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Abstract: Software development has become an essential activity for organizations that increasingly rely on these to 
manage their business. However, poor software quality reduces customer satisfaction, while high-quality 
software can reduce repairs and rework by more than 50 percent. Software development is now seen as a 
collaborative and technology-dependent activity performed by a group of people. For all these reasons, 
choosing correctly software development members teams can be decisive. Considering this motivation, 
classifying participants in different profiles can be useful during project management team’s formation and 
tasks distribution. This paper presents a developer modeling approach based on software quality metrics. 
Quality metrics are dynamically collected. Those metrics compose the developer model. A machine 
learning-based method is presented. Results show that it is possible to use quality metrics to model 
developers. 

1 INTRODUCTION 

Software development has become an essential 
activity as organizations increasingly rely on it to 
manage their business. The increasing use of 
systems in broader contexts of business makes its 
construction a complex activity. Several experts 
must work together to develop successful software, 
which depends on many factors, such as compliance 
on time, on estimated cost and the quality desired by 
the customer. According to a study conducted by the 
University of Cambridge (Cambridge University, 
2013), source code defects correction annual cost is 
around US$312 billion. A low-quality code impacts 
on delivery schedules, repairs and rework that 
become project’s major cost drivers. Moreover, low 
quality reduces customer satisfaction, can affect 
market share, and in some cases, can even lead to 
criminal charges. On the other hand, a high-quality 
software reduces repairs needs and rework, 
sometimes by more than 50%. Furthermore, costs 
linked to application’s maintenance and support are 
also reduced. Consequently, having a high-quality 
software also improves testing and delivery 
schedules (Bettenburg and Hassan, 2013); 
(Bonsignour and Jones, 2011). 

Some researchers such as Mohtashami et al., 
(2011) and Whitehead et al., (2010) show that 

software development is a collaborative activity 
dependent on technology and performed by a group 
of people. It usually involves people playing 
different roles, such as managers, software 
architects, developers, testers and requirements 
engineers. All these professionals work with 
different types of artefacts in different activities; 
most of them are activities that require teamwork 
and collaboration. These development environments 
follow computer supported collaborative work 
(CSCW) principles (Grudin, 1994) where 
participants construct artifacts such as source code, 
diagrams, requirements documents in a collaborative 
way. Finally, common sense believes that greater 
collaboration between participants increase chances 
of reaching final product faster and in better 
condition (Whitehead et al., 2010); (Magdaleno et 
al., 2015).  

Successful organizations use to measure their 
main activities as part of their day-to-day tasks 
(McGarry et al., 2002). This measurement process 
has played an increasingly important role in 
Software Engineering. Software metrics allow 
measurement and evaluation, controlling the 
software product and processes improvement 
(Fenton and Neil, 2000) (Kitchenham, 2010). They 
are essential resources to improve quality and cost 
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control during software development (Wallace and 
Sheetz, 2014). 

In general, collaborative software development 
processes rank participants in different skill’s levels 
to facilitate team building and task assignments 
involving software source code programming. It is 
common the use of subjective criteria to generate 
this classification. However, to assign a class to a 
team member is important to guide the project 
management. For example, it is important to 
recognize developer’ classes to form productive 
collaborative programming pairs in Extreme 
Programming (XP) agile methodology (Padberg and 
Muller, 2003). Pairs formed by different experience 
classes of developers can learn from each other 
through knowledge sharing (Aiken, 2004). Thus, it 
is important to know each developer’s features to be 
able to form pairs where developers can effectively 
contribute with each other exchanging knowledge 
and experience. 

Considering these evidences and the importance 
that developer’s classification represents in software 
development process, we propose in this study a way 
to automatically class developers. We advocate that 
developers may be classified according to their 
performance and productivity.  To do so, we are 
using a set of software quality metrics to compose 
the developer’s model. In real time, we collect those 
metrics and use them to model each developer. In 
addition, once we have the actual code quality 
overview, we can indicate to each developer, code 
improvements tips in real time as well. 

In this paper, we present a machine learning 
based approach to model developers. The approach 
was evaluated and the results are presented.  

