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Abstract: In this paper, we propose a method for recognizing threesdgional (3D) objects using multi-view depth
images. To derive the essential 3D shape information exftidficom these images for stable and accurate 3D
object recognition, we need to consider how to integratdgdahapes of a 3D object. To address this issue,
we introduce two ideas. The first idea is to represent a patigpe of the 3D object by a three-dimensional
subspace in a high-dimensional vector space. The secoadsde represent a set of the shape subspaces as
a subspace on a Grassmann manifold, which reflects the 32 slighe object more completely. Further,
we measure the similarity between two subspaces on the Gaassmanifold by using the canonical angles
between them. This measurement enables us to constructeastadte and accurate method based on richer
information about the 3D shape. We refer to this method baseslibspaces on a Grassmann manifold as the
Grassmann mutual subspace method (GMSM). To further erhthegerformance of the GMSM, we equip
it with powerful feature-extraction capabilities. Theiddtly of the proposed method is demonstrated through
experimental comparisons with several conventional nitlom a hand-depth image dataset.

1 INTRODUCTION images as a byproduct of the factorization method
(Tomasi and Kanade, 1992). In this paper, we gen-
erate a shape subspace directly from a depth image
by sampling 3D points randomly from its 3D surface
mesh.

Depth images represent a very informative resource
with which to construct a method for recognizing
three-dimensional (3D) objects. Because it is now rel-
atively easy to capture depth images, many methods To realize more stable and accurate 3D object
using either individual depth images or depth image recognition with multi-view depth images, we need to
sets have been proposed (Dreuw et al., 2009; Jian_integrate the partial Shapes from multi-view depth im-
guo et al., 2010; Jamie et al., 2012; Shen et al., 2012;ages into a more complete 3D shape. This is because
Yu et al., 2014; Song and Xiao, 2014; Stefania et al., €ach depth image can capture only part of the shape
2014; Watanabe et al., 2014). In this paper, we dis- Of the 3D object. In our setting, we need to consider
cuss a method for recognizing 3D objects from multi- how to integrate a set of shape subspaces into one rep-
view depth images. This method is based on subspacd€sentational form.
representation with a Grassmann manifold. To address the above integration problem, we fo-
The proposed method is motivated by the con- cus on methods based on image sets, which have
cept of a shape subspace, which can compactly rep-been attracting much attention in the field of computer
resent the geometrical structure of a set of featurevision. In particular, the mutual subspace method
points from a 3D object (Kanade et al., 1997). Be- (MSM) (Yamaguchi et al., 1998) is a well-known and
cause the shape subspace concept is simple and scaliseful image-set-based method. The essence of the
able, it has been used in various recognition methods,MSM is to represent a set of images as a subspace
such as an identification method based on the geometdin a high-dimensional vector space (Lee et al., 2005;
rical structure of micro-facial-feature points (Yosuke Ronen and David, 2003). Once two sets of images are
and Kazuhiro, 2011; Yoshinuma et al., 2015). Shape represented as two subspaces, we can easily measure
subspaces were originally generated from sequentialthe similarity between two sets by using the canonical
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Three-dimensional Object Recognition via Subspace Representation on a Grassmann Manifold

angles between the two corresponding subspaces.

To incorporate this idea of subspace representa-
tion into our problem for sets of shape subspaces, we
introduce the concept of a Grassmann manifold, in
which a shape subspace is represented by a point or "
the Grassmann manifold. Although it is complicated
to operate directly on data on a Grassmann manifold,
embedding the Grassmann manifold into a reproduc-
ing kernel Hilbert space by using a Grassmann ker-

//Shape
Subspaces

nel makes the operation easier to implement. In this ' SR ,
case, we can apply kernel principal component anal- l191l- ] =
ysis (PCA) with a Grassmann kernel to a set of shape Subspace Gp SUbSpaCGGQ
subspaces as we would for a usual vector space, anc

we refer to this PCA as Grassmann PCA (GPCA). Grassmann

The details of this process will be described later. Fig- Manifold G

ure 1 shows a conceptual diagram of our subspace

representation on a Grassmann manifold, where two Figure 1. Subspace representation on a Grassmann mani-

sets of Shape Subspaces are represented by SUbSpaC&d' By introducing this representation, a set of Shape sub

Gr and G, respectively. These subspaces reflect spaces can be rgpresented compactly by a subspace on the
Grassmann manifold.

more complete 3D shapes of the two types of hand

shape.

