
Developer Modelling using Software Quality Metrics and Machine
Learning

Franciele Beal, Patricia Rucker de Bassi and Emerson Cabrera Paraiso
Graduate Program in Informatics, Pontifícia Universidade Católica do Paraná,

Rua Imaculada Conceição 1155, Curitiba, Brazil

Keywords: User Modelling, Machine Learning, Quality Metrics, Supervised Learning.

Abstract: Software development has become an essential activity for organizations that increasingly rely on these to
manage their business. However, poor software quality reduces customer satisfaction, while high-quality
software can reduce repairs and rework by more than 50 percent. Software development is now seen as a
collaborative and technology-dependent activity performed by a group of people. For all these reasons,
choosing correctly software development members teams can be decisive. Considering this motivation,
classifying participants in different profiles can be useful during project management team’s formation and
tasks distribution. This paper presents a developer modeling approach based on software quality metrics.
Quality metrics are dynamically collected. Those metrics compose the developer model. A machine
learning-based method is presented. Results show that it is possible to use quality metrics to model
developers.

1 INTRODUCTION

Software development has become an essential
activity as organizations increasingly rely on it to
manage their business. The increasing use of
systems in broader contexts of business makes its
construction a complex activity. Several experts
must work together to develop successful software,
which depends on many factors, such as compliance
on time, on estimated cost and the quality desired by
the customer. According to a study conducted by the
University of Cambridge (Cambridge University,
2013), source code defects correction annual cost is
around US$312 billion. A low-quality code impacts
on delivery schedules, repairs and rework that
become project’s major cost drivers. Moreover, low
quality reduces customer satisfaction, can affect
market share, and in some cases, can even lead to
criminal charges. On the other hand, a high-quality
software reduces repairs needs and rework,
sometimes by more than 50%. Furthermore, costs
linked to application’s maintenance and support are
also reduced. Consequently, having a high-quality
software also improves testing and delivery
schedules (Bettenburg and Hassan, 2013);
(Bonsignour and Jones, 2011).

Some researchers such as Mohtashami et al.,
(2011) and Whitehead et al., (2010) show that

software development is a collaborative activity
dependent on technology and performed by a group
of people. It usually involves people playing
different roles, such as managers, software
architects, developers, testers and requirements
engineers. All these professionals work with
different types of artefacts in different activities;
most of them are activities that require teamwork
and collaboration. These development environments
follow computer supported collaborative work
(CSCW) principles (Grudin, 1994) where
participants construct artifacts such as source code,
diagrams, requirements documents in a collaborative
way. Finally, common sense believes that greater
collaboration between participants increase chances
of reaching final product faster and in better
condition (Whitehead et al., 2010); (Magdaleno et
al., 2015).

Successful organizations use to measure their
main activities as part of their day-to-day tasks
(McGarry et al., 2002). This measurement process
has played an increasingly important role in
Software Engineering. Software metrics allow
measurement and evaluation, controlling the
software product and processes improvement
(Fenton and Neil, 2000) (Kitchenham, 2010). They
are essential resources to improve quality and cost

424
Beal, F., Bassi, P. and Paraiso, E.
Developer Modelling using Software Quality Metrics and Machine Learning.
DOI: 10.5220/0006327104240432
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 424-432
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

control during software development (Wallace and
Sheetz, 2014).

In general, collaborative software development
processes rank participants in different skill’s levels
to facilitate team building and task assignments
involving software source code programming. It is
common the use of subjective criteria to generate
this classification. However, to assign a class to a
team member is important to guide the project
management. For example, it is important to
recognize developer’ classes to form productive
collaborative programming pairs in Extreme
Programming (XP) agile methodology (Padberg and
Muller, 2003). Pairs formed by different experience
classes of developers can learn from each other
through knowledge sharing (Aiken, 2004). Thus, it
is important to know each developer’s features to be
able to form pairs where developers can effectively
contribute with each other exchanging knowledge
and experience.

Considering these evidences and the importance
that developer’s classification represents in software
development process, we propose in this study a way
to automatically class developers. We advocate that
developers may be classified according to their
performance and productivity. To do so, we are
using a set of software quality metrics to compose
the developer’s model. In real time, we collect those
metrics and use them to model each developer. In
addition, once we have the actual code quality
overview, we can indicate to each developer, code
improvements tips in real time as well.