This article is organized as follows: in section 2 
related works are presented, section 3 presents the 
background on user modeling and applications. The 
features we are using to model a developer are 
described in section 4. Section 5 presents a machine 
learning-based method for modeling developers. We 
detail experiments to test our proposed method for 
developer modeling in section 7 and finally we 
present conclusions and future work. 

2 RELATED WORKS 

User Modeling (Kobsa, 2001) is essential for 
customized services. A user model (or profile) 
structures a set of features and preferences that is 
used as a basis to adapt or recommend some type of 
information to a user or a group of user (Rich, 
1983). It is applied in different domains where there 

is a great information volume and someone want to 
infer knowledge about users and provide 
personalized results to meet their needs. Amazon 
(www.amazon.com) and Netflix (www.netflix.com) 
are well-known e-commerce sites examples that 
apply user profiles to make items recommendations 
(as books and movies). This kind of sites apply for 
each user histories browsing, purchased items lists, 
viewed items, interested subjects and issues, among 
others, to recommend relevant items to each of 
them. 

User modelling are also applied to customize 
searches and filters (Gemechu et al., 2010); 
(Veningston and Simon, 2011); (Leung et al., 2013) 
and (Jingqiu et al., 2007), personalized news 
recommendation (Kyo-Joong et al., 2014) and 
(Won-Jo et al., 2014), adaptive hypermedia systems 
(Kavcic, 2000) and learning systems (Virvou et al., 
2012). We can also cite the use of user modeling in 
the social networks (Piao and Breslin, 2016), 
personal assistants (Guha et al., 2015), adaptive 
advertising (Qaffas and Cristea, 2015), personalized 
cloud computing recommendation (Zou et al., 2014), 
among others. 

There are a few studies applying user modeling 
in software engineering. Galete and colleagues 
(2013) developed a system to cluster developers 
based on data gathered by Hackystat (Johnson et al., 
2004). The authors used a Kohonen’s Map to cluster 
them. The main problem on that approach is that it is 
not possible to classify developers since the content 
on each cluster may change from one execution to 
another.  

The lack of research on user modeling in the 
context of software development lead us to propose 
a system to model developers. The next section 
presents the background on user modeling useful to 
understand the approach we propose in this paper. 

3 USER MODELING  

One of the main goals of user modeling is the 
customization and adaptation of systems to the 
user’s specific needs. Another purpose, more related 
to our work, is modeling specific kinds of users, 
including their skills and declarative knowledge. 

A user model is a structured representation of 
features and data about a user. Among the different 
design patterns for user models, we highlight two: 
static modeling and dynamic modeling (Johnson and 
Taatgen, 2005).  

Static user models are the most basic kind of user 
models. Once the main data is gathered they are not 
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normally changed. Shifts in users' preferences are 
not registered and learning algorithms are not used 
to alter the model. 

Dynamic user models allow a more up to date 
representation of users. Changes in their interests, 
their learning progress or interactions with the 
system are noticed and influence the user models. 
The models can thus be updated and take the current 
needs and goals of the users into account. In these 
kind of models, data are automatically, implicitly, 
and non-invasively collected, through sensors that 
monitor user’s interaction and behavior. We are 
using the dynamic model to model developers.  

The dynamic user model construction process 
consists basically of data that will compose the 
model and a few steps presented in the next 
paragraphs (Barth, 2010).  

In the first step, named Model Composition, one 
identifies the features (characteristics, preferences, 
interests, knowledge, and so on) that will compose 
the model. These features are domain dependent. 

The next step, the Model Acquisition, performs 
data acquisition using sensors that monitor the 
environment where users are emerged. This process 
is fully automatic. In the context of code 
development, Hackystat (Johnson et al., 2004) 
provides sensors to collect data generated by 
developers while they code. Hackystat sensors 
capture real-time developer’s programming events 
and store them in a database without developer’s 
intervention. The implicit data acquisition 
mechanism makes it suitable for user’s dynamic 
modeling. 

After data acquisition comes the Model 
Induction step. In general, supervised machine 
learning algorithms are used to induct a model from 
historical data. Algorithms like Decision Trees and 
SVM (Nguyen, 2009), Naïve Bayes (Wen et al., 
2008) or Artificial Neural Networks (Chen and 
Norcio, 1991) are used. The main challenge in 
supervised learning is to find available labeled data 
to be used in the training step of the induction 
process. In our context, this inducted model will be 
used to evaluate the data collected in real time from 
a given user in order to class the user according to a 
specific type (more details in section 4). 