Igurthermore, we measure the similarity between explgin the algorithm of the proposed framework. In
G» and G, on the Grassmann manifold by using the Section 5, we present experiments with ha_nd-shape
canonical angles between them. This measuremen@€Pth images and discuss the results. Section 6 con-
enables us to construct a more stable and accuraté!udes the paper.
method with richer information about a more com-
plete 3D shape.

We refer to this extension of MSM on a Grass- 2 BASIC IDEA
mann manifold as the Grassmann mutual subspace
method (GMSM). Mutual subspace methods have Qur basic idea is derived from the assumption that
been extended to the constraint MSM (CMSM) the distribution of shape subspaces from multi-view
(Fukui and Yamaguchi, 2003) and orthogonal MSM  depth images of a 3D object represent its shape more
(OMSM) (Kawahara et al., 2007) by incorporating completely. Under this assumption, we integrate the
powerful feature extractions. Motivated by these ex- partial 3D shapes of the obtained shape subspaces into
tensions, we construct the CMSM and OMSM on a one representational form for a more complete 3D
Grassmann manifold and refer to them as GCMSM shape by using subspace representation on a Grass-

and GOMSM, respectively. mann manifold.

The main contributions of this paper are summa-
rized as follows. 2.1 Subspace Representation in Vector
1) We introduce a method for generating a shape Space

subspace from a depth image.

2) We propose a method for integrating multiple The integration of shape subspaces was motivated by
Shape Subspaces obtained at multi-view points by the success of the MSM in 3D object recognition, as

introducing subspace representation on a Grass-mentioned previously. The MSM is one of several
mann manifold. useful image set-recognition methods used for recog-

- nizing various objects, such as faces and hands (Fukui

3) We demonstrate the validity of the proposed 4 yamaguchi, 2003; Ohkawa and Fukui, 2012).

method through experiments with a dataset of Figure 2 shows a conceptual diagram of the MSM.

hand-shape depth images with 10 classes. The validity of the MSM is due to the fact that a

The rest of this paper is organized as follows. In set of multi-view images of a 3D object can be rep-
Section 2, we describe the basic idea of the proposedresented compactly by a low-dimensional subspace
method. In Section 3, we describe the details of the in a high-dimensional vector space. For example, a
proposed method, which is based on subspace represet of frontal facial images of a certain person under
sentation on a Grassmann manifold. In Section 4, we various illumination conditions is contained within a
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2.2 Subspace Representation on a

Multi-view data

Sin Grassmann Manifold
Multiview data Subspace et ot Our integration idea is based on the concept of a
s, s s, Grassmann manifold. In our setting, the targets to be
_ m _ considered are not vectors but shape subspaces. Nev-

ertheless, we expect that the validity of the subspace
JPCA representation used in the MSM can also work for
a set of shape subspaces on a Grassmann manifold,
thanks to the following useful characteristic.
Subspace Grassmann manifold; (m,D) is defined as a set
Class S, of m-dimensional linear subspaces &P, where a
subspace in vector spad® is represented as one
point on the Grassmann manifold.
As we mentioned previously, to make our idea
Figure 2: Conceptual diagram of MSM. This statistical clas- €asier to implement, we utilize the technique of em-
sification method approximates patterns with subspaces bybedding a Grassmann manifold into a reproducing
using principal component analysis (PCA) to recognize in- kernel Hilbert space by using a Grassmann kernel
put patterns from canonical angles. (Hamm and Lee, 2008). In this paper, we use the

. . . . __projection kernel (Hamm and Lee, 2008) as a kernel
nine-dimensional subspace. Because the face d'rec"function which is defined as follows:

tion may indeed change, the necessary dimensional-

ity may be higher than nine, but its upper limit is still K(S81,52) =sim(51,.52) , 3)

much lower than that of the original vector space. L .
The MSM classifies an input subspace by using wh(;:-/(/e3|m|s that defined by EC(P?)- 0 g

the canonical angles between the input and reference  VVe cannot operate on a shape subspace mappe

subspaces. We now proceed to define a canonical an" thesGrassmannumanifoldawhen usingsthel kernel

gle trick with the Gaussian kernel. However, we can
Civen am-dimensional shape subspace andan calculate the inner product between two given points
dimensional shape subspace, wherem, the canon- (shape subspaces) on the manifold through the Grass-

ical N E=n) iQdefi mann kernel function.
ical-angle8i (i - &) JEl#ITIRd 5F The similarity between an input point (shape sub-

