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Abstract: In real-world scenarios it is not always possible to generate an appropriate number of measured objects for
machine learning tasks. At the learning stage, for small/incomplete datasets it is nonetheless often possible to
get high accuracies for several arbitrarily chosen classifiers. The fact is that many classifiers might perform
accurately, but decision boundaries might be inadequate. In this situation, the decision supported by margin-
like characteristics for the discrimination of classes might be taken into account. Accuracy as an exclusive
measure is often not sufficient. To contribute to the solution of this problem, we present a margin-based
approach originated from an existing refinement procedure. In our method, margin value is considered as
optimisation criterion for the refinement of SVM models. The performance of the approach is evaluated on
a real-world application dataset for Motor Drive Diagnosis coming from the field of intelligent autonomous
systems in the context of Industry 4.0 paradigm as well as on several UCI Repository samples with different
numbers of features and objects.

1 INTRODUCTION

Machine Learning (ML) in the context of robust clas-
sification becomes increasingly important for data
and signal processing in modern complex applica-
tion environments. As example, such environments
might be networked Cyber-Physical-Systems (CPS)
and Multi-sensor or Information Fusion Systems in-
stalled for machine analysis and diagnosis for Indus-
try 4.0 (Niggemann and Lohweg, 2015), cognitive ra-
dio (Ahmad et al., 2010), mobile health (Yi et al.,
2014), etc. In addition to the robust classification
problem, in many real-world scenarios the following
problem occurs: a sufficient amount of training data
– depending on an adequate model – is not available,
that is, classification tasks have to be operated even
in the situation where it is not possible to run enough
measurements to generate objects for an appropriate
classifier training.

Under these constraints, established signal pro-
cessing algorithms and systems are at their frontiers,
if not even inapplicable in, e.g., scenarios with re-
source limitations, like embedded systems. The find-
ings presented here utilize a recently published robust
classifier optimisation methodology (Dörksen and
Lohweg, 2014; Dörksen et al., 2014). In (Dörksen
et al., 2014) an approach is presented where a clas-
sifier has to deliver trustful results under the opposite
constraint, i.e. large amount of objects in the samples.

The topics regarding small/incomplete samples as
well as optimisation in ML are of the certain interest
and not new in the academic area (cf. (Chapelle et al.,
2002a) and (Sra et al., 2012)). In the context of the
contribution to the topics, we rely on SVM-based clas-
sifier concepts (Boser et al., 1992; Cortes and Vap-
nik, 1995; Vapnik, 1995) and present a new margin-
based approach for classification. In our method,
margin value is considered as optimisation criterion
for the refinement of SVM models. To increase the
margin of the separation, we employ a methodology
called ComRef (Dörksen and Lohweg, 2014). Com-
Ref is a combinatorial refinement method (optimi-
sation) for classification tasks. From the time com-
plexity point of view, in this frame proposed margin-
based method requires two SVM computations and
additional calculation related to the explained below
min/max rule, which depends linearly on the number
of features. Furthermore, in the experimental part of
our paper, we show that for many samples margin-
based refinement possesses higher generalisation abil-
ity as the initial SVM discrimination. Moreover, the
results demonstrate, that the technique is especially
suitable for small/incomplete data sets, i.e., such sets
with a scarce number of objects for the description of
classes.

As supplement to the discussed topic above, in
the case a dataset is small/incomplete it is nonethe-
less often possible to get a high accuracy in the terms
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of classification rates not only for one single classi-
fier. For small samples many classifiers might per-
form accurately in terms of trained and even test data,
however, the decision boundary might be inadequate.
Especially, if real-world data processing is required
and unknown data appear, within accuracy tests cho-
sen classifier might fail. It is clear that in this case the
discrimination supported by margin-optimised char-
acteristics is more convenient than the decision accu-
racy alone.

We show our approach in experimental results for
the scenario of small datasets. They are modelled
for the dataset from the real-world industrial applica-
tion Motor Drive Diagnosis (Bayer et al., 2013) and
for UCI samples. For modelling of different grades
of incompleteness in the data, several K-fold cross-
validation tests (Alpaydin, 2010) are performed.

The paper is organised as follows. In Sec. 2 we
present related work covering multiple classification,
margin initiated classification and dimensionality re-
duction. The theoretical aspects of the approach will
be described in Sec. 3. The experimental validation
will be given in Sec. 4. Finally, the conclusions and
future work will be discussed in Sec. 5.