Once a machine learning model is inducted, 
starts the Applying Model step where the model is 
used to infer the actual user type. 

Finally, the Maintaining Model is performed to 
keep the user model updated. In a dynamic user 
model, the system makes it automatically, 
monitoring and observing user’s actions. 

Maintenance involves the re-train of a machine 
learning based algorithm.  

The section 5 presents a method for developers 
modelling based on these steps. The next section 
presents the features we are using to model a 
developer and consequently to compose the user 
model. 

4 THE DEVELOPER MODEL  

The previous section presented the user model 
composition. The first step is to identify the set of 
features that will compose the user model. The set of 
features is gathered during the user interaction with 
the environment where he takes part of. In the 
context of software development and, in special, 
source code implementation, the environment is an 
IDE (Integrated Development Environment). 
Moreover, we intend to model developers with 
respect to the quality of their final work: source 
code. Thus, we are proposing a set of features 
related to software quality metrics. The idea is 
simple: to collect and to evaluate, in real time, a set 
of 20 object-oriented (OO) metrics. In addition to 
these metrics, we are using data related to good 
programming practices and developer’s 
programming errors. We assume that this set of 
features can be used to model a developer and also 
to estimate the quality of his work. 

Source code quality can be measured by software 
metrics regard to complexity, testability, reusability 
and maintainability. These quality software metrics 
seek to manage and reduce structural complexity, 
improve maintainability and source code 
development, and consequently the software itself 
(Yu and Zhou, 2010). Studies such as (Filó et al., 
2015); (Silva et al., 2012); (Li, 2008); (Oliveira et al. 
2008); (Olague et al., 2006),; (Anderson, 2004); 
(Horstmann, 2005), and (Oliveira et al., 2008) report 
that source code metrics may indicate situations of 
code quality increasing or decreasing regard to 
maintainability, testability, reusability and 
complexity.  

The set of 20 metrics, shown in Table 1, were 
grouped in four different categories: complexity 
metrics, inheritance metrics, size metrics and 
coupling metrics. The first category groups 
complexity metrics, considering that more complex 
classes and methods may turn the source code more 
difficult to understand, maintain and test ((McCabe, 
1976), (Chidamber and Kemerer, 1994), 
(Henderson-Sellers, 1996) and (Martin, 2002)). The 
following metrics: McCabe’s cyclomatic complexity 
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metric, weighted methods per class metric, lack of 
cohesion in method metric, and nested block depth, 
can indicate code complexity situation ((Anderson, 
2004), (Olague et al., 2006); (Oliveira et al., 2008) 
and (Horstmann, 2005)). 

The second category groups the following 
metrics: Depth of inheritance tree, number of 
children, number of overridden methods and 
specialization index metrics. They form the 
inheritance category, since they can indicate 
abstraction and software maintenance problems 
((Chidamber and Kemerer, 1994); (Schroeder, 1999) 
and (Henderson-Sellers, 1996)). 

The size metrics like method lines of code, 
number of attributes per class, number of static 
attributes, number of static methods, number of 
parameters, number of interfaces and number of 
packages can indicate understanding, maintenance 
and reuse code problems (Henderson-Sellers, 1996); 
(Harrison et al., 1997). 

Finally, strong coupling in software turn more 
difficult to maintain, modify and reuse code. 
Coupling can compromise code abstractness and 
stability. Afferent and efferent coupling, instability 
metric, abstractness and normalize distance from 
main sequence are metrics that can indicate code 
coupling (Martin, 2002). 

Table 1: Software Quality Metrics Excerpt. 

Metric influence on code 
quality 

Metric 

Complexity Metrics 
 
More complexes 
code/class/method more 
difficult to understand, 
maintain and test.  

McCabe's Cyclomatic complexity metric 
- MCC 
Weighted Methods per Class metric -
WMC 
Lack of Cohesion in Method metric- 
LCOM*   
 Nested Block Depth – NBD 

Inheritance Metrics 
 
Can indicate problems of 
abstraction and software 
maintenance.  

