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Abstract: The increasing number of small, cheap devices full of sensing capabilities lead to an untapped source of
information that can be explored to improve and optimize several systems. Yet, as this number grows it
becomes increasingly difficult to manage and organize all this new information. The lack of a standard context
representation scheme is one of the main difficulties in this research area (Antunes et al., 2016b). With this
in mind we propose a stream characterization model which aims to provide the foundations of a new stream
similarity metric. Complementing previous work on context organization, we aim to provide an automatic
organizational model without enforcing specific representations.

1 INTRODUCTION

The advent of cheap devices full of sensors and net-
working capabilities lead to, among other things, the
rate at which data is created and made available in-
crease significantly. It happens that there is a very
large amount of knowledge waiting to be harvested
from these flows of data, making the need to properly
conduct analysis on them of great importance. The
cornerstones of this connectivity landscape are the In-
ternet of Things (IoT) (Wortmann et al., 2015) and
machine-to-machine (M2M) (Chen and Lien, 2014).
Context-awareness is an intrinsic property of IoT and
M2M scenarios. The data gathered by these devices
has no value in its raw state, it must be analysed, in-
terpreted and understood. Context-awareness compu-
ting plays an important role in tackling this issue (Pe-
rera et al., 2014).

As discussed in previous publications (Antunes
et al., 2016b) analysing these data sources can im-
prove efficiency, help optimize resources or even de-
tect anomalies. The following examples illustrate the
importance of context information in IoT/M2M sce-
narios. Fusing data from several sensors makes it pos-
sible to predict a driver’s ideal parking spot (Suhr and
Jung, 2014). Projects such as Pothole Patrol (Eriks-
son et al., 2008) and Nericell (Mohan et al., 2008)
use vehicular accelerations to monitor road conditi-
ons and detect potholes. TIME (Transport Informa-
tion Monitoring Environment) project (Bacon et al.,
2011) combines data from mobile and fixed sensors

in order to evaluate road congestion in real time.
These projects provide valuable insight about the

potential of sensor data in advanced IoT/M2M sce-
narios. However, many of these projects follow a
vertical approach. This has hindered interoperability
and the realisation of even more powerful scenarios.
Another important issue is the need felt for a new
way to manage, store and process such diverse ma-
chine data; unconstrained, without limiting structu-
res and with minimal human interaction. With this in
mind we proposed a data organization model optimi-
zed for unstructured data (Antunes et al., 2016b; An-
tunes et al., 2016a) that organizes context data based
on semantic and stream similarity.

In this paper we tackle the issue of propagating
classification tags based on stream similarity. We pro-
pose a general method for stream characterization,
that can be either used for classification or generation.
The end game is to use the previously mentioned mo-
del to organize sensor streams based on their patterns
and improve the efficiency of our context representa-
tion model.

In 2 we detail our context organization model. 3
will address our stream characterization model. Fu-
ture work is addressed in 4 while initial results are
evaluated in 5. Finally, discussion and conclusions
are presented in 6.
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2 CONTEXT ORGANIZATION
MODEL

Context information is an enabler for further data ana-
lysis, potentially exploring the integration of an incre-
asing number of information sources. Common defi-
nitions of context information (Abowd et al., 1999;
Winograd, 2001; Dey, 2001) do not provide any in-
sight about its structure. In fact, each device can
share context information with a different structure.
E.g. sensory and location information can be used to
characterize an entity context, yet the two can have
different structures. One important objective of con-
text representation is to standardize the process of
sharing and understanding context information. Ho-
wever, nowadays no widely accepted context repre-
sentation scheme exists; instead there are several ap-
proaches to deal with context information. These can
be divided into three categories: i) adopt/create a new
context representation, ii) normalize the storing pro-
cess through ontologies or iii) accept the diversity of
context representations.

We accepted the diversity of context representa-
tion as a consequence of economic pressures, and de-
vised a bottom-up model (Antunes et al., 2015; An-
tunes et al., 2016b; Antunes et al., 2016a) to organize
context information without enforcing a specific re-
presentation. Our organization model is divided into
four main parts, as depicted in 1.

Figure 1: Context organization model based on semantic
and stream similarity.

The first two parts represent the structured part of
our model and account for the source ID and fixed d-
dimensions respectively. These d-dimensions allow
human users to select information based on time, lo-
cation or even other dimensions, and can be under-
stood as an OLAP cube helping in the process of fil-
tering information. The remaining parts of our model
extract information from the content itself and orga-
nize it based on semantic and stream similarity. Our
work on semantic similarity can be found in the fol-
lowing publications (Antunes et al., 2016b; Antunes
et al., 2016a). The first steps towards a stream simila-
rity model are given in this paper.

3 STREAM
CHARACTERIZATION BASED
ON MARKOV CHAINS
APPROACH

This section will address two different but related
ideas. First, will present our proposed approach for
stream characterization based on Markov Chains and
the rationale behind it. Second, will elaborate on a
stream generator which uses this previously mentio-
ned model. Actually the characterization model was
first devised entirely for the purpose of stream genera-
tion. A realistic generator help us improve the validity
and repeatability of our evaluations. Despite its orig-
ins, the model has several advantages and merits of its
own.