Subspace
Class S;

Vector space

€c0sB; = max maX'u,iT'vi spacesS) and a reference point (shape subspsGe
UiICSI VIS, can be calculated as follows:
stlull =lfwll =1 wiv; =viu; =0 () 1 (S) =K(5.5)). (4)

Several methods can be used to calculate canonica
angles (Maeda and Watanabe, 1985; Harold, 1936;
Afriat, 1957). LetQ; andQ, denote the respective
orthogonal projection matrices of subspaggsand

S»; for instance,co$6; is the eigenvalue 0Q;Q,

|By using this relationship, we can apply PCA also
to a set of multiple points (shape subspaces) on the
Grassmann manifold as we would to a standard vec-
tor space.

; Figures 3 and 4 show the validity of the subspace
or Q;Q;. The largest eigenvalue corresponds to the representation on a Grassmann manifold, where the

smallest canonical anglg;, and the second-largest =" ~==.
eigenvalue corresponds to the second-smallest canong'Str'bUtIonS of shape subspaces of three hand-shape

: : L classes are visualized by using the multi-dimensional
ical angleB; in a direction orthogonal to that ;. . . .
The vagllueszcos’-ei (i=3,....n) arge calculated si?ni— scaling (MDS) (Michael and Trevor, 2008). In Fig. 3,

larly. The similarity between twa-dimensional sub- ;catter map shows clearly the difficulty.of distinguish-
spac;essl andss, is defined as ing the three classes. In contrast, Fig. 4 shows the

distributions of “subspaces” on the Grassmann mani-
. 12 fold, where each subspace was generated from a set of
sim($1, 52) = — _Zlcoszei. (2)  multiple shape subspaces belonging to the same hand
= class. These visualizations show that the subspace
If two shape subspaces overlap completaiyn is representation improves the class separation signifi-
unity because all canonical angles are zero. In con-cantly.
trast, if two shape subspaces are orthogonal to each
other,simis zero.
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A 3D mesh generated
from a depth image 3D feature points

Figure 5: Random feature extraction. 3D feature points on
the 3D mesh are obtained from the depth image.

_ o _ generate a shape subspace from a single depth image
Figure 3: Distribution of shape subspaces (points) on the by sampling 3D feature points randomly on the 3D
Grassmann manifold. mesh that is obtained from the depth image (Fig. 5).

Assume thafl 3D feature points were extracted
from a given depth image. In that case, shape sub-
spaceS would be spanned by the three column vec-
tors of aT x 3 matrixSthat is defined as follows:

X1 Y1 4
X2 Y2 2
-
S= (s1,82,...,8T) = A N )
XT Y1 Zr

wheresp = (Xp,Yp,Zp) | (1< p < T) denotes the po-
sitional vector of 3D feature poirg.

3.2 Integration of Shape Subspaces on a
Grassmann Manifold

Figure 4: Distribution of subspaces on the Grassmann man-
ifold, where each subspace was generated from a set of mul-

tiple shape subspaces belonging to the same class. We integrate all the shape subspaces corresponding

to partial shapes into one subspace corresponding to
the whole shape by using the concept of a Grassmann
manifold. To achieve the integration, we apply PCA

3 PROPOSED METHOD to a set of shape subspaces mapped onto the Grass-
mann manifold.
In this section, we firstly describe the definition of The nonlinear function¢ maps a three-

shape subspaces and how to generate them. Walimensional shape subspacg of RT onto a
then describe subspace representation on a Grasssubspace on the Grassmann manifoff(3,T),
mann manifold in detail. Finally, we describe our ¢:RT — G(3,T), S — ¢(S). To perform PCA on

GMSM, GCMSM, and GOMSM algorithms. the mapped shape subspaces, we need to calculate the
inner product(¢(51) - #(S2)) between the function
3.1 Generation of Shape Subspace values. We can calculate this through a kernel

function k($1,52). The PCA of the mapped shape
A shape subspace is defined as a three-dimensionafuPspaces onto the Grassmann manifold is kernel
subspace in a high-dimensional vector space. Itis in- PCA with the Grassmann kernel (GPCA), and the
variant under an affine transformation of the set of Nonlinear subspace generated by doing so is the
feature points (Costeira and Kanade, 1998), such asSubspace» on the Grassmann manifolgl(3, 7).
that caused by camera rotation or object motion. This ~ Given Gj of classk generated fronti training
property is useful for 3D object recognition. Gener- datasf(l =1,...,L), theM orthonormal basis vectors
ally, shape subspaces are generated by applying theaik(i =1,...,M), which span the subspa% on the
factorization method (Tomasi and Kanade, 1992) to Grassmann manifold, can be represented by a linear
sequential images. However, in our framework, we
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combination oip(5¥) as
L

e =3 a5l (6)
=]