Depth of Inheritance Tree - DIT 
Number of Children – NOC 
Number of Overridden Methods – 
NORM 
Specialization Index - SIX  

Size Metrics 
 
Can indicate problems of 
understanding, 
maintenance and reuse.  

Method Lines of Code -MLOC 
Number of Attributes per Class - NOA 
Number of Static Attributes - NSF 
Number of Static Methods - NSM 
Number of Parameters - NOP 
Number of Interfaces - NOI 
Number of Packages – NOP 

Coupling Metrics 
 
Strong coupling in 
software is more difficult 
to maintain, modified, 
reused. 
Can compromise code 
abstractness and stability.  
 

Afferent Coupling - Ca  
 
Efferent Coupling – Ce 
 
Instability metric - I, named here as RMI 
 
Abstractness - A, named here as RMI 
 
Normalize Distance from Main Sequence 
– D 

 
Each metric in table 1 has its own range that can 

be used to evaluate the real state of the source code. 

For instance, the metric McCabe's Cyclomatic 
(MCC) measures the complexity of the code. It has 
the following range: 

 
low: 1 ≤ MCC ≤ 10 
moderate: 10 < MCC ≤ 20 
high: 20 < MCC ≤ 50 
very high: MCC > 50 
 

In this case, the ideal situation should place this 
metric in the low level (Anderson, 2004). 

In addition to the metrics, data related to 
programming practices and developer’s 
programming errors were used as features. They are: 
Debug, Breakpoint, Refactoring, Code Error and 
Number of Errors. The Debug feature is used to 
indicate whether the developer has used the 
debugger or not. Breakpoint indicates whether the 
breakpoint feature was used. Refactoring indicates 
whether refactoring has occurred, that is, whether a 
method, attribute, or class has been renamed, 
removed, or moved. The Code Error feature refers 
to code errors committed by developers at coding 
time. Number of errors indicates the total number of 
errors committed for a code error. 

The next section presents the method for 
developer modeling based on these features.  

5 DEVELOPER MODEL 
CONSTRUCTION 

In this section, we present a machine learning based 
method for modeling developers. The method 
consists of different steps respecting the dynamic 
modeling process presented in section 3. Figure 1 
shows all four steps.  

It is important to note that the method is based on 
the principle that developers can be modeled 
according to data gathered online during coding. 
Once the data is available the system can class a 
developer in one of n different classes. In our 
context, a class represents the programming skill 
level of a developer. Even if the number of classes 
may be irrelevant for our approach, we fixed the 
number of programming skills in 3 levels (classes): 
basic, intermediate, and proficient. Thus, at the end 
of Step 3 (model application) a developer is 
classified as a basic developer, intermediate 
developer, or proficient developer. The level is a 
combination of all features (metrics). Thus, the 
quality (Q) of the source code produced by a 
developer  classified  as  basic  is worse than the one  
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classified as proficient: Qbasic < Qintermediate < Qproficient. 
We assume that historical data is available for 

classifying developers according to this 
classification. 

Classification
Task

ML Algorithm

Data Acquisition 
Sensors

Model 
Acquisition

Model
Classification

Model
Application

Model
Maintenance

Step 1 Step 2 Step 3 Step 4

Historical
database

 

Figure 1: The method overview. 

The first step, Model Acquisition, refers to 
collecting data to compose the developer’s model. 
The data is gathered during coding by sensors. 
Sensors should be linked to the IDE developers are 
using in a non-invasive way (as shown in Figure 2). 
Two type of data are collected: code quality metrics 
and programming practice. A new instance is 
created in the database every time something 
changes in the developer model: a metric value or a 
programming practice event. 

 

Figure 2: Data collection process. 

The resultant database is used to train a 
supervised machine learning algorithm. A 
supervised algorithm needs labeled data. This 
means, for each instance, to label it as one of the 
defined classes. In our case: basic, intermediate, or 
proficient. To the best of our knowledge there is no 

database available in the literature labeling 
developers according to their programming skills. 
To be able to evaluate our approach we developed 
our own database. Details are given in section 6.  