2 RELATED WORK

As previously mentioned in the Introduction, our ap-
proach originates from (Dörksen and Lohweg, 2014).
The shortcoming of original is its combinatorial struc-
ture, i.e. it is hardly applicable to the samples with
large number of features. We overcome this problem
by defining rules for refinement, which will be pre-
sented in Sec. 3.

Our method belongs to the class of multiple clas-
sifiers, such as, e.g. boosting methods (Freund and
Schapire, 1996) or neural networks (Hagan et al.,
1996) with more than one layer. The relation is
the following: by the initial feature combination and
down-streamed classification in the low-dimensional
space, we are able to combine two or more classi-
fiers. However, in general, the principle idea of our
approach differs from the such of multiple learners.

Furthermore, state of art is composing multiple
learners (Bag-of-classifiers, Bag-of-Feature concepts,
Ensemble Learners) that complement each other to
obtain higher classification accuracy. A survey on
combining classifiers is given in (Kuncheva, 2004);
some latest developments are found in (Zhou et al.,
2013).

Due to the fact that SVM is a margin-based clas-
sifier, the main scope of the scientific developments
originated in (Boser et al., 1992; Cortes and Vapnik,

1995; Vapnik, 1995) and derived from SVM founda-
tions might be considered as related to our work. In
this sense, some recent investigations which focus on
advantages and applications of SVM, are presented,
e.g., in the book (Ma and Guo, 2014).

State of art developments of margin-based tech-
niques are such originated by Multiple Kernel Learn-
ing (Chapelle et al., 2002b) or, e.g., radius-margin-
based methods presented in (Do et al., 2009). Further,
there is a number of publications describing Large-
Margin-Nearest-Neighbour Classification (cf. (Wein-
berger and Saul, 2009)).

Dimensionality reduction (DR) methods are re-
lated to our work. In general, ComRef method which
we extend to the margin-based refinement, originates
from DR. From the ML point of view, DR is often
motivated by the increasing of the generalisation abil-
ity (Guyon et al., 2006). DR is based on the problem
of selecting subsets of most useful, i.e., relevant and
informative features, and ignoring the rest. Other mo-
tivations of the DR are, e.g., data reduction and data
understanding. A profound survey regarding DR do-
main can be found in (Benner et al., 2005); nonlinear
dimensionality reduction methods (Lee and Verley-
sen, 2007); some recently published studies are pre-
sented in (Pei et al., 2013).

In the variety of DR methods, the most closely re-
lated ones w.r.t. our approach are the feature weight-
ing methods. A survey on the weighting methods is
found in (Blum, A. L. and Langley, P., 1997).

3 APPROACH

In the framework of this contribution, we restrict
our considerations to classifiers whose decision rules
can be represented as weighted feature combina-
tions. Due to the margin-based nature of the proposed
method, we concentrate on the SVM model. However,
in general, we expect our approach to be applicable to
other classification models, e.g., LDA or PCA with a
suitable definition of a margin.

The basic idea of the SVM model is to maximize
the margin, which is the distance from the hyper-
plane to the objects closest to it on either side (Al-
paydin, 2010; Cortes and Vapnik, 1995). Thus, the
margin plays a crucial role in the design of support-
vectors-based (SV) learning algorithms (Schölkopf
and Smola, 2002).

The idea of our proposal is to increase the mar-
gin without increasing the complexity of the model
(VCdim (Vapnik, 1995)). In that context, the com-
plexity of the model is determined by the profile of
the classification boundary with respect to the number
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of features or type of the kernel, i.e., higher number of
features implies higher complexity, or e.g., quadratic
kernel classifier possesses higher complexity as lin-
ear kernel classifier. In many cases, lower complex-
ity implies higher robustness of classification, that can
lead to better generalisation ability. From this point of
view, our proposal improves classification rates stay-
ing robust.

