacity part of the state is never directly ma-
nipulated, neither for absorbing nor for squeezing.

Authenticated encryption with associated data
(AEAD) can be realized using the duplex construc-
tion. Figure 1 shows a typical application. First, a
secret key K and a nonce is absorbed into the initial
state and the permutation f is called. The following
steps are iterations performed for pairs: plaintext Pi
and ciphertext Ci, where i = 0, . . . ,n. For the plain-
text Pi, the ciphertext Ci is computed by XOR-ing the
plaintext with the bitrate part squeezed out from the
state. After Pi is absorbed, the bitrate part becomes
Ci. The permutation f is called again and the next
iteration proceeds. Besides plaintext blocks, public
associated data blocks can be processed by absorb-
ing them without encryption. The encryption is com-
pleted by squeezing a r-bit authentication tag T .

The analysed AE algorithms are different al-
though they preserve the general duplex construction.
Their security heavily depends on the internal permu-
tation f , typically implemented as a sequence of ele-
mentary operations called rounds. It is expected that
if the permutation f applies more rounds, then the
cryptanalysis becomes more complex and the relevant
AE becomes more secure (but also slower).

2.2 CICO Problem

In (Bertoni et al., a) it was shown that the constrained-
input constrained-output (CICO) problem is essential
for security of cryptographic sponges and primitives,
which are built upon them. The problem can be stated
as follows. We are given a function f (e.g. a permuta-
tion), which maps input bits to output bits. Some bits
are fixed and a problem is to determine unknown parts
of input and output states, such as the input-output
mapping is valid. A generalization of the CICO prob-
lem is the multi-block CICO problem, where we deal
with a number of f calls and states between them.
(See Figure 3.) Again, our task is to determine un-
knowns.

Let us now see how the CICO problem refers to
the sponge-based authenticated cipher shown in Fig-
ure 1. If we know plaintext-ciphertext pairs (a known
plaintext framework), then XORing such a pair gives
the r-bit part of the state (bitrate part). Thus, we can
take two consecutive plaintext-ciphertext pairs and try
to determine the unknown part of the states (capacity
part). Clearly, such a state-recovery attack is captured
by a notion of the CICO problem. For some algo-
rithms, such as Ketje, the bitrate is very small (e.g.
one byte) and to uniquely recover the actual state we
need more plaintexts-cipher blocks. This scenario is
captured by the multi-block CICO problem.

A natural way to solve the CICO problem is to
express it as a set of algebraic equations in a set of
unknowns and apply algebraic techniques for solving
these equations. One of such generic techniques (or
tools) is a SAT solver.

2.3 SAT-based Cryptanalysis

SAT is the first known NP-complete problem, proven
by Stephen Cook in 1971 (Cook, 1971). A SAT solver
is an algorithm that decides whether a given propo-
sitional (boolean) formula has a satisfying valuation.

SAT-based Cryptanalysis of Authenticated Ciphers from the CAESAR Competition

239

?

?

f

input output

Figure 2: CICO problem.

?

f f f

? ? ?

Figure 3: Multi-block CICO problem.

Finding a satisfying valuation is infeasible in general,
but many SAT instances can be solved surprisingly
efficiently. There are many competing algorithms
for solving SAT instances and many implementations,
most of them have been developed over the last two
decades as highly optimized versions of the Davis,
Putnam, Logemann and Loveland (DPLL) procedure
(Davis et al., 1962; Davis and Putnam, 1960). Mod-
ern SAT solvers use finely tuned algorithms and data
structures to find a solution for a given instance coded
in a conjunctive normal form (CNF) form. To solve
an instance of a problem, (1) the instance is first trans-
lated into a corresponding SAT instance (in such a
way that a satisfying valuation represents a solution
to the instance) and (2) a SAT solver is run to find one
or more satisfying valuations.

The first connection between the SAT problem
and cryptography dates back to (Cook and Mitchell,
1997), where a suggestion appeared to use crypto for-
mulae as hard benchmarks for propositional satisfia-
bility checkers. Courtois and Pieprzyk (Courtois and
Pieprzyk, 2002) translated cryptographic structures
into large systems of low degree equations showing
a potential of algebraic approach in analysis of block
ciphers. Interestingly, SAT solvers were successfully
applied against KeeLoq — the cipher deployed in car
industry (Courtois et al., 2008). Recently, a SAT
solver approach was used to prove a resistance of
the Salsa20 cipher against differential cryptanalysis
(Mouha and Preneel, 2013).

