
Modulaser: A Tool for Conceptual Analysis of Software Systems

Iaakov Exman and Phillip Katz
Software Engineering Dept., The Jerusalem College of Engineering – JCE - Azrieli, POB 3566, Jerusalem, Israel

Keywords: Modulaser, Software Tools, Conceptual Analysis, Conceptual Integrity, Software System Design,

Modularity Matrix, Standard.

Abstract: Modulaser is a software tool which produces a Modularity Matrix, to analyse the design of a software

system given by its executable code. However, besides the concrete practical purposes of Modulaser, it is

important to understand its techniques in a deeper sense. It is immediately clear that it describes the system

in a higher abstraction level than the executable code, as the Modularity Matrix follows an implicit class

diagram. But behind classes there are concepts. Thus, the ultimate purpose of Modulaser is conceptual

analysis. This paper explains the ideas, describe Modulaser in these terms, and illustrate it by a series of

case studies.

1 INTRODUCTION

Modulaser is a software tool to support design

analysis of software systems of any size. It is based

upon Linear Software Models – see e.g. (Exman,

2014a) – i.e. it generates a Modularity Matrix for a

given software system to guide the software

engineer along the software system design and

development.

From a different viewpoint, beyond the linear

algebra techniques, one asks what can be the deeper

meaning of Modulaser. In this paper we point out to

conceptual analysis as a response to this issue. In

particular, we mention conceptual integrity as a

central idea of conceptual design analysis.

In this Introduction section we next clarify the

ideas of software conceptual analysis and concisely

review the basics of the Modularity Matrix.

1.1 Software Conceptual Analysis

Informal conceptual analysis, with the central notion

of conceptual integrity in the context of software,

has been developed initially by Brooks in his book

“The Mythical Man-Month” (Brooks, 1995). It

appears again in (Brooks, 2010), where conceptual

integrity is said to consist of three principles:

orthogonality, propriety and generality of system

functions. The idea has been proposed and praised,

but not exactly defined.

Our basic tenet is that since an ontology is easily

related to an UML class diagram, one can assume

that behind each class of a software system stands a

concept of an implicit application ontology (Exman

and Iskusnov, 2014b).

We have recently suggested initial steps towards

a more precise notion of conceptual analysis

(Exman, 2016). Intuitively, integrity besides being a

property of the whole hierarchical software system,

it should be a recursive property of each of its

subsystems down to basic blocks. It is plausible that

if any subsystem does not have conceptual integrity,