3.1 Stream Characterization

Our approach is to model a stream’s behaviour by
knowing how probable it is for, at a given time in-
stant xi−1 with a value of y j, a stream at the time xi
have a value of yk. We represent this with

Pi(yk|y j)

meaning the probability of having some value at a
time instant xi knowing its immediate predecessor.
For the remainder of this paper we will call the
succession of a value to the one following it (along
the x axis) a jump or transition.

Considering a perfect scenario where there is no
noise nor errors, most events would thus happen in
a very predictable manner (i.e. without major vari-
ances). We could then argue that using the method
above and knowing all the probabilities of all the
jumps along the period of the event, we could repre-
sent it with quite high confidence. For the sake of
argument, consider that we had at our disposal such a
probability function as expressed above, and we were
given a sequence of values representing an event. We
would like to compute the similarity (S) between the
sequence of values and the probability function.

This can be achieved by verifying all the values of
Pi for all transitions within a sequence’s period, and
either averaging them or using some other statistical
indicator to get a representative, normalized value of
the overall resulting probabilities. For example:

S =
1
n

n

∑
i=1

Pi

The probability function assigns high or low values to
each jump of the sequence based on how well it rela-
tes to the events expressed by the probability function
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itself. If the sequence’s values were off the event’s,
then the overall probability would be low. On the ot-
her hand if it was high, then we could be confident
that this sequence is similar to the event represented
by the function.

The problem arises as we notice that this perfect
scenario is not possible in practical cases, and thus if
we intend to use such a function as the one described
above to represent a stream, we need to make a few
changes to its definition, so as to answer to the follo-
wing issues:

1. Streams representing the same events more com-
monly than not vary widely, for several reasons.
Such as noise, location, time of day, etc.;

2. It is impractical, due to time and space constraints,
to have a function mapping every set of points
((xi,y j),(xi+1,yk)) that might appear in a stream;

3. Along the lines of the previous item, it is not rea-
sonable to consider the continuous and/or infinite
domain associated with most events (which would
imply considering infinite values).

Our proposal solves these issues by overlaying a
grid-like structure over the different values a stream
takes along its period, effectively turning each (xi,y j)
in the preceding discussion into a gap (as depicted in
2). This gives rise to two other values that are now
to be considered, ∆x and ∆y. Each representing the
resolution of their corresponding axis.

Issue 1 can be solved by overlaying multiple stre-
ams representing a same event, and computing the
probabilities that arise from their transitions. Issues 2
and partially 3 are solved by now considering jumps’
areas instead of single values, in a sense discretizing
both a stream’s domain and codomain. By the law
of large numbers and assuming that those streams do
follow a pattern (even if with noise and/or erratic be-
haviour), one can be sure that eventually the probabi-
lities will converge. Issue 3 can be further improved
in the case of periodic streams. Given that most real
scenarios are periodic to some extent, this property
can many times be used. Splitting a stream according
to its period and using it as the domain of the grid, it
is possible to work even with infinite domains. Each
stream’s period is taken as a 1-period stream by itself.

This way we are capable of characterizing the un-
derlying behaviour of some event, based on the beha-
vioural patterns of some related streams. We say this
method is Markov chains’ based since it assumes that
there is little to no knowledge lost by only conside-
ring direct transitions along the x axis. This means
that we do not use all the previous values a stream
took before a given xi when computing the probabi-
lity of being in some other area in the time slot follo-

wing (with xi+1 ≡ xi +∆x). This is done to minimize
the computational complexity that would arise from
doing so.

The representation mentioned above can still have
a problem: the notion of “area” itself. If it is too wide
or too narrow, the model fails to capture the relevant
pattern of the event. If any of ∆x or ∆y are taken too
big to the event being represented, information about
it will be lost. On the other hand, if these values
are taken too small, the computation’s complexity of
the probabilities will start to degrade. Even worse,
can make the whole representation too specific (com-
monly named overfitting).

In order to minimize this issue we propose to keep
the following values associated to each slot, as shown
in 2:

Probability vector This is the function which ma-
kes possible representing the nature of the stream
using probabilities. Each Pi maps to the probabi-
lity of jumping to the yi following along the x axis
(the transition).

Histogram of values Each slot maintains an histo-
gram of values, allowing the model to identify
which values are more commonly found within
that slot. In a sense this adds another dimension
to the model.

Other statistical values Other statistical values may
be kept for further improvements. For example,
keeping the average and the standard deviation of
the values within the slot. They are both cheap
computationally wise and may be of significance
when evaluating how well a given point fits within
the slot.

y

x
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P1

P2

P3

P4

P5

P6

µ
σ
...