(1) CNF Generation

In practice, a formula given to a SAT solver has to
be expressed in a Conjunctive Normal Form (CNF).
Therefore, for each scheme we need to convert the
instance of CICO (or multi block CICO)into a CNF
(solution of which corresponds to the unknown bits of
the input and the output in the CICO problem). Most
operations in the analysed ciphers can be easily de-
scribed by short bitwise equations, with the AND and
XOR operators. For such operations a translation is
straightforward. For instance, the 1-bit XOR equation
z = x⊕ y has the corresponding CNF form

(x∨ y∨ z)∧ (x∨ y∨ z)∧ (x∨ y∨ z)∧ (x∨ y∨ z) (1)

For S-boxes, which are typically specified as a
truth table, we try two approaches. First approach
is to use the bitwise specification for a given S-box
and convert simple bitwise equations to the CNF. A
drawback of this simple approach is that we need to
add extra temporary variables. The other approach
is to give the truth table of an S-box to the Espresso
minimisation tool (Rudell, 1986) and obtain the CNF.
In some cases Espresso produces much smaller CNFs
(fewer number of clauses). We confirm the validity of
the generated CNF by checking if a solution (output
bits) found by a SAT-solver corresponds to the actual
solution from test vectors for a given authenticated ci-
pher.

(2) SAT Solvers

We have considered several SAT solvers as potential
candidates, including CryptoMiniSat, plingeling,
treengeling, glucose. Most of them performed
very well on the latest SAT competitions (particularly
in the parallel track category). After certain num-
ber of tests, we have decided to use the SAT solver
plingeling as in our experiments it outperforms the
other solvers.

3 ANALYSIS OF SPONGE-BASED
SCHEMES

In this section we present our state recovery attacks
on six AE schemes from the CAESAR competition.
We divide the schemes into two groups: sponge-based
(given in Sect. 3) and other (in Sect. 4). For each al-
gorithm we give a brief description and details of the
attack.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

240

3.1 Ketje

Ketje is an authenticated encryption algorithm which
targets memory-constrained devices (Bertoni et al.,
b). The scheme supports two families of ciphers,
namely Ketje Sr and Ketje Jr. Ketje Sr uses 400-
bit states and is based on the round-reduced Keccak-
f[400] permutation, whereas Ketje Jr operates on 200-
bit states with the Keccak-f[200] as the underlying
permutation. In our analysis, we focus on Ketje Jr.

The permutation of Ketje Jr has the bitrate of
r = 16, capacity of c = 184 and supports keys of
lengths up to 182 bits. The claimed security level is
(c−1− log2M) bits, where M is a number of blocks
observed online (data complexity). For example, if
data complexity is limited to 223 blocks, then the se-
curity level is 184− 1− 23 = 160 bits, provided that
a key is at least 160-bit long. The Ketje Jr family sub-
mitted to the CAESAR competition claims the 96-bit
security level with the data complexity limit of 287

block observations. In our SAT analysis, we aim at
verifying the claimed security level.

A small bitrate (16 bits) of Ketje Jr suggests that
we should focus on the multi-block CICO problem.
We investigate the following scenarios:
• Basic. In this scenario, we take the outputs of 13

consecutive rounds (as the ratio of state size to the
bitrate is 12.5) and try to recover the state from
these outputs. The available information from col-
lected data is translated into a corresponding SAT
instance with 6440 variables and 44944 clauses.
The SAT solver was unable to find a solution
within a reasonable time (most of our solvers were
running on 8 cores for a few days).

• Guess in the middle. In the second scenario, we
guess t bits of the state in the middle round (i.e.
the round nr/2). This is to say that apart from the
2 output bytes of each of the nr rounds, we know
t bits in the middle. Consequently, the complex-
ity of the state recovery has increased by factor of
2t , i.e., the complexity is a product of 2t and time
taken by a SAT solver working on the instance.
After guessing 17 bytes in the middle (t = 8 ·17 =
136 bits) and observing outputs of 4 rounds, we
know 17+4 ·2 = 25 bytes. This is enough to de-
termine the entire 25-byte state uniquely3. The re-
sulting SAT instance is defined by 1640 variables
and 10520 clauses. We were able to solve it in-
stantaneously. Increasing the output rounds to 5
(and reducing the guessed bytes in the middle to
15) did not lead to better results.

3There is a high probability that fixing 25 bytes of out-
puts from different rounds correspond to a unique 25-byte
state at certain round.