The second step, named Model Classification, 
trains (inducts) a learning algorithm to build a 
classifier model. The model is used to classify 
developers into different classes (levels). The train 
process uses the labeled database produced in the 
previous step. A classifier must be chosen. A 
validation schema, such as cross validation should 
be set. We present in the next section an experiment 
evaluating different classifiers with different 
configurations. In our case, the decision tree 
algorithm C4.5 (Quinlan, 1993) achieved the best 
results. 

The third step, Model Application, should be 
also integrated as a plugin to the IDE used by 
developers. The plugin allows developers to be 
classified in real time. As sensors collect new 
developer’s features (which are added to the 
historical database), the data is used to evaluate the 
developer. Figure 3 shows schematically how it is 
done. 

IDE

Sensor B Dynamic ModelSensor A

Historical
Database

New
features Classification

Start

Developer i

End

 

Figure 3: Dynamic model application. 

At the end of the process a developer i receives a 
label (basic, intermediate, or proficient). The 
classification of a specific developer can change 
over time since a new classification is done every 
time the code is changed. The class assigned to a 
developer is a consequence of his contribution to the 
source code. 

The last step, Model Maintenance, should be 
executed to re-train the model that classifies the 
developers. It is the opportunity to improve the 
accuracy of the model using new data generated 
continuously by developers. It is recommended to 
execute this step every time a new project begins. 
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6 DEVELOPER MODEL 
DATABASE CONSTRUCTION 

In this section, we detail experiments to test our 
proposed method for developer modeling. A Java 
prototype was implemented using Hackystat 
(Johnson et al., 2004) sensors (to gather 
programming practice data) and the plugin Metrics 
for Eclipse (www.metrics2.sourceforge.net) (to 
gather software quality metrics data).  

Different classifiers were evaluated: k-Nearest 
Neighbors algorithm (k-NN), C4.5, Naive Bayes, 
Multilayer Perceptron (MLP) and Support Vector 
Machines (SVM). The WEKA version of each 
algorithm was used in the prototype (Hall et al., 
2009). All classifiers were trained and evaluated 
using cross-validation. 

We have mentioned in the foregoing that, to the 
best of our knowledge, there is no database available 
in the literature labeling developers according to 
their programming skills. This motivated us to 
develop our own database. The database must have 
data enough to be used in the model induction. 
Unfortunately, it is not simple to find several 
voluntary professional developers to participate in 
the process of gathering quality metrics data. Thus, 
we invited 57 undergraduate computer science 
students to help in this process. All of them were 
enrolled in the Bachelor of Computer Science at the 
Pontifícia Universidade Católica do Paraná - Brazil 
(PUCPR). This undergraduate course has six 
consecutive programming courses (one course per 
semester). All six courses have Java as the main 
programming language. From the total of 57 
students, 19 students were finishing the second 
semester, 19 students were finishing the fourth 
semester and 19 students were finishing the sixth 
semester. They were labeled respectively as basic, 
intermediate, and proficient. The basic level 
represents less experienced students with up to 1 
year of Java language programming. Intermediate 
level concentrates students with 1 to 2 years of 
language programming, and proficient level 
concentrates the most experienced students, with 
Java language knowledge around 3 to 4 years. 

Each participant received a two-page document 
specifying a system to be coded. The system was 
very simple to code: an application to compute the 
body mass index (BMI). A section of two hours was 
set to code the system. Each developer had available 
an instance of Eclipse (www.eclipse.org) configured 
with a plug-in that gathered all metrics and data 
generated during code (set of features presented in 
section 4). The number of instances generated for 
each developer varies according to their 

programming style, coding speed, and so on. Table 2 
shows the number of instances for each group of 
developers. 

Table 2: Instances distribution per programming skill. 