Figure 2: Structure proposed to represent stream informa-
tion. A grid is overlayed over the streams, in order to build a
matrix like structure where each slot contains a probability
vector, an histogram of values, and other relevant statisti-
cal values (currently the mean and standard deviation of the
values inside the slot). This figure is merely for illustrative
purposes, none of the values represent real information nor
the result of any kind of computation.
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3.2 Generation of Streams

Initial work demanded the use of large datasets both
to carry on tests and to validate the capability of repre-
sentation of the model. This lead to the development
of a stream generator general enough to be used in a
wide class of streams. We wanted to use it to easily
build synthetic datasets from real ones we had, but
which were not as big as we needed.

Such generator would have to output plausible
streams, and not just a stream which would for in-
stance minimize the errors between itself and the set
of streams given as examples. This constituted an op-
portunity to test our proposed representation. The in-
ternal structure of the generator is, thus, a matrix of
slots, each with the values as described in 3.1. This
matrix is built for each type of pattern we want to le-
arn, from a set of streams representative of the pat-
tern (e.g. temperature or humidity). After having the
matrix built, we can traverse it (along its x axis) to
generate streams hopefully similar to the underlying
pattern of the ones which were previously presented.

Preliminary tests show the good capability of the
generator to learn the most relevant motifs of the stre-
ams and be capable of generating realistic streams
from the representation built. This is further discus-
sed in 5.

4 FUTURE WORK

Further improvements to the model presented earlier
are possible. Some of them are discussed bellow.

We believe it is possible to devise a metric to eva-
luate the similarity between a stream and our model.
As mentioned in the beginning, our end game is to
use the previously mentioned model to organize sen-
sor streams based on theirs similarity and improve the
efficiency of our context representation model. Using
this similarity metric we can, based on a certain thres-
hold, say which classification tags constitute the set
of possible matches to the stream. Or we can even
provide the set of k-strongest classification tags assig-
nable to it. Once such set is known, more complex
(computationally-wise) algorithms can be used in or-
der to further carry on and narrow the search.

It is our belief that the integration of our fast la-
belling method with existing classification techniques
will make organization across large stream-bases both
possible, efficient and accurate. Our algorithm will
serve as a strong filter, trimming the search space so
that other techniques can proceed.

There is room to further improve our stream cha-
racterization model. Specially to cope with the varia-

bility associated with IoT/M2M scenarios. Some que-
stions which are yet to be answered include: Is scale
(along the y axis) important? If yes, in which cases
and how to work with it? How to cope with time and
location differences across the different sensors? How
to automatically estimate a stream’s period? We will
continue our research on these topics and hopefully
answer these questions in future publications.

5 PRELIMINARY RESULTS

The results shown in this section try to back our
claims that our representation model is indeed capable
of harvesting the most relevant features of the streams
it was built with; for this we will use streams genera-
ted by our generator and compare them with real ones.

We have not finished a similarity metric for our
stream characterization model. As such, we will use
MSE (mean square error) and visual representations
to evaluate the performance of our model. Given a
set of (real) streams, in this case related to the tempe-
rature in a laboratory, we want to generate and vali-
date another set of (synthetic) streams so that the later
would be plausible elements of the former. By “plau-
sible elements” we consider a human or other entity
would have difficulty at telling them apart. Regarding
the evaluation, we used k-cross validation. Each of
the real streams used for computing MSE were not
included in the set of training streams1.

3 depicts a comparison between real and synthetic
data. Both plots represent the values from twenty dif-
ferent streams (real and synthetic accordingly). The
generator was trained with around one hundred real
streams. The MSE over an averaged set of twenty
runs was 0.508777934. As can be seen, both cur-
ves are alike and the MSE mesure is small, which
further suggests the representative power of the mo-
del used. Our representation seems capable of storing
the shapes of the curves as probabilities of transitions.
This representation can then be used to generate new
streams.

While these preliminary results require more ela-
boration, we consider them useful as checkpoints
which attest that our idea does have some foundati-
ons. How deep they are, that is something requiring
further work (which we intend to carry on), but at le-
ast we see that they are present.

1The generator’s parameters were:

T = 24h; ∆x = 10min; ∆y = 0.5◦C
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Figure 3: Real and generated streams plotted along with the
deviation measured at each point.

6 CONCLUSIONS

We believe that our context organization model can
be further improved by incorporating stream simila-
rity metrics. While there are several academic works
based on stream prediction and mining (Krempl et al.,
2014), the same can not be said about stream simila-
rity. Further work needs to be done to assert some
ideas expressed on this paper, but our stream charac-
terization model appear to be a viable option.

Meanwhile, the ability to generate streams resem-
bling a given set of learning ones, can be useful in
many situations. For instance, to generate large synt-
hetic datasets where otherwise there is no specific ge-
nerator available. Our general purpose generator has
another big advantage. Improves the repeatability and
validity of IoT/M2M and context-aware platforms.
Currently these platforms use advanced machine lear-
ning algorithms to improve and optimize several pro-
cesses. Having the ability to test them for a long time
in a controlled environment is extremely important.

In future publication we will present an improved
version of our stream characterization model and how
to incorporate it into our context organization model.
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