• Guess in every round. In the third scenario, we
guess additional b bits of the state for each of nr
rounds. Therefore, the complexity of the state re-
covery has increased by a factor of 2nr ·b. To find
a unique solution, the parameters should satisfy
2nr(16+b) ≥ 2200. When nr = 3, we guess 6 bytes
per round and an additional byte in middle round,
hence we guess 3 · (6+2)+1 = 25 bytes in total.
This is translated into an appropriate SAT instance
with 1160 variables and 7080 clauses, which has
been solved instantaneously. We also tried a dif-
ferent strategy by guessing 3 ·6+1 = 19 bytes. It
turns out that we can still recover the state. How-
ever, increasing a number of rounds does not lead
to better results. We have tried nr = 4 and 4-byte
guesses per round plus an additional guess in the
middle. Unfortunately, the corresponding SAT
instances with 1640 variables and 10520 clauses
cannot be solved quickly. In fact, even if we know
25 output bytes but nr = 4, we still cannot find a
solution.

We conclude that guessing in the middle turns out
to be the best strategy: it needs 136-bit guesses in
the middle round to recover the state. Correspond-
ing SAT instances are solved in ≈ 2.7 seconds on the
8-core PC (an average value out of 100 trials). If we
assume that a time taken by a solver is roughly equiva-
lent to 229 Ketje Jr calls4, then complexity of the state
recovery is 2136+29 = 2165. Therefore, instances of
the Ketje Jr family, which offer security levels higher
than 165 bits, are susceptible to SAT-based analysis
and they will not meet the claimed security levels.

3.2 ICEPOLE

ICEPOLE is a family of hardware-oriented authenti-
cated ciphers (Morawiecki et al., 2014). There are
two main variants of the algorithm, one with 128-
bit key and 1024-bit block size (rate), the other one
with 256-bit key and 960-bit rate. The cipher was de-
signed for high-throughput network nodes, hence it’s
big 1280-bit state. The underlying permutation is an
iterative transformation with a linear MDS matrix fol-
lowed by a layer of 5-bit S-boxes. A 12-round permu-
tation is used in both the initialization and finalization
stages, while a 6-round permutation is applied for the

4Output bits taken from 13 rounds (13×16 = 208 bits)
should correspond to a unique 200-bit state. In 1 second,
on the 8-core 2GHz PC, we evaluate around 228 13-round
Ketje Jr calls. We stress that it is very difficult to precisely
convert a time taken by a solver to Ketje Jr evaluations. For
example, operations on cores may not scale as one would
expect, different platforms and implementations might af-
fect time as well.

SAT-based Cryptanalysis of Authenticated Ciphers from the CAESAR Competition

241

processing stage. ICEPOLE has an additional param-
eter called the secret message number, which has a
similar effect as the extra key addition in ASCON.

In 2014, Huang et al. presented differential-linear
cryptanalysis of ICEPOLE, where both a nonce and
secret message are reused (Huang et al., 2015). It
helped to refine the nonce-misuse resistance in the al-
gorithm. In (Dobraunig et al., 2015a), the forgery at-
tack was performed on the round-reduced ICEPOLE-
128 (up to 4 rounds). Dobraunig et al. also found lin-
ear characteristics, up to 6 rounds, using an automated
tool they created (Dobraunig et al., 2015b). More
references to third-party cryptanalysis can be found
on the ICEPOLE official webpage (Morawiecki et al.,
2014).

In our analysis we focus on the ICEPOLE vari-
ants without a secret message number, specifically
ICEPOLE-128a. For this variant, once we know the
state, we can invert the permutation and get the secret
key. ICEPOLE-128a works with the 128-bit key and
the 1024-bit bitrate. So, we are dealing with a relevant
CICO problem that is defined for 1024 known input
and output bits (the bitrate part), while the remaining
256 bits of the capacity part are unknown. Since the
1024-bit bitrate part is much bigger than the 256-bit
capacity part, we need only two consecutive plaintext-
ciphertext pairs to uniquely determine the state.

A single round of the ICEPOLE permutation is
described by a CNF with 12416 variables and 39424
clauses. Note that the two steps of the ICEPOLE algo-
rithm, namely ρ (rotation along lanes) and π (permu-
tation between lanes) do not increase complexity of
the CNF relations as they permute the state bits only.

We are able to recover the state for the 4-round
permutation (the original ICEPOLE uses 6 rounds).
To make our attack successful, we need to guess 64
bits in the middle (e.g., after 2 rounds). So, the
time complexity of our attack is 264 · t, where t is
a time taken by a solver to find a solution. The at-
tack has been implemented on a desktop PC 3.7 GHz
with 8 threads and t is around 13 hours. This is
roughly equivalent to 244 ICEPOLE encryptions on a
given PC. Thus, time complexity of the 4-round key-
recovery attack is about 264+44 = 2108.