In this paper, we present a machine learning
based approach to model developers. The approach
was evaluated and the results are presented.

This article is organized as follows: in section 2
related works are presented, section 3 presents the
background on user modeling and applications. The
features we are using to model a developer are
described in section 4. Section 5 presents a machine
learning-based method for modeling developers. We
detail experiments to test our proposed method for
developer modeling in section 7 and finally we
present conclusions and future work.

2 RELATED WORKS

User Modeling (Kobsa, 2001) is essential for
customized services. A user model (or profile)
structures a set of features and preferences that is
used as a basis to adapt or recommend some type of
information to a user or a group of user (Rich,
1983). It is applied in different domains where there

is a great information volume and someone want to
infer knowledge about users and provide
personalized results to meet their needs. Amazon
(www.amazon.com) and Netflix (www.netflix.com)
are well-known e-commerce sites examples that
apply user profiles to make items recommendations
(as books and movies). This kind of sites apply for
each user histories browsing, purchased items lists,
viewed items, interested subjects and issues, among
others, to recommend relevant items to each of
them.

User modelling are also applied to customize
searches and filters (Gemechu et al., 2010);
(Veningston and Simon, 2011); (Leung et al., 2013)
and (Jingqiu et al., 2007), personalized news
recommendation (Kyo-Joong et al., 2014) and
(Won-Jo et al., 2014), adaptive hypermedia systems
(Kavcic, 2000) and learning systems (Virvou et al.,
2012). We can also cite the use of user modeling in
the social networks (Piao and Breslin, 2016),
personal assistants (Guha et al., 2015), adaptive
advertising (Qaffas and Cristea, 2015), personalized
cloud computing recommendation (Zou et al., 2014),
among others.

There are a few studies applying user modeling
in software engineering. Galete and colleagues
(2013) developed a system to cluster developers
based on data gathered by Hackystat (Johnson et al.,
2004). The authors used a Kohonen’s Map to cluster
them. The main problem on that approach is that it is
not possible to classify developers since the content
on each cluster may change from one execution to
another.

The lack of research on user modeling in the
context of software development lead us to propose
a system to model developers. The next section
presents the background on user modeling useful to
understand the approach we propose in this paper.

3 USER MODELING

One of the main goals of user modeling is the
customization and adaptation of systems to the
user’s specific needs. Another purpose, more related
to our work, is modeling specific kinds of users,
including their skills and declarative knowledge.

A user model is a structured representation of
features and data about a user. Among the different
design patterns for user models, we highlight two:
static modeling and dynamic modeling (Johnson and
Taatgen, 2005).

Static user models are the most basic kind of user
models. Once the main data is gathered they are not

Developer Modelling using Software Quality Metrics and Machine Learning

425

normally changed. Shifts in users' preferences are
not registered and learning algorithms are not used
to alter the model.

Dynamic user models allow a more up to date
representation of users. Changes in their interests,
their learning progress or interactions with the
system are noticed and influence the user models.
The models can thus be updated and take the current
needs and goals of the users into account. In these
kind of models, data are automatically, implicitly,
and non-invasively collected, through sensors that
monitor user’s interaction and behavior. We are
using the dynamic model to model developers.

The dynamic user model construction process
consists basically of data that will compose the
model and a few steps presented in the next
paragraphs (Barth, 2010).

In the first step, named Model Composition, one
identifies the features (characteristics, preferences,
interests, knowledge, and so on) that will compose
the model. These features are domain dependent.

The next step, the Model Acquisition, performs
data acquisition using sensors that monitor the
environment where users are emerged. This process
is fully automatic. In the context of code
development, Hackystat (Johnson et al., 2004)
provides sensors to collect data generated by
developers while they code. Hackystat sensors
capture real-time developer’s programming events
and store them in a database without developer’s
intervention. The implicit data acquisition
mechanism makes it suitable for user’s dynamic
modeling.