Here, the coefficiena!| is thel-th component of the

eigenvectoa}‘ corresponding to thieth largest eigen-
valueA; of theL x L Gram matrixK that is defined as

Ka = MAa (7)
ki = (oS d(S)
= k(SK.S6),

wherea is normalized to satisf)(a-a) = 1. We use

3.4 Grassmann CMSM

The CMSM carries out the MSM using the class sub-
spaces that are mapped onto the constrained space
(Fukui and Yamaguchi, 2003). In the CMSM, a gen-
eralized difference subspace (GDS) (Fukui and Maki,
2015) is utilized as the constrained space; this sub-
space is obtained after deleting the common part of
all class subspaces. Therefore, we can enhance the
discriminatory ability by using the CMSM.

We construct the nonlinear kernel constrained mu-
tual subspace method (KCMSM) by applying the
MSM to the class subspaces that are mapped onto

the projection kernel from Eq. (4) as the kernel func- the nonlinear constrained space. The GCMSM is the
tion. We can compute the projection of the mapped KCMSM with the Grassmann kernel.

¢(5) onto thei-th orthonormal basis vectel of the
subspaceX as

L
(D(S):¢) = Y afk(S, ). (8)
=1

Assume that we obtairN orthogonal bases

wi(i=1,2,...,N) of subspacej, on the manifold
and M orthogonal bases; (i=1,2,...,M) of sub-
spaceG, on the Grassmann manifold, whe¥e< M

by GPCA. In this case, the canonical angb§ =

1,...,N) between subspaceg, and G, can be cal-
culated as

cod; = max maxui' v
WEGP VIEGQ

st.fuill = Jlwill = L, wiTvoj = viTuj=0. (9)

3.3 Grassmann MSM

3.5 Grassmann OMSM

Inthe OMSM (Kawahara et al., 2007), firstly the class
subspaces are made orthogonal to each other and then
the MSM is applied to them. This orthogonalization
can enhance the discrimination ability of the MSM.

We construct the nonlinear kernel orthogonal mu-
tual subspace method (KOMSM) by applying the
MSM to the orthogonalized class subspaces. The
GOMSM is the KOMSM with the Grassmann kernel.

4 PROPOSED FRAMEWORK
FOR 3D OBJECT
RECOGNITION

The GMSM involves applying the MSM to two sub- In this section, we firstly describe the correspondence
spaces on a Grassmann manifold given referenceProcess of feature points that we need to conduct be-

multi-view shape subspacﬁ#(l —1,...,Ny) foreach fore calculating the similarity between two shape sub-
class. Y spaces. Next, we explain the flow of the proposed

. framework for 3D object recognition.
Training Phase

By applying GPCA to shape spacss for each
class, we generate reference subsp%sn the
Grassmann manifold, the process of which was |n our framework, although a shape subspace can be
described in Sec. 3.2. generated as the column space of a matrix, as men-
Recognition Phase tioned in Sec. 3.1, the shape subspace can change

1. By applying GPCA to input multi-view shape when tr:jetord?rtof Its fteaéurte points qhan?eﬁ. Thus,
spacessi(i — 1,...,Nin), we generate an input we need to relate points between an input shape ma-

subspaceg!! on the Grassmann manifold in the :L'X a.ndlla rtefiretnce Sh{’:rl]petmatnx beforegalculﬁtmg
same way as in the training phase. e similarity between the two corresponding shape

o . subspaces.
2. We calculate the similarity defined as Eq. (11) be-

A - ” In this correspondence process, we use the first
tween the inputjy and each referenagy onthe  jnoyt shape matrixS; as the reference. In other
Grassmann manifold.

_ words, the row elements & (i = 2,...,Njy) andS¢
3. The inputGy is placed into the class with the are sorted based on those®f For the correspon-
highest similarity. dence, we use the iterative closest point (ICP) algo-

4.1 Correspondence of Feature Points
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‘ Classification phase ‘ % Training phase

N, multi-view Nj, multi-view depth images “ ‘
- depth images Classk (k=1,..,0)
Feature|Extraction Feature IExtruction % v &1 ' b
v - h 4
‘ Shf‘pe matrices . Shape matrices ‘ Figure 7: Sample images of hand-shape data. These data
S (i=1,..,Ny) St =1, Nk,k =1..,0) contain 10 categories.

input subspaccgjz? by applying the algorithm of
the proposed method, that is, GMSM, GCMSM,
or GOMSM.