Programming Skill Instances 

Basic 665 

Intermediate 847 

Proficient 679 

Total 2,191 

The Database stores data instances, where each 
instance corresponds to a developer profile that has 
been collected over time. Data instances are 
composed by the following fields: WMC – 
Weighted Methods per Class metric, LCOM* - Lack 
of Cohesion in Method metric, NBD – Nested Block 
Depth metric, DIT – Depth of Inheritance Tree 
metric , NOC – Number of Children metric, NORM 
– Number of Overridden Methods metric, SIX – 
Specialization Index metric, MLOC – Method Lines 
of Code metric , NAC – Number of Attribute per 
Class metric, NSF – Number of Static Attribute 
metric, NSM – Number of Static Methods metric, 
PAR – Number of Parameter metric, NOI – Number 
of Interfaces metric, NOP – Number of Package 
metric, I – Instability metric, A – Abstractness 
metric, Dn – Normalize Distance from Main 
Sequence metric, Debug, Breakpoint, Refactoring, 
ErrorCode, ErrorQty. Quality metrics data are 
collected using Metrics and programming practice 
events are collected using Hackystat. Thus, each 
instance is composed by 22 characteristics plus 
developer's level (basic, intermediate or proficient).  

The database is available at: 
https://www.ppgia.pucpr.br/~paraiso/Desenvolvime
ntoColaborativoDeSoftware/completo_perfil_desenv
olvedor.arff. 

7 EXPERIMENTS AND RESULTS 

First, we evaluated the selected classifiers.  
Classifiers were evaluated using 10-fold Cross 
Validation. All parameters were set to their default 
values. Table 3 shows the accuracy for each 
classifier. After statistical analysis, the C4.5 
algorithm proved be the best for the task of 
classifying developers according to their skills.  
Table 4 shows the overall f-measure results for 
every programming skill.   
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Table 3: Classifiers accuracy. 

Classifiers Accuracy 
C4.5 90.96% 
MLP 86.44% 
3-NN 85.08% 
SVM 79.37% 
Naive Bayes 65.91% 

Table 4: F-measure: class X classifier. 

Classifier F-Measure 

basic intermediate proficient Weighted 
avg. 

C4.5 0.899 0.934 0.890 0.910 
MLP 0.857 0.879 0.854 0.865 
3-NN 0.838 0.872 0.837 0.851 
SVM 0.806 0.785 0.791 0.793 
Naive Bayes 0.726 0.559 0.666 0.634 

Results are promising and give us good 
indications that developer modeling can be used in 
real cases. These results need to be confirmed when 
new databases become available.  

The results among classes (programming level) 
are uniform. The C4.5 algorithm achieved an 
accuracy of 90.96%. The lowest classification error 
was registered for the basic level. The confusion 
matrix shows that are some confusing involving 
intermediate developers and basic developers. This 
is probably due to the fact that some students 
enrolled in the fourth semester were also enrolled in 
the second semester. The confusion matrix also 
showed that some intermediate students (developers) 
were confused with proficient students. This is due 
to the fact that some students in the fourth semester 
had professional experience (as developers) in the 
industry. 

We inspected the rules generated in the decision 
tree (C4.5). The quality metrics is more important 
than the programming practice data. However, in 
misclassified instances those features (programing 
practice) seems to be relevant. We are working in 
this analysis and the results will be subject of future 
publication. 

8 CONCLUSIONS AND FUTURE 
WORKS 

High-quality software reduces repairs needs and 
rework. Successful organizations use to measure 
their main activities as part of their day-to-day tasks 
(McGarry et al., 2002). Software metrics allow 
measurement and evaluation, controlling the 
software product and processes improvement 
(Fenton and Neil, 2000); (Kitchenham, 2010). In this 
study, we proposed a machine learning-based 
approach to model developers using quality software 

metrics. Developers are modelled on the fly. A set of 
quality metrics was selected to compose the 
developer model. The model enables a less 
subjective classification of developers. It allows a 
better distribution of tasks among developers. It also 
allows a precise analysis of the code generated by 
each developer.  The method is non-invasive.  

Experiments were carried out and showed that 
our approach is promising. Considering our results it 
is possible to build a developer dynamic model 
based on source code data produced by him. 
Through code quality metrics and programming 
practices events research results indicate the 
possibility of developers skills level different 
classification. 

In the future, we intend to extend the existing 
sensors and use new sensors to collect other 
developer’s features. It is our intend to apply this 
experiment with developers from industry. We also 
plan to use the actual value of quality metrics to give 
tips on how to evolve the code to improve each 
metric. 

Resultant rules generated by the decision trees 
are also part of our future works to better understand 
the role of each feature in classification process 

Finally, we are working in a new method to be 
used with legacy code. In this scenario, a distributed 
version-control platform is used to collect source-
code. 
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