A Classification problem of two classes T+ and
T− with corresponding objects x+ ∈ T+ and x− ∈ T−

is considered. Objects are vectors x ∈ Rd with x =
(x1, · · · ,xd) in the d-dimensional feature space X ⊆
Rd . We assume that a linear combination h of features
is given:

h(x) = 〈a,x〉=
d

∑
i=1

aixi. (1)

With some scalar c ∈ R, the rule for the linear classi-
fication, w.r.t. Eq. (1) is the following:

x ∈ T+ if h(x)≥ c and x ∈ T− if h(x)< c. (2)

Within our approach we do not distinguish be-
tween linear separable and non-separable cases. We
concentrate only on the parameters provided by
weighting vector a. Let h(x) be an SVM classifier.
Thus, for the separable case in canonical form the
so-named margin ρ := 2/‖a‖ is maximized. Within
labels y = 1 for all x+ and y = −1 for all x−, it is
equivalent to the solution of the problem:

min
1
2
‖a‖2

subject to y j (〈a,x j〉− c)≥ 1
with x j ∈ {x+,x−}, ∀ j.

For the non-separable case slack variables ξ j ≥
0, ∀ j are defined. Slack variables store the deviation
from the margin ρ in order to relax the constraints. A
soft margin classifier for a non-separable case is the
solution of the problem:

min
1
2
‖a‖2 +C∑

j
ξ j

subject to y j (〈a,x j〉− c)≥ 1−ξ j

with x j ∈ {x+,x−}, ξ j ≥ 0, ∀ j,

where the constant C > 0 determines the trade-off be-
tween margin maximization and training error min-
imization. Similar to separable case, for simplicity,
the margin here is defined as ρ := 2/‖a‖.

In the sense of classical SVM fundamentals, the
functional h(x) represents a hyperplane having the
largest separation, or margin ρ, between two classes.
The hyperplane has the property that the distance is
maximized from the nearest data point on each side.

Our refinement approach is based on the weakening
of this property: the distance from the hyperplane
to some appropriate data is maximized. This idea
originates on the method from Combinatorial Refine-
ment, called ComRef, approach (Dörksen and Lo-
hweg, 2014), where it was shown that for many sam-
ples the refinement of the hyperplane is able to in-
crease the generalisation ability of the classification.
We build up our method on the well-known fact, that
increasing of the generalisation ability might rely on
the regularisation property of SVM hyperplane, i.e. on
the property to find largest separation ρ.

Let us consider SVM classifier h(x) = 〈a,x〉 with
the initial margin ρ. In the frame of this paper, without
loss of generality, we consider l2-norm, i.e. :

ρ =
2
‖a‖ =

2√
a2

1 + · · ·+a2
d

. (3)

Knowing h(x), we are interested in the computation
of a new one hyperplane g(u) = 〈b,u〉, which will be
called refinement of h. The margin ρre f of g has to be
larger as ρ, i.e. ρre f > ρ. It is clear that, since x and u
belong to dissimilar feature spaces, margins provided
by h and g have to be comparable. We will discuss
this topic later.

Within all assumptions and descriptions above, fu-
sion of summands of h for some indices I⊆{1, · · · ,d}
is defined as:

uI := ∑
i∈I

aixi.

For I = {1, · · · ,d}, the fusion of summands is h itself.
Otherwise, h can be represented by I together with the
fusion of summands for the indices Ī = {1, · · · ,d}\ I,
which are complementary to I. More generally, h can
be represented by fusion of summands (for ease of use
read: uIk = uk,k ∈ N):

h(x) = ∑
i∈I1

aixi + · · ·+ ∑
i∈I j

aixi = u1 + · · ·+u j, (4)

where for k = 1, · · · , j holds Ik ⊂ {1, · · · ,d} and all Ik
are non-empty disjointed subsets of indices with the
property that:

j⋃

k=1

Ik = {1, · · · ,d}.

For some parameters b1, · · · ,b j ∈R, refinement of
a linear classifier resp. feature weighting of Eq. (1)
and fusions of summands in Eq. (4) is defined as:

g(u) = 〈b,u〉=
j

∑
i=1

biui. (5)

From the definition above, it is clear that the refine-
ment is performed in low-dimensional space U ⊆ R j
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with j < d. With some scalar c̃ ∈ R, the rule for the
linear classification resp. refinement Eq. (5) is now:

u ∈ T+ if g(u)≥ c̃ and u ∈ T− if g(u)< c̃. (6)

In the framework of original ComRef, SVM (linear
and quadratic) and AdaBoost (Freund and Schapire,
1996) classifiers for initial feature combination w.r.t.
Eq. (1) were analysed. For many datasets it was
shown, that fusion of summands, where the classifica-
tion accuracy with respect to Eq. (6) is higher than in
Eq. (2), might lead to the higher generalisation ability
of Eq. (6) than of Eq. (2).