3.3 ASCON

ASCON is a family of authenticated encryption algo-
rithms (Dobraunig et al.,). The designers specify two
variants whose bitrates are 64 and 128. The size of the
key, nonce and tag are 128 each. The state consists of
five 64-bit words so it is 320-bit long. The algorithm
uses two permutations pa and pb that are constructed
from the same elementary permutation round. The

round is built from three basic operations: constant
addition, a 5-bit S-box layer and a linear transforma-
tion. It is worth noting that the sponge-based mode
in ASCON is made stronger by extra key addition
in initialization and finalization. This is to prevent a
straightforward key-recovery once the whole state is
known.

The designers analysed their algorithm through a
number of techniques and their findings were pub-
lished at CT-RSA’15 (Dobraunig et al., 2015c). Their
best result was a key-recovery attack on 6 rounds (out
of 12). In 2016, Tezcan presented truncated, impos-
sible and improbable differential attacks, achieving
5 rounds of the permutation. More references can
be found on the ASCON official website (Dobraunig
et al.,).

We analyse ASCON-128a, where both the bitrate
and key have 128 bits. First, we try the state recov-
ery that follows the one described for ICEPOLE. For
the CICO problem corresponding to the attack, 128
bits of both input and output are known and we hope
that our SAT solver finds the (unknown) capacity part
of the state. We have derived CNF relations for a
single round with 2304 variables and 7936 clauses.
Although the CNF is smaller than the corresponding
CNF for ICEPOLE, solving it turns to be more diffi-
cult and we can reach two rounds only. This counter-
intuitive phenomenon has been also observed in the
related work (Homsirikamol et al., 2012). Interest-
ingly, what makes a CNF instance difficult is not the
‘width’ (or a total number of variables and clauses)
but the ‘depth’ of the formula (number of literals in
clauses). The ASCON S-box is more complex than
the ICEPOLE S-box. This seems to be the main rea-
son for increased complexity of solving ASCON CNF
instances, despite the fact that ASCON has a state that
is four times smaller than the one in ICEPOLE.

For ASCON, the key-recovery attack is not
straightforward due to an extra key addition in the
initialization and the finalization phases. We try to re-
cover the key assuming that the state is already recov-
ered and known to the attacker. This time the CICO
problem models the finalization phase, where an un-
known input is the secret key and a known output is
a 128-bit authenticated tag. Basically, the problem in
hand looks very similar to the state-recovery consid-
ered earlier. As expected, our SAT solver is able to
find the secret key for 2 rounds only. A time taken by
a solver is roughly equivalent to 232 ASCON encryp-
tions.

We have considered 3- and 4-round variants with
some bits guessed in the middle (e.g. 64 bits after 1.5
rounds) but these instances turn to be too difficult for
the solver.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

242

3.4 NORX

NORX is a family of authenticated ciphers with two
main variants based on 32 or 64-bit words. It was op-
timized to be efficient in both software and hardware
with a SIMD-friendly core. The underlying permuta-
tion F is inspired by the ChaCha stream cipher (Bern-
stein,). However, the integer addition is replaced by
a simple bitwise operation. Thus NORX relies only
on the bitwise XOR, AND, rotations, which leads to
better hardware efficiency and somewhat simplifies
the cryptanalysis. The round function operates on a
state composed of 16 words in a similar fashion to the
hash function BLAKE (Aumasson et al.,). The rec-
ommended variant of NORX works with 256-bit key,
256-bit tag and 128-bit nonce, whereas a number of
rounds is 4.

In (Aumasson et al., 2014a), the designers of
NORX have investigated differential and rotational
properties of the algorithm. More recently, state and
key recovery on 2-round variants have been presented
(Bagheri et al., 2016). These results were obtained
with the ‘guess and determine’ technique and the in-
ternal differential attack. Interestingly, using higher-
order differential analysis, a 4-round distinguisher
was shown (Das et al., 2015). However, the distin-
guisher cannot be used to attack the whole scheme,
but only to show a weakness of the underlying per-
mutation in NORX.