After data acquisition comes the Model
Induction step. In general, supervised machine
learning algorithms are used to induct a model from
historical data. Algorithms like Decision Trees and
SVM (Nguyen, 2009), Naïve Bayes (Wen et al.,
2008) or Artificial Neural Networks (Chen and
Norcio, 1991) are used. The main challenge in
supervised learning is to find available labeled data
to be used in the training step of the induction
process. In our context, this inducted model will be
used to evaluate the data collected in real time from
a given user in order to class the user according to a
specific type (more details in section 4).

Once a machine learning model is inducted,
starts the Applying Model step where the model is
used to infer the actual user type.

Finally, the Maintaining Model is performed to
keep the user model updated. In a dynamic user
model, the system makes it automatically,
monitoring and observing user’s actions.

Maintenance involves the re-train of a machine
learning based algorithm.

The section 5 presents a method for developers
modelling based on these steps. The next section
presents the features we are using to model a
developer and consequently to compose the user
model.

4 THE DEVELOPER MODEL

The previous section presented the user model
composition. The first step is to identify the set of
features that will compose the user model. The set of
features is gathered during the user interaction with
the environment where he takes part of. In the
context of software development and, in special,
source code implementation, the environment is an
IDE (Integrated Development Environment).
Moreover, we intend to model developers with
respect to the quality of their final work: source
code. Thus, we are proposing a set of features
related to software quality metrics. The idea is
simple: to collect and to evaluate, in real time, a set
of 20 object-oriented (OO) metrics. In addition to
these metrics, we are using data related to good
programming practices and developer’s
programming errors. We assume that this set of
features can be used to model a developer and also
to estimate the quality of his work.

Source code quality can be measured by software
metrics regard to complexity, testability, reusability
and maintainability. These quality software metrics
seek to manage and reduce structural complexity,
improve maintainability and source code
development, and consequently the software itself
(Yu and Zhou, 2010). Studies such as (Filó et al.,
2015); (Silva et al., 2012); (Li, 2008); (Oliveira et al.
2008); (Olague et al., 2006),; (Anderson, 2004);
(Horstmann, 2005), and (Oliveira et al., 2008) report
that source code metrics may indicate situations of
code quality increasing or decreasing regard to
maintainability, testability, reusability and
complexity.

The set of 20 metrics, shown in Table 1, were
grouped in four different categories: complexity
metrics, inheritance metrics, size metrics and
coupling metrics. The first category groups
complexity metrics, considering that more complex
classes and methods may turn the source code more
difficult to understand, maintain and test ((McCabe,
1976), (Chidamber and Kemerer, 1994),
(Henderson-Sellers, 1996) and (Martin, 2002)). The
following metrics: McCabe’s cyclomatic complexity

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

426

metric, weighted methods per class metric, lack of
cohesion in method metric, and nested block depth,
can indicate code complexity situation ((Anderson,
2004), (Olague et al., 2006); (Oliveira et al., 2008)
and (Horstmann, 2005)).

The second category groups the following
metrics: Depth of inheritance tree, number of
children, number of overridden methods and
specialization index metrics. They form the
inheritance category, since they can indicate
abstraction and software maintenance problems
((Chidamber and Kemerer, 1994); (Schroeder, 1999)
and (Henderson-Sellers, 1996)).

The size metrics like method lines of code,
number of attributes per class, number of static
attributes, number of static methods, number of
parameters, number of interfaces and number of
packages can indicate understanding, maintenance
and reuse code problems (Henderson-Sellers, 1996);
(Harrison et al., 1997).

Finally, strong coupling in software turn more
difficult to maintain, modify and reuse code.
Coupling can compromise code abstractness and
stability. Afferent and efferent coupling, instability
metric, abstractness and normalize distance from
main sequence are metrics that can indicate code
coupling (Martin, 2002).

Table 1: Software Quality Metrics Excerpt.

Metric influence on code
quality

Metric

Complexity Metrics

More complexes
code/class/method more
difficult to understand,
maintain and test.

McCabe's Cyclomatic complexity metric
- MCC
Weighted Methods per Class metric -
WMC
Lack of Cohesion in Method metric-
LCOM*
 Nested Block Depth – NBD

Inheritance Metrics

Can indicate problems of
abstraction and software
maintenance.