The main disadvantage of ComRef is its combi-
natorial nature in the term of selection of fusions of
summands, i.e., for samples with large number of fea-
tures the algorithm is hardly applicable. A technique
for fast searching for a suitable fusion of summands
is required. In the frame of the work here, we solve
this problem by applying margin value as optimisa-
tion criterion. Thus, fusions of summands leading to
larger margin in the refinement Eq. (5) will be consid-
ered.

Let g(u) in Eq. (5) be an SVM classifier and
be a refinement of h. Hence, the margin of g in
the low-dimensional space is equal to 2/‖b‖. It is
clear that for the construction of a margin-based op-
timisation criterion we are not able to compare both
margins directly, since they are located in dissimilar
spaces. To illustrate this effect, consider the hyper-
plane 〈b,u〉− c̃ = 0 in the space R j. It corresponds to
the representation in the initial space Rd :

b1 ∑
i∈I1

aixi + · · ·+b j ∑
i∈I j

aixi− c̃ = 0. (7)

Thus, under the assumption that b1 = 1, . . . ,b j = 1
and c = c̃, the hyperplanes in Rd and R j are equiva-
lent. However, the margin ρ̃ = 2/

√
j is, in general,

not equal to ρ = 2/‖a‖. Thus, based on the represen-
tation of Eq. (7), we define ρre f to be compared with
initial margin ρ= 2/‖a‖ for the optimisation criterion
as follows:

ρre f =
2√

b2
1 ∑i∈I1 a2

i + · · ·+b2
j ∑i∈I j a2

i

. (8)

Proposition. Let h(x) in Eq. (1) be an SVM classi-
fier with margin ρ. Assume, fusions of summands are
given w.r.t Eq. (4). Further, let g(u) in Eq. (5) be a
refinement of h and be an SVM classifier with margin
ρre f .

If in Eq. (8) for each k = 1, · · · , j holds b2
k ≤ 1 then

ρre f ≥ ρ.

Proof. It can be easily seen, that for above assump-
tions the following is true:
√

a2
1 + · · ·+a2

d ≥
√

b2
1 ∑

i∈I1

a2
i + · · ·+b2

j ∑
i∈I j

a2
i .

Thus, ρre f ≥ ρ.

Several techniques can be considered for the con-
struction of fusion of summands, e.g. initiated by fea-
ture extraction or weighting methods. In the frame
of our work, we discuss the simplest situation: one
single fusion of two summands. It leads to the de-
fined below min/max rule and, e.g. can be extended
or integrated into refinement process iteratively. By
one single fusion of two summands, the refinement is
based on the representation of initial SVM:

h(x) = a1x1 + · · ·+ ∑
i∈Ik

aixi + · · ·+adxd , (9)

where Ik is a set of two indices from {1, · · · ,d}.
It is clear, that the refinement occurs in (d − 1)-
dimensional space. Our explanation for paying at-
tention to one single fusion of two summands is fol-
lowing: By the selection ∑i∈Ik a2

i with only two sum-
mands we might expect that the refinement for ai’s,
i 6∈ Ik, is marginal, i.e. b j ≈ 1, for j 6= k. In that
case the margin value ρre f depends mainly on ∑i∈Ik a2

i
and b2

k . It holds that, within optimisation of ∑i∈Ik a2
i

and b2
k , the margin ρre f represented in Eq. (8) is more

larger more smaller are ∑i∈Ik a2
i and b2

k . We deduce
that |ai|’s with small values might stronger enlarge the
margin as such |ai|’s with large values. On the other
hand, since we are interested in margin optimisation,
we can try to degrade the contribution of |ai|’s with
large values and in such way increase the margin.

Due to above discussions, the min/max rules (resp.
for MIN or MAX later in the tables from Section 4) of
one single fusion of two summands for margin-based
refinement are following:

Min/Max Rules for Margin-based Refinement

i. Compute initial SVM hyperplane h(x) as
in Eq. (1).

ii. Find set Ik of two indices from {1, · · · ,d} such
that ∑i∈Ik a2

i is minimal/maximal, i.e. choose from
|a1|, · · · , |ad | two with mininimal/maximal values.

iii. Recalculate SVM refinement g(u) for u =(
a1x1, · · · ,∑i∈Ik aixi, · · · ,adxd

)
.
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Table 1: Results of K-fold cv paired t test for SVM and proposed margin-based refinement approach (indicated as Ref MIN or
Ref MAX w.r.t. min/max rules) for datasets M-I and M-II are listed. In rows, overall accuracies (in %), tK−1-statistics as well
as margin ρre f for benchmarking are given. Here, for original margin is valid ρ = 2 for all samples.