5. The input subspacg‘iﬁ‘ is placed into the class
with the highest similarity.

ICP Algorithm

GM‘SM GCMSM or G()MSM

Similarity

Figure 6: Diagram of proposed framework consisting of
training phase and classification phase.

5 EVALUATION EXPERIMENTS
ON HAND SHAPE

rithm (Paul and Neil, 1992). Note that the above cor-
RECOGNITION

respondence process is heeded in both the training
and classification phases.
In this section, we demonstrate the validity of our
proposed method through two types of experiment
using the depth images of 10 hand-shape classes.
We consider the problem of classifying a whole in- Firstly, we examined the characteristics of our sub-
put shape that is represented by a set of multi-view space representation on a Grassmann manifold. Sec-
depth images into one & shape classes. Figure 6 ondly, we conducted an experiment to evaluate the
shows the diagram of proposed framework consisting proposed method in comparison with conventional
of training phase and classification phase. Given a setmethods such as Grassmann discriminant analysis
of Nk depth images for each class, the detailed process(GDA) (Hamm and Lee, 2008), which is well known
is summarized as follows. as an effective classification method on Grassmann
manifolds.

4.2 Flow of the Proposed Framework

Training Phase

1. We extract the feature point sets from all refer- 5.1 Experimental Setup
ence multi-view depth images using the method

described in Sec. 3.1. We used a depth sensor (Microsoft Kinect v2) to cap-

2. We set reference shape matriced(l =
1,...,Ngk=1,...,C) asin Eq. (6).

Classification Phase
1. We extract the feature point sets from input multi-

view depth images in the same way as in the train-

ing phase.

2. We set the input shape matricg$i = 1,...,
in the same way as in the training phase.

Nin)

ture 20 depth images of 5 subjects across 10 cat-
egories (5« 20x 10 = 1,000 images) as shown in
Fig. 7. Each subject sat in a chair that was approxi-
mately 05 maway from the sensor. To capture multi-
view depth images, we asked each subject to rotate
their wrist in order to change the appearance of their
hand, as shown in Fig. 8. We cropped the hand re-
gion from each depth image and then extract€iD0
points randomly from the 3D mesh obtained of the
hand, as shown in Fig. 9.

3. We conduct the correspondence process between

the input shape matrice§ and reference shape
matricesS

5.2 Validity of Subspace Representation

4. After completing the correspondence process, we Firstly, we examined the optimal dimensionality of

calculate class subspacg$(k=1,...,C) and an

a subspace in which to represent a set of real hand-
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Figure 8: Samples of multi-view hand-shape images. Theeagttinges from zero to 70

Distribution of eigenvalue

207
18+ —C|aSS 1
16 —class 2
class 3
@ 14r class 4
< 121 —class 5
% 10t -=-class 6
> ol =-class 7
w
class 8
6r class 9
4r : ----class 10
2 I %zmmmu‘w
0 - S S

1 3 5 7 9 11131517 19 21 23 25 27
Eigenvalue number

Figure 9: Sample of the data points extracted from a depth . . Pietribg it : ;
image. Each datum consists oODO feature points. Elglér; f(:)L?éathlsr;[gEgtlon of eigenvalues when applying

shape data. We generated 100 shape subspaces fc 0.24;
each class and then generated a subspace for eac | -=-=-====-=---cc-cccoomomoo--
class by applying GPCA to a set of the 100 shape sub- 0.22 —ER
cpaces. =
Figure 10 shows how the eigenvalue changes with > 0.2
eigenvalue number; the vertical and horizontal axeswl  f------z-c-c--o-oc-o---
denote the eigenvalue and its order, respectively. This"” 0.18
indicates the representation ability of the generatedﬁ T
subspace. From this figure, we reason that a dimen- .16/ ‘ Proposed methodl
sionality of 5 is sufficient for representing a set of
shape subspaces from the real hand-shape data. 0.141
Secondly, we evaluated the performances of the
proposed methods with subspace representation anc 12—+~ P S R —
the MSM 1-nearest-neighbor (MSM-1NN) without 1 10 20 30 40 50 60 70 80 90 99
subspace representation while changing the dimen- Dimension
sionality of the class subspaces from 1 to 99. The rigyre 11: Classification accuracies of GMSM and MSM-
evaluation was done by using 100-fold cross valida- 1mMMm for different subspace dimensionalities on a Grass-
tion, and the performances were measured in terms ofmann manifold.
error rate (ER) and equal error rate (EER).