Depth of Inheritance Tree - DIT
Number of Children – NOC
Number of Overridden Methods –
NORM
Specialization Index - SIX

Size Metrics

Can indicate problems of
understanding,
maintenance and reuse.

Method Lines of Code -MLOC
Number of Attributes per Class - NOA
Number of Static Attributes - NSF
Number of Static Methods - NSM
Number of Parameters - NOP
Number of Interfaces - NOI
Number of Packages – NOP

Coupling Metrics

Strong coupling in
software is more difficult
to maintain, modified,
reused.
Can compromise code
abstractness and stability.

Afferent Coupling - Ca

Efferent Coupling – Ce

Instability metric - I, named here as RMI

Abstractness - A, named here as RMI

Normalize Distance from Main Sequence
– D

Each metric in table 1 has its own range that can

be used to evaluate the real state of the source code.

For instance, the metric McCabe's Cyclomatic
(MCC) measures the complexity of the code. It has
the following range:

low: 1 ≤ MCC ≤ 10
moderate: 10 < MCC ≤ 20
high: 20 < MCC ≤ 50
very high: MCC > 50

In this case, the ideal situation should place this
metric in the low level (Anderson, 2004).

In addition to the metrics, data related to
programming practices and developer’s
programming errors were used as features. They are:
Debug, Breakpoint, Refactoring, Code Error and
Number of Errors. The Debug feature is used to
indicate whether the developer has used the
debugger or not. Breakpoint indicates whether the
breakpoint feature was used. Refactoring indicates
whether refactoring has occurred, that is, whether a
method, attribute, or class has been renamed,
removed, or moved. The Code Error feature refers
to code errors committed by developers at coding
time. Number of errors indicates the total number of
errors committed for a code error.

The next section presents the method for
developer modeling based on these features.

5 DEVELOPER MODEL
CONSTRUCTION

In this section, we present a machine learning based
method for modeling developers. The method
consists of different steps respecting the dynamic
modeling process presented in section 3. Figure 1
shows all four steps.

It is important to note that the method is based on
the principle that developers can be modeled
according to data gathered online during coding.
Once the data is available the system can class a
developer in one of n different classes. In our
context, a class represents the programming skill
level of a developer. Even if the number of classes
may be irrelevant for our approach, we fixed the
number of programming skills in 3 levels (classes):
basic, intermediate, and proficient. Thus, at the end
of Step 3 (model application) a developer is
classified as a basic developer, intermediate
developer, or proficient developer. The level is a
combination of all features (metrics). Thus, the
quality (Q) of the source code produced by a
developer classified as basic is worse than the one

Developer Modelling using Software Quality Metrics and Machine Learning

427

classified as proficient: Qbasic < Qintermediate < Qproficient.
We assume that historical data is available for

classifying developers according to this
classification.

Classification
Task

ML Algorithm

Data Acquisition
Sensors

Model
Acquisition

Model
Classification

Model
Application

Model
Maintenance

Step 1 Step 2 Step 3 Step 4

Historical
database

Figure 1: The method overview.

The first step, Model Acquisition, refers to
collecting data to compose the developer’s model.
The data is gathered during coding by sensors.
Sensors should be linked to the IDE developers are
using in a non-invasive way (as shown in Figure 2).
Two type of data are collected: code quality metrics
and programming practice. A new instance is
created in the database every time something
changes in the developer model: a metric value or a
programming practice event.

Figure 2: Data collection process.

The resultant database is used to train a
supervised machine learning algorithm. A
supervised algorithm needs labeled data. This
means, for each instance, to label it as one of the
defined classes. In our case: basic, intermediate, or
proficient. To the best of our knowledge there is no

database available in the literature labeling
developers according to their programming skills.
To be able to evaluate our approach we developed
our own database. Details are given in section 6.

The second step, named Model Classification,
trains (inducts) a learning algorithm to build a
classifier model. The model is used to classify
developers into different classes (levels). The train
process uses the labeled database produced in the
previous step. A classifier must be chosen. A
validation schema, such as cross validation should
be set. We present in the next section an experiment
evaluating different classifiers with different
configurations. In our case, the decision tree
algorithm C4.5 (Quinlan, 1993) achieved the best
results.