K-fold SVM Ref MIN tK−1MIN ρre f MIN Ref MAX tK−1MAX ρre f MAX
M-I (K = 30) 92.26 93.88 7.69 2.80 93.76 6.93 2.68

M-I (K = 100) 88.77 90.37 8.85 2.67 90.04 6.95 2.54
M-II (K = 30) 96.00 97.08 15.25 2.84 97.04 15.00 2.76
M-II (K = 100) 94.39 95.45 10.24 2.83 95.37 9.51 2.70

Table 2: Results of K-fold cv paired t test (K = 10) for SVM and proposed margin-based refinement approach (here, only
Ref MIN w.r.t.min rule) are listed for UCI datasets. The remaining table caption corresponds to such of Table 1. Within∗
marked samples are considered for further iterations of refinement presented in Table 3 below.

dataset # features # objects SVM Ref MIN tK−1MIN ρre f MIN
CNAE (classes 6 vs. 7)∗ 299 240 79.35 86.52 2.89 1.89
CNAE (classes 7 vs. 9) 333 240 86.75 92.96 2.92 1.70

Ecoli∗ 6 220 95.22 96.47 2.52 2.17
Heart 13 270 74.89 77.44 3.91 2.49

Promoters 57 212 74.64 78.32 5.45 2.30
Seeds 7 140 91.66 93.49 5.81 2.54

Splice (classes E vs. I)∗ 60 1535 84.66 87.13 7.04 2.16
Splice (classes I vs. N)∗ 60 2423 81.72 84.54 6.25 2.09

4 EXPERIMENTAL RESULTS

4.1 Motor Drive Diagnosis

We show the results for a real-world industrial appli-
cation Motor Drive Diagnosis (Bayer et al., 2013).
The application relates to an intelligent, autonomic
synchronous motor drive which is used in several ap-
plications in transport systems at airports, conveyor
belts, etc.

We consider two classes—intact and anomaly—
for the motor condition which is a conclusive result,
taking into account the use of adequate features (Ba-
tor et al., 2012). The defined range of typical defects
in drive train applications might be, e.g., ball bear-
ings, axle displacement or inclination of gear-wheels.
For our test, datasets called Motor I (M-I) and Mo-
tor II (M-II) with 52 features and total 5,318 objects
in M-I resp. 72 features and 10,638 objects in M-II
are analysed. The number of objects in M-II might
appear large, however, for this type of applications it
is still not complete. In general, it is almost impossi-
ble to collect complete and well-balanced samples for
motor diagnosis. Due to the different environmental
conditions (e.g. stable/unstable position of the mo-
tor, air temperature/humidity, running time, etc.), the
real completeness/balance of the sample is assumed
to be unknown. To show that our approach is able to
contribute to the solution of the problem, we perform

K-fold cv paired t test setting K = 30 and K = 100,
i.e., one third (circa 3.3%) resp. 1% of information
about the sample as available. We present the classi-
fication rates in terms of accuracies (in %) and tK−1-
statistics (Alpaydin, 2010) for comparing two classifi-
cation algorithms. The larger is the value of the tK−1-
statistic, the more likely one algorithm is performing
better/worse as the other. For t9 it holds: If |t9|> 2.26,
then we reject the hypothesis that the algorithms have
the same error rate with 97.5% confidence. For |t29| it
is 2.05, hence, for |t99| it is lower than 2.05.

Without loss of generality, SVM separating hy-
perplane is computed using Sequential Minimal Opti-
mization (Schölkopf and Smola, 2002). Furthermore,
all data sets are standardised to have margin ρ = 2 in
initial SVM; features are standardised to have equal
standard deviations σ2 = 1; positions of objects in
each set are randomised before selecting training and
testing subsets. The results, presented in Table 1, il-
lustrate the performance. We remark that the accu-
racies in the learning stage were close to 100% for
both initial SVM and refinement. Differently to accu-
racies, the margin values of refinements were larger as
such of original SVM. Due to increasing of the mar-
gin, the overall accuracy improvement of the refine-
ment is between 1%−2%, that is a good achievement
for industrial environments taking into account huge
networked Cyber-Physical-Systems and the financial
profitability from this kind of optimisation.
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Table 3: Results of K-fold cv paired t test (K = 10) for two successive iterations of min rule.