Our analysis is focused on the version with 32-bit
words called NORX32. This version has a 512-bit
state. During the encryption phase, NORX32 uses 4
BLAKE-like rounds to process a plaintext block of
12 words (i.e. the rate of the sponge is 384 bits).
Note that the authors claim 128-bit security level for
this variant. The state recovery of NORX32 can be
looked as an instance of the CICO problem and be
converted into a relevant SAT instance. We start from
the state recovery for encryption reduced to a single
round. We assume that we are given two consecutive
pairs of known plaintext-ciphertext and try to recover
the state. The resulting SAT instance is defined with
2560 variables and 16896 clauses. It is solved in a
matter of seconds, so the state recovery of NORX32
reduced to one round is feasible.

We try to extend our analysis to 1.5 rounds. For
this scenario, the SAT instance has 3584 variables and
24960 clauses. However, it is beyond the reach of the
SAT solver. To progress, we guess extra bits of the
state. More precisely, we guess bits from the capacity
part of the output state and also from the state of the
middle round. To introduce additional flexibility, we
employ two guessing strategies: consecutive guessing
of bits of state words (i.e. if we guess 80 bits of the

state, then it means we know 2.5 words) and partial bit
guessing, where we fix the values of a few bits of each
(unknown) word of the state. It turns out that regard-
less of the guessing strategy, we still need to guess
around 64 bits of the state to make SAT instances fea-
sible for the solver. For instance, if we guess one ad-
ditional word in both the input and output, then the re-
sulting SAT instance (3584 variables, 25024 clauses)
can be solved in a few seconds. A time taken by a
solver is roughly equivalent to 232 encryptions, then
the total time complexity of the attack is 264+32 = 296.
If we guess one word at the end, and one in the mid-
dle, we end up with a similar complexity. However,
only the first type of guessing (the consecutive bits)
leads to such results. The partial guessing does not
lead to a feasible SAT instance when the number of
guesses is around 64.

We try to recover the state for the variant of
NORX32 reduced to 2 rounds, but the total complex-
ity (bit guesses and workload of the SAT solver) is
over 2128. The most efficient recovery that we have
found requires 56 bit guesses in the middle state and
56 bit guesses of state at the output (i.e. 2112 fac-
tor only for bit guesses). The SAT solver still needs
around 10 seconds to produce a solution, thus the to-
tal complexity exceeds a simple state recovery based
on an exhaustive key search.

To summarize, given two consecutive pairs of
plaintext-ciphertext, it is possible to recover the state
of the 1-round NORX32 in a matter of seconds. If
NORX32 is reduced to 1.5 rounds, the recovery is still
possible, although its time complexity of 296 makes
the attack only theoretical. Since there is no any ex-
tra key addition in the initialization phase, the state
recovery is equivalent to the key recovery for NORX.

4 ANALYSIS OF OTHER
SCHEMES

4.1 MORUS

MORUS is a family of authenticated encryption al-
gorithms, suitable both for hardware and software
efficient implementations. It has three variants:
MORUS-640-128, MORUS-1280-128 and MORUS-
1280-256, where the first number denotes a state size,
and the second number is a key size, both given in
bits. The state consists of 5 words (either 128-bit or
256-bit, depending on the variant). The state update
function has 5 very similar rounds. There are four
operations, namely XOR, AND, rotation in words
(denoted by ≪) and rotation in subwords (denoted

SAT-based Cryptanalysis of Authenticated Ciphers from the CAESAR Competition

243

by Rotl). Every round modifies only two registers,
one is modified by ≪, while the other one by a set
of ANDs, XORs, and Rotl. Security of the algo-
rithm heavily depends on a strong initialization phase,
where the state update function is called 16 times.
MORUS does not rely on any specific mode, partic-
ularly it is not a sponge construction. Its encryption
process can be seen as a stream cipher with large state
which is updated continuously. For a full descrip-
tion of the algorithm, we refer the reader to (Wu and
Huang,).

In (Mileva et al., 2015), Mileva et al. pre-
sented MORUS analysis, including the forgery at-
tack. However, all the attacks reuse nonce, which vio-
lates MORUS security requirements. Some concerns
about MORUS security is highlighted in (Saarinen,
2015), where the author claims that MORUS repre-
sents significantly elevated adaptive-chosen-plaintext
attack risk.

We investigate the SAT-based state recovery of
MORUS-640. At message processing phase, a single
call of state update functions takes one 128-bit mes-
sage word and outputs one 128-bit ciphertext word.
With 128-bit key, the claimed security level is 128
bits. As the ratio of the state size to the cipher-
text block size is 5, we need 5 consecutive pairs
of plaintext-ciphertext to recover the state (almost)
uniquely.