The third step, Model Application, should be
also integrated as a plugin to the IDE used by
developers. The plugin allows developers to be
classified in real time. As sensors collect new
developer’s features (which are added to the
historical database), the data is used to evaluate the
developer. Figure 3 shows schematically how it is
done.

IDE

Sensor B Dynamic ModelSensor A

Historical
Database

New
features Classification

Start

Developer i

End

Figure 3: Dynamic model application.

At the end of the process a developer i receives a
label (basic, intermediate, or proficient). The
classification of a specific developer can change
over time since a new classification is done every
time the code is changed. The class assigned to a
developer is a consequence of his contribution to the
source code.

The last step, Model Maintenance, should be
executed to re-train the model that classifies the
developers. It is the opportunity to improve the
accuracy of the model using new data generated
continuously by developers. It is recommended to
execute this step every time a new project begins.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

428

6 DEVELOPER MODEL
DATABASE CONSTRUCTION

In this section, we detail experiments to test our
proposed method for developer modeling. A Java
prototype was implemented using Hackystat
(Johnson et al., 2004) sensors (to gather
programming practice data) and the plugin Metrics
for Eclipse (www.metrics2.sourceforge.net) (to
gather software quality metrics data).

Different classifiers were evaluated: k-Nearest
Neighbors algorithm (k-NN), C4.5, Naive Bayes,
Multilayer Perceptron (MLP) and Support Vector
Machines (SVM). The WEKA version of each
algorithm was used in the prototype (Hall et al.,
2009). All classifiers were trained and evaluated
using cross-validation.

We have mentioned in the foregoing that, to the
best of our knowledge, there is no database available
in the literature labeling developers according to
their programming skills. This motivated us to
develop our own database. The database must have
data enough to be used in the model induction.
Unfortunately, it is not simple to find several
voluntary professional developers to participate in
the process of gathering quality metrics data. Thus,
we invited 57 undergraduate computer science
students to help in this process. All of them were
enrolled in the Bachelor of Computer Science at the
Pontifícia Universidade Católica do Paraná - Brazil
(PUCPR). This undergraduate course has six
consecutive programming courses (one course per
semester). All six courses have Java as the main
programming language. From the total of 57
students, 19 students were finishing the second
semester, 19 students were finishing the fourth
semester and 19 students were finishing the sixth
semester. They were labeled respectively as basic,
intermediate, and proficient. The basic level
represents less experienced students with up to 1
year of Java language programming. Intermediate
level concentrates students with 1 to 2 years of
language programming, and proficient level
concentrates the most experienced students, with
Java language knowledge around 3 to 4 years.

Each participant received a two-page document
specifying a system to be coded. The system was
very simple to code: an application to compute the
body mass index (BMI). A section of two hours was
set to code the system. Each developer had available
an instance of Eclipse (www.eclipse.org) configured
with a plug-in that gathered all metrics and data
generated during code (set of features presented in
section 4). The number of instances generated for
each developer varies according to their

programming style, coding speed, and so on. Table 2
shows the number of instances for each group of
developers.

Table 2: Instances distribution per programming skill.

Programming Skill Instances

Basic 665

Intermediate 847

Proficient 679

Total 2,191

The Database stores data instances, where each
instance corresponds to a developer profile that has
been collected over time. Data instances are
composed by the following fields: WMC –
Weighted Methods per Class metric, LCOM* - Lack
of Cohesion in Method metric, NBD – Nested Block
Depth metric, DIT – Depth of Inheritance Tree
metric , NOC – Number of Children metric, NORM
– Number of Overridden Methods metric, SIX –
Specialization Index metric, MLOC – Method Lines
of Code metric , NAC – Number of Attribute per
Class metric, NSF – Number of Static Attribute
metric, NSM – Number of Static Methods metric,
PAR – Number of Parameter metric, NOI – Number
of Interfaces metric, NOP – Number of Package
metric, I – Instability metric, A – Abstractness
metric, Dn – Normalize Distance from Main
Sequence metric, Debug, Breakpoint, Refactoring,
ErrorCode, ErrorQty. Quality metrics data are
collected using Metrics and programming practice
events are collected using Hackystat. Thus, each
instance is composed by 22 characteristics plus
developer's level (basic, intermediate or proficient).