dataset SVM Iter.Ref MIN tK−1MIN ρre f MIN
CNAE (classes 6 vs. 7) 79.35 90.04 4.64 1.95

Ecoli 95.22 97.23 3.49 2.20
Splice (classes E vs. I) 84.66 88.18 10.47 2.27
Splice (classes I vs. N) 81.72 86.23 6.34 2.14

Table 4: F-measures based on true positives and false negatives of each class for K-fold cv paired t test (K = 10).

dataset # features # objects balance FSV M(T+ / T−) FRe f MIN(T+ / T−)
Fertility 9 100 7.3 0.12 / 0.82 0.16 / 0.83
Hepatitis 16 80 5.2 0.32 / 0.84 0.35 / 0.85

Heart 13 150 4.0 0.47 / 0.84 0.51 / 0.84
Mammography 5 628 4.6 0.67 / 0.91 0.69 / 0.92

Pima 8 331 4.3 0.45 / 0.83 0.49 / 0.84
Promoters 57 120 7.6 0.04 / 0.93 0.14 / 0.93
Vertebral 6 244 6.2 0.40 / 0.86 0.44 / 0.86

4.2 UCI Repository Test Samples

In this section we present the experimental re-
sults of our proposed margin-based learning ap-
proach based on several UCI Repository samples
(http://mlr.cs.umass.edu/ml/datasets.html). Follow-
ing data sets are considered: CNAE (class labels 6 vs.
7, and 7 vs. 9), Ecoli, Heart, Promoters, Seeds and
Slice (class labels E vs. I, and I vs. N). To show the
potentiality of the method, we present results for sam-
ples with different numbers of features and objects,
where margin-based refinement increases the gener-
alisation ability of the classification. Since often it
is not known if the sample is complete or not, there
might be data where refinement is not working. We
perform K-fold cv paired t test for generalisation (Al-
paydin, 2010) with K = 10, i.e., in each fold 10% of
the objects are considered for the training and the rest
for the validation. We demonstrate only results for
min rules, for many samples max rule is leading to
improvement, however, as our tests show for consid-
ered samples, min rule is slightly stronger as max rule.
We remark that also here for many considered sam-
ples the accuracies in the learning stage were close to
100% for both initial SVM and refinement. Table 2
represents the results. Results show that refinement
rules lead often to the increasing of the margin. Due
to increasing of the margin, the accuracy is increasing
in the refinement as well.

In the sample CNAE, margin slightly decreases,
however, refinement leads to higher accuracy.

In addition, we show some results for two succes-
sive iterations of min rule in Table 3.

Finally, we test our approach on several samples
which are not well-balanced, meaning for our exam-
ples that numbers of objects in the classes are ex-

ceeding four times apart. Accuracy as an exclusive
measure is here not sufficient as well. Scores based
on true positives and false negatives of each class is
suitable for such problems. Following UCI samples
are considered: Fertility, Hepatitis, Heart, Mammog-
raphy, Pima, Promoters and Vertebral. The samples
Fertility and Hepatitis are not well-balanced in orig-
inal UCI submission. In the remaining samples, we
scale them artificially by removing objects from one
of the classes, such that they become non-balanced.
We define balance of the sample as number of objects
of one class divided by the number of the objects of
the other. F-measures are calculated as scores based
on true positives and false negatives for each class,
where:

F(class) =
2 T P(class)

2 T P(class)+FP(class)+FN(class)
,

and TP, FP, FN are resp. true positives, false positives
and false negatives. Table 4 represents the results.

5 CONCLUSIONS

In this paper we presented a fast approach for margin-
based refinement of SVM classifier. We defined
min/max rules for the refinement procedure and illus-
trated the performance on several samples with dif-
ferent numbers of features and objects. In our future
work we investigate characteristics of fusions for be-
ing suitable for that kind of refinement. We exam-
ine additional rules for fast refinement. Furthermore,
combinations of rules will be studied. We will per-
form the theoretical and empirical analysis of the re-
finement methodology in the context of feature selec-
tion and weighting.
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In addition, comparison with other existing
weighted SVM models will be evaluated. For effi-
ciency reasons, possibilities for incorporation of re-
finement recalculations into one single step will be
studied.
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