To keep our analysis simple, we assume that 5
plaintext blocks are all-zero blocks, that is we are op-
erating in the chosen-plaintext framework5. We pro-
ceed according to the following scenarios:

• Basic. We reduce the state recovery of MORUS-
640 to a SAT instance, which encodes 5 consecu-
tive calls to the state update function. As a result,
we get an instance with 3200 variables and 34560
clauses. Our SAT solver has failed to find a solu-
tion.

• Simplified output function. For MORUS-640, a
ciphertext block C is calculated from a simple for-
mula C =P⊕S0⊕(S1 ≪ 96)⊕(S2&S3), where P
is a plaintext block and S0 . . .S3 are 4 state words
obtained from the state update function. Here we
simplify the formula by taking only the first word
C = P⊕S0. As we work in a chosen plaintext sce-
nario and assume that plaintext blocks are all-zero
blocks, then C = S0. For this simplified version
of MORUS-640, a corresponding SAT instance
(that aims to recover a state) has 3200 variables
and 31360 clauses. Even though now we have a
smaller number of clauses, the instance is still in-

5We can switch to the known-plaintext attack at the ex-
pense of increasing a number of clauses in SAT instances.

feasible for our SAT solver — a few days of pro-
cessing has failed to find a solution.

• Toy variant with a reduced word size. We
would like to find out whether a significant re-
duction of a word size makes the problem eas-
ier for a solver. We try to estimate the com-
plexity of the SAT-based state recovery by solv-
ing a reduced version of MORUS-640 with 60 in-
stead of 640 state bits. We need to modify the
algorithm for the reduced state size. XOR and
AND operations are applied in a straightforward
way, while rotations are adjusted so they reflect
the original design as closely as possible. Conse-
quently, for the word-reduced version of MORUS,
the corresponding SAT instance consists of 300
variables and 3240 clauses. The SAT solver is
able to find a solution in a few days of computa-
tion. However, the generic key-recovery requires
212 guesses only (as an appropriate key size of the
variant is 12 bits only). We conclude that the SAT-
based approach does not break the algorithm as
it would take much more time then the exhaus-
tive search of the key. Even though this is not a
formal proof that MORUS-640 is immune to the
SAT-based state recovery, it is a good indication
that the algorithm stands strong against this type
of analysis.

The above findings suggest that MORUS-640
does not show any weakness against analysis with
SAT solvers.

Let us examine an upper bound on the security
level of this scheme. Here, as in previous analysis, we
mount the state recovery attack to get the secret key.
Let us recall that a ratio of the state size to the cipher-
text block size is 5, thus we need to encode 5 consec-
utive calls to the state update function (getting 5 ci-
phertext blocks) to determine the state uniquely. We
start our experiment using a big number of guessed
state bits, making the instance easy to solve. Then,
we gradually reduce the number of guessed bits and
stop when the state recovery starts taking more than
a few seconds. This allows us to quantify the time
complexity of appropriate SAT instances.

We have many choices about which state variables
should be guessed. We experiment with guessing con-
secutive bits of the state and also with guessed bits
which are spread equally over 5 words of the state. It
turns out that we get the best results, when we guess
consecutive bits in the ‘middle’, that is after the sec-
ond call to the state update function. On average, we
need 340 guessed bits to have a formula solved. If we
approximate the time taken by a solver by a factor of
230, we can conclude that MORUS-640 cannot offer
a security level higher than around 340+ 30 = 370

SECRYPT 2017 - 14th International Conference on Security and Cryptography

244

bits. Please note that it does not affect MORUS se-
curity claims as it is specified only to support either
128- or 256-bit keys. However, MORUS works on a
big internal state and one can be tempted to adjust the
algorithm for bigger keys and corresponding security
levels. Then our analysis shows there is a limit.

4.2 ACORN

ACORN is basically a stream cipher based on lin-
ear feedback shift registers (LFSR). It operates on
the 293-bit state, which is split into a short ‘buffer’
segment followed by 6 LFSRs. This design allows
for 32 bits to be processed in parallel, leading to ef-
ficient hardware and software implementations. In-
terestingly, plaintext bits are not only XORed with
keystream (to produce ciphertext), but also XORed
into the main feedback function. Having the state di-
rectly affected by plaintext helps realize the authentic-
ity property. The main feedback function is the only
non-linear part of the state update. For a full descrip-
tion of the algorithm, see (Wu,).