The database is available at:
https://www.ppgia.pucpr.br/~paraiso/Desenvolvime
ntoColaborativoDeSoftware/completo_perfil_desenv
olvedor.arff.

7 EXPERIMENTS AND RESULTS

First, we evaluated the selected classifiers.
Classifiers were evaluated using 10-fold Cross
Validation. All parameters were set to their default
values. Table 3 shows the accuracy for each
classifier. After statistical analysis, the C4.5
algorithm proved be the best for the task of
classifying developers according to their skills.
Table 4 shows the overall f-measure results for
every programming skill.

Developer Modelling using Software Quality Metrics and Machine Learning

429

Table 3: Classifiers accuracy.

Classifiers Accuracy
C4.5 90.96%
MLP 86.44%
3-NN 85.08%
SVM 79.37%
Naive Bayes 65.91%

Table 4: F-measure: class X classifier.

Classifier F-Measure

basic intermediate proficient Weighted
avg.

C4.5 0.899 0.934 0.890 0.910
MLP 0.857 0.879 0.854 0.865
3-NN 0.838 0.872 0.837 0.851
SVM 0.806 0.785 0.791 0.793
Naive Bayes 0.726 0.559 0.666 0.634

Results are promising and give us good
indications that developer modeling can be used in
real cases. These results need to be confirmed when
new databases become available.

The results among classes (programming level)
are uniform. The C4.5 algorithm achieved an
accuracy of 90.96%. The lowest classification error
was registered for the basic level. The confusion
matrix shows that are some confusing involving
intermediate developers and basic developers. This
is probably due to the fact that some students
enrolled in the fourth semester were also enrolled in
the second semester. The confusion matrix also
showed that some intermediate students (developers)
were confused with proficient students. This is due
to the fact that some students in the fourth semester
had professional experience (as developers) in the
industry.

We inspected the rules generated in the decision
tree (C4.5). The quality metrics is more important
than the programming practice data. However, in
misclassified instances those features (programing
practice) seems to be relevant. We are working in
this analysis and the results will be subject of future
publication.

8 CONCLUSIONS AND FUTURE
WORKS

High-quality software reduces repairs needs and
rework. Successful organizations use to measure
their main activities as part of their day-to-day tasks
(McGarry et al., 2002). Software metrics allow
measurement and evaluation, controlling the
software product and processes improvement
(Fenton and Neil, 2000); (Kitchenham, 2010). In this
study, we proposed a machine learning-based
approach to model developers using quality software

metrics. Developers are modelled on the fly. A set of
quality metrics was selected to compose the
developer model. The model enables a less
subjective classification of developers. It allows a
better distribution of tasks among developers. It also
allows a precise analysis of the code generated by
each developer. The method is non-invasive.

Experiments were carried out and showed that
our approach is promising. Considering our results it
is possible to build a developer dynamic model
based on source code data produced by him.
Through code quality metrics and programming
practices events research results indicate the
possibility of developers skills level different
classification.

In the future, we intend to extend the existing
sensors and use new sensors to collect other
developer’s features. It is our intend to apply this
experiment with developers from industry. We also
plan to use the actual value of quality metrics to give
tips on how to evolve the code to improve each
metric.

Resultant rules generated by the decision trees
are also part of our future works to better understand
the role of each feature in classification process

Finally, we are working in a new method to be
used with legacy code. In this scenario, a distributed
version-control platform is used to collect source-
code.

ACKNOWLEDGEMENTS

The authors would like to thank Fundação
Araucária/Brazil and CAPES/Brazil (Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior)
for their support in this research (grant number
075/2013).

REFERENCES

Aiken, J., 2004. Technical and human perspectives on pair
programming. In SIGSOFT Software Engineering
Notes.

Anderson, J., 2004. Using software tools and metrics to
produce better quality test software. In
AUTOTESTCON 2004. Proceedings, IEEE.

Barth, F. J., 2010. Modelando o perfil do usuário para a
construção de sistemas de recomendação: um estudo
teórico e estado da arte. In Revista de Sistemas de
Informação.