Figure 11 shows the experimental results of the 5,3 Experimental Comparison of

methods, where the vertical axis denotes the ER and Proposed and Conventional
EER and the horizontal axis denotes the dimension
of the subspace on the Grassmann manifold. From Methods

this graph, we can see that our proposed GMSM out-

performs the simple MSM-1NN in terms of ER and To verify the effectiveness of the proposed method,
EER, which means that our idea of subspace repre-we conducted a comparative experiment between our
sentation on a Grassmann manifold works effectively proposed methods (GMSM, GCMSM, and GOMSM)
as expected. and the conventional methods (MSM-1NN and GDA-
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Table 1: Dimensionalities of test, reference, and constrai

Table 2: Performances of all the methods in terms of ER

Three-dimensional Object Recognition via Subspace Representation on a Grassmann Manifold

subspaces for the different methods. and EER.
Reference| Test| Constraint ER (%)+ SD | EER (%)+ SD
GMSM 30 8 - MSM-INN | 29.62+1.01 27.00+0.85
GOMSM 30 8 - GDA-1NN 7.894+0.90 5.32+0.44
GCMSM 30 8 480 GMSM 7.85+1.55 20.26+0.86
GCMSM 9.194+1.23 4.49+0.59
INN). GOMSM 8.47+1.25 4.47+0.45

The evaluation procedure is summarized as fol-
lows: 1) We divided the 100 sequential shape sub-
spaces into the 10 data sets, which a set has 10 se—6
guential shape subspaces. A data set and the remain-
ing 9 data sets used for training and for testing, re- )
spectively; 2) To increase the number of trials, we !N this paper, we proposed a novel method for 3D ob-
generated 91 test subsets of 10 shape subspaces bfctrecognition based on subspace representation on a
sliding the window one by one over the 90 test shape Grassmann manifold. The main ideas of the proposed
subspace. The total number of trial evaluations was Method were 1) to represent a partial shape from some
910 (= 91 test subsets 10 classes). We repeat 1) and Viewpoint by a shape subspace in a high-dimensional
2) ten times by changing the training data set. The av- VECtOr space; 2) to integrate all the shape subspaces
erage and the standard deviation (SD) of the ERs andCcorresponding to partial shapes into a subspace corre-
EERSs of the 10 trials were used as the final evaluation SPonding to the whole shape on the Grassmann man-
indexes. ifold; 3) to measure the similarity between the shape

In the proposed methods, we generated a test Subsubspaces.. _
space from the 10 shape subspaces and a reference The main purposes of this paper were 1) to pro-
subspace from the remaining 90 shape subspaces foPOS€ a novel framework for subspace representation
each class. In contrast, in the conventional methods,on & Grassmann manifold and 2) to verify that it is
an input is not a set of shape subspaces but rather argffective for 3D object recognition using multi-view
individual single-shape subspace. Thus, in order to depth images. As expected, we were able to demon-
perform a fair evaluation, we defined a new similarity Strate the basic effectiveness of subspace representa-
for the conventional methods between a test subsettion on a Grassmann manifold through comparison
and a reference set in terms of the mean of the 100€Xperiments using a database of hand depth images.
similarities in the combinations of 10 testing and 10 However, to confirm the performances of the pro-
training shape subspaces. The dimensions of the tesPosed methods in more detail, we need to conduct
and reference subspaces were decided by a prelimi-€xperiments with larger datasets.
nary experiment, as shown in Table 1.

Table 2 shows the evaluation results of all the

methods. Firstly, we can see that GMSM, GCMSM, ACKNOWLEDGEMENTS

and GOMSM perform better in comparison with the
simple MSM-1NN that does not use subspace repre-p 4 ¢ this work was supported by JSPS KAKENHI
sentation on a Grassmann manifold. Secondly, we Cang .ant Number JP16H02842

see that GMSM outperforms MSM-1NN appreciably, '

meaning that our idea for subspace representation is

also valid for a set of shape subspaces on a Grass-

mann manifold, in the same way as in a vector space. REFERENCES
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