There are two ways we could mount the state re-
covery attack for ACORN. First, one can encode the
whole initialization phase into a SAT formula with
key bits as unknowns and some keystream bits as an
input. However, this approach is infeasible as there
are 1792 steps in the initialization phase, so the for-
mula is too big and complicated for a solver. The
other approach is to take an arbitrary state in the en-
cryption phase and generate keystream equations in
the state variables. Again, for 293 unknowns in the
state, the problem turns out to be too hard for a solver.
To make the problem easier, we fix some state bits and
with 170 known bits we are able to recover the state
in about 8 hours. However, guessing that many bits
makes our analysis much above an exhaustive search
for a 128-bit key.

We conclude that ACORN is strong against SAT-
based cryptanalysis. Particularly, we notice that state
bits involved in an equation for one keystream bit are
not present in the following 40 keystream equations.
Consequently, it is hard to build a set of equations,
which have common variables and at the same time
are not too complex. We also notice that the state
update function creates long XOR equations, which
are known to be difficult for SAT solvers. We believe
these two factors contribute the most to the resistance
against our SAT-based attack. Because ACORN has
no rounds or blocks that could be reduced, there is no
simple and natural way of creating a reduced or toy
version that we would be able to break.

5 CONCLUSION

Our findings have filled an important and common
gap in the cryptanalysis of CAESAR proposals — the
resistance of the schemes against SAT-based state re-
covery attacks. We have analysed six authenticated
encryption algorithms from the CAESAR competi-
tion and our extended analysis has shown that none of
these schemes, as submitted to CAESAR, allows even
a “theoretical" break using SAT-based state recovery
attacks. On the other hand, some round-reduced ver-
sions or variants with artificially increased security
levels are susceptible to state and key recovery at-
tacks. This helps to quantify the security margin and
we conclude the analysed ciphers have a sufficient se-
curity margin against SAT-based cryptanalysis.

REFERENCES

AES (2001). Advanced Encryption Standard (AES). Na-
tional Institute of Standards and Technology (NIST),
FIPS PUB 197, U.S. Department of Commerce.

Aumasson, J., Jovanovic, P., and Neves, S. (2014a). Anal-
ysis of NORX: Investigating Differential and Rota-
tional Properties. In Progress in Cryptology - LAT-
INCRYPT 2014 - Third International Conference on
Cryptology and Information Security in Latin Amer-
ica, Florianópolis, Brazil, September 17-19, 2014,
Revised Selected Papers, pages 306–324.

Aumasson, J.-P., Henzen, L., Meier, W., and
Phan, R. C.-W. SHA-3 proposal BLAKE.
http://www.131002.net/blake/.

Aumasson, J.-P., Jovanovic, P., and Neves, S. (2014b).
Norx: parallel and scalable aead. In European Sympo-
sium on Research in Computer Security, pages 19–36.
Springer.

Bagheri, N., Huang, T., Jia, K., Mendel, F., and Sasaki, Y.
(2016). Cryptanalysis of Reduced NORX. In Fast
Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, pages 554–574.

Bernstein, D. J. ChaCha, a variant of Salsa20.
https://cr.yp.to/chacha/chacha-20080120.pdf.

Bertoni, G., Daemen, J., Peeters, M., and
Van Assche, G. Cryptographic Sponges.
http://sponge.noekeon.org/CSF-0.1.pdf.

Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G.
(2011). Duplexing the sponge: Single-pass authen-
ticated encryption and other applications. In Selected
Areas in Cryptography - 18th International Workshop,
SAC 2011, Toronto, ON, Canada, August 11-12, 2011,
Revised Selected Papers, pages 320–337.

Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., and
Van Keer, R. CAESAR submission: KETJE v2 .
http://ketje.noekeon.org.

SAT-based Cryptanalysis of Authenticated Ciphers from the CAESAR Competition

245

CAESAR. CAESAR: Competition for Authenticated En-
cryption: Security, Applicability, and Robustness.
http://competitions.cr.yp.to/caesar.html.

Cook, S. A. (1971). The complexity of theorem-proving
procedures. In Proceedings of the third annual ACM
symposium on Theory of computing, STOC ’71, pages
151–158, New York, NY, USA. ACM.

Cook, S. A. and Mitchell, D. G. (1997). Finding Hard In-
stances of the Satisfiability Problem: A Survey. pages
1–17. American Mathematical Society.

Courtois, N., Bard, G., and Wagner, D. (2008). Algebraic
and Slide Attacks on KeeLoq. In Nyberg, K., edi-
tor, Fast Software Encryption, volume 5086 of LNCS,
pages 97–115. Springer Berlin / Heidelberg.

Courtois, N. and Pieprzyk, J. (2002). Cryptanalysis of
Block Ciphers with Overdefined Systems of Equa-
tions. In Zheng, Y., editor, Advances in Cryptology
— ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 267–287. Springer Berlin
/ Heidelberg.