Bettenburg, N., Hassan, A. E., 2013. Studying the impact
of social interactions on software quality, Empirical
Software Engineering.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

430

Bonsignour, O., Jones, C., 2011. The Economics of
Software Quality, Addison Wesley.

Cambridge University, Cambridge University study,
http://insight.jbs.cam.ac.uk/2013/financial-content-
cambridge-university-study-states-software-bugs-cost-
economy-312-billion-per-year/, 2013. Accessed: Sep
10th 2016.

Chen, Q., Norcio, A.F., 1991. A neural network approach
for user modeling. In 1991 IEEE International
Conference on Systems, Man, and Cybernetics,
Decision Aiding for Complex Systems.

Chidamber, R. S,. Kemerer, C. F., 1991. Towards a
metrics suite for object-oriented design. In the
OOPSLA 91 Conference.

De Silva, D., Kodagoda, N., Pereira, H., 2012.
Applicability of three complexity metrics. In 2012
International Conference on Advances in ICT for
Emerging Regions (ICTer).

Fenton, N E., Neil, M., 2000. Software metrics: Roadmap.
In Conference on The Future of Software Engineering,
ICSE '00, ACM, New York, NY, USA.

Filo, T,. Bigonha, M., Ferreira, K., 2015. A catalogue of
thresholds for object-oriented software metrics. In 1st
International Conference on Advances and Trends in
Software Engineering, IARIA.

Galete, L., Ramos, M. P., Nievola, J. C., Paraiso, E. C.,
2013. Dynamically modeling users with MODUS-SD
and Kohonen's map. In 2013 IEEE 17th International
Conference on Computer Supported Cooperative
Work in Design (CSCWD).

Gemechu, F., Zhang Yu Liu Ting, 2010. A Framework for
Personalized Information Retrieval Model. In 2010 2nd
International Conference on Computer and Network
Technology (ICCNT).

Grudin, J., 1994. Computer-supported cooperative work:
history and focus. In IEEE Computer.

Guha, R,. Gupta, V., Raghunathan, V., Srikant, R., 2015.
User Modeling for a Personal Assistant. In 8thACM
International Conference on Web Search and Data
Mining (WSDM '15).

Hall, M., Frank, E., Holmes, G., Pfahringer, B.,
Reutemann, P., Witten, I. H., 2009. The WEKA Data
Mining Software: An Update. SIGKDD Explorations.

Harrison, R., Counsell, S., Nithi, R, 1997. An overview of
object-oriented design metrics. In 8th IEEE
International Workshop on Software Technology and
Engineering Practice.

Henderson-Sellers, B., 1996. Object-Oriented Metrics:
Measures of Complexity. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

Horstmann, C., 2005. Big java: Programming and practice,
John Willey & Sons.

Jingqiu Xu, Zhengyu Zhu, Xiang Ren, Yunyan Tian, Luo
Ying, 2007. Personalized Web Search Using User
Profile. In International Conference on Computational
Intelligence and Security.

Johnson, A., Taatgen, N., 2005. User Modeling,
Handbook of human factors in Web design, Lawrence
Erlbaum Associates.

Johnson, P. M., Kou, H., Agustin, J. M., Zhang, Q.,
Kagawa, A. and Yamashita, T., 2004. Practical
Automated Process and Product Metric Collection and
Analysis in a Classroom Setting: Lessons Learned
from Hackystat-UH. In International Symposium on
Empirical Software Engineering (ISESE’04).

Kavcic, A., 2000. The role of user models in adaptive
hypermedia systems. In Electrotechnical Conference,
2000. MELECON 2000. 10th Mediterranean.

Kitchenham, B., 2010. What's up with software metrics? A
preliminary mapping study. In Journal of Systems and
Software, SI: Top Scholars.

Kobsa, A., 2001. Generic User Modeling Systems. The
Adaptive Web.

Kyo-Joong Oh, Won-Jo Lee, Chae-Gyun Lim, Ho-Jin
Choi, 2014. Personalized news recommendation using
classified keywords to capture user preference.
In 2014 16th International Conference on Advanced
Communication Technology (ICACT).

Leung, K.W.-T., Dik Lun Lee, Wang-Chien Lee, 2013.
PMSE: A Personalized Mobile Search Engine. In
IEEE Transactions on Knowledge and Data
Engineering.

Li, H., 2008. A novel coupling metric for object-oriented
software systems. In IEEE International Symposium
on Knowledge Acquisition and Modeling Workshop,
KAM Workshop 2008.

Magdaleno, A M., Barros, M O., Werner, C. M. L.,
Araujo, R M., Batista, C. F. A., 2015. Collaboration in
process optimization software composition. In The
Journal of Systems and Software.

Martin, R. C., 2002. Agile Software Development:
Principles, Patterns, and Practices. Prentice Hall.

McCabe, T. J. A., 1976. Complexity measure. In IEEE
Transactions on software Engineering.

McGarry, J., Card, D., Jones, C., Layman, B., Clark, E.,
Dean, J., Hall, F., 2002. Practical Software
Measurement: Objective Information for Decision
Makers. Addison Wesley.

Mohtashami, M., Ku, C. S., Marlowe, T. J., 2011. Metrics
are needed for collaborative software development. In
The Journal of Systemics, Cybernetics and
Informatics.

Nguyen, L. A, 2009. Proposal of Discovering User Interest
by Support Vector Machine and Decision Tree on
Document Classification. In International Conference
on Computational Science and Engineering. CSE '09.

Olague, H. M., Etzkorn, L. H., Cox, G. W., 2006. An
entropy-based approach to assessing object-oriented
software maintainability and degradation-a method
and case study. In Software Engineering Research and
Practice.

Oliveira, M. F., Redin, R. M., Carro, L., da Cunha Lamb,
L., Wagner, F. R., 2008. Software quality metrics and
their impact on embedded software, In 5th
International Workshop on Model-based
Methodologies for Pervasive and Embedded Software.

Padberg, F., Muller, M. M., 2003. Analyzing the cost and
benefit of pair programming. In 9th International
Software Metrics Symposium.

Developer Modelling using Software Quality Metrics and Machine Learning

431

Piao, G., Breslin, J. G., 2016. Analyzing Aggregated
Semantics-enabled User Modeling on Google+ and
Twitter for Personalized Link Recommendations. In
2016 Conference on User Modeling Adaptation and
Personalization (UMAP '16). ACM.

Qaffas, A. A., Cristea, A. I., 2015. An Adaptive E-
Advertising user model: The AEADS approach. In
2015 12th International Joint Conference on e-
Business and Telecommunications (ICETE).

Quinlan, J. R., 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers.

Rich, E., 1983. Users are individuals: - individualizing
user models.

Schroeder, M., 1999. A practical guide to object-oriented
metrics, IT professional 1.

Veningston, K., Simon, M., Collaborative filtering for
sharing the concept based user profiles. In 2011 3rd
International Conference on Electronics Computer
Technology (ICECT).

Virvou, M., Troussas, C., Alepis, E., 2012. Machine
learning for user modeling in a multilingual learning
system. In 2012 International Conference on
Information Society (i-Society).

Wallace, L. G., Sheetz, S. D., 2014. The adoption of
software measures: A technology acceptance model
(tam) perspective. In Information & Management.

Wen, H., Fang, L., Guan, L., 2008. Modelling an
individual’s Web search interests by utilizing
navigational data. In 2008 IEEE 10th Workshop on
Multimedia Signal Processing.

Whitehead, J., Mistrik, I., Grundy, J., 2010. Collaborative
software engineering: concepts and techniques, In:
Mistrík I, Grundy J, van der Hoek A, J Whitehead
(eds.) Collaborative Software Engineering, Springer.

Won-Jo Lee, Kyo-Joong Oh, Chae-Gyun Lim, Ho-Jin
Choi, 2014. User profile extraction from Twitter for
personalized news recommendation. In 2014 16th
International Conference on Advanced
Communication Technology (ICACT).

Yu, S., Zhou, S., 2010. A survey on metric of software
complexity. In 2010 The 2nd IEEE International
Conference on Information Management and
Engineering (ICIME).

Zou, G., Gan, Y., Zheng, J., Zhang, B., 2014. Service
composition and user modeling for personalized
recommendation in cloud computing. In 2014
International Conference on Computing,
Communication and Networking Technologies
(ICCCNT).

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

432