Das, S., Maitra, S., and Meier, W. (2015). Higher Order Dif-
ferential Analysis of NORX. IACR Cryptology ePrint
Archive, 2015:186.

Davis, M., Logemann, G., and Loveland, D. (1962). A ma-
chine program for theorem-proving. Communications
of the ACM, 7(5):394–397.

Davis, M. and Putnam, H. (1960). A computing procedure
for quantification theory. Journal of the ACM, 7:201–
215.

Dobraunig, C., Eichlseder, M., and Mendel, F. (2015a).
Forgery Attacks on Round-Reduced ICEPOLE-128.
In Selected Areas in Cryptography - SAC 2015 - 22nd
International Conference, Sackville, NB, Canada, Au-
gust 12-14, 2015, Revised Selected Papers, pages
479–492.

Dobraunig, C., Eichlseder, M., and Mendel, F. (2015b).
Heuristic tool for linear cryptanalysis with applica-
tions to CAESAR candidates. In Iwata, T. and Cheon,
J. H., editors, ASIACRYPT 2015, Part II, volume 9453
of LNCS, pages 490–509. Springer, Heidelberg.

Dobraunig, C., Eichlseder, M., Mendel, F., and Schläffer,
M. (2015c). Cryptanalysis of Ascon. In Nyberg, K.,
editor, CT-RSA 2015, volume 9048 of LNCS, pages
371–387. Springer, Heidelberg.

Dobraunig, C., Eichlseder, M., Mendel, F., and Schläffer,
M. Ascon A Family of Authenticated Encryption Al-
gorithms. http://ascon.iaik.tugraz.at.

Homsirikamol, E., Morawiecki, P., Rogawski, M., and Sre-
brny, M. (2012). Security Margin Evaluation of SHA-
3 Contest Finalists through SAT-based Attacks. In
11th Int. Conf. on Information Systems and Industrial
Management, volume 7564 of LNCS. Springer Berlin
Heidelberg.

Huang, T., Tjuawinata, I., and Wu, H. (2015). Differential-
linear cryptanalysis of ICEPOLE. In Leander, G., edi-
tor, FSE 2015, volume 9054 of LNCS, pages 243–263.
Springer, Heidelberg.

Lafitte, F., Lerman, L., Markowitch, O., and Heule, D. V.
(2016). SAT-based cryptanalysis of ACORN. IACR
Cryptology ePrint Archive, 2016:521.

Mileva, A., Dimitrova, V., and Velichkov, V. (2015).
Analysis of the Authenticated Cipher MORUS (v1).
In Cryptography and Information Security in the
Balkans - Second International Conference, Balkan-
CryptSec 2015, Koper, Slovenia, September 3-4, 2015,
Revised Selected Papers, pages 45–59.

Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz,
K., Pieprzyk, J., Rogawski, M., Srebrny, M., and Wój-
cik, M. (2014). ICEPOLE: High-Speed, Hardware-
Oriented Authenticated Encryption. In Cryptographic
Hardware and Embedded Systems - CHES 2014 -
16th International Workshop, Busan, South Korea,
September 23-26, 2014. Proceedings, pages 392–413.
http://www.icepole.org.

Mouha, N. and Preneel, B. (2013). A Proof that the
ARX Cipher Salsa20 is Secure against Differential
Cryptanalysis. Cryptology ePrint Archive, Report
2013/328. http://eprint.iacr.org/.

National Institute of Standards and Technology (2007).
Recommendations for Block Cipher Modes of Opera-
tion: Galois/Counter Mode (GCM) and GMAC. NIST
special publication 800-38D.

Rudell, R. L. (1986). Multiple-Valued Logic Minimiza-
tion for PLA Synthesis. Technical Report UCB/ERL
M86/65, EECS Department, University of California,
Berkeley.

Saarinen, M. O. (2015). The BRUTUS automatic cryptana-
lytic framework - Testing CAESAR authenticated en-
cryption candidates for weaknesses. Journal of Cryp-
tographic Engineering, 6(1):75–82.

Stoffelen, K. (2016). Optimizing S-Box Implementations
for Several Criteria Using SAT Solvers. In Fast
Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016,
Revised Selected Papers, pages 140–160.

Wu, H. ACORN: A Lightweight Authenticated Cipher (v3).
https://competitions.cr.yp.to/round3/acornv3.pdf.

Wu, H. and Huang, T. The Authenticated Ci-
pher MORUS. https://competitions.cr.yp.to/caesar-
submissions.html.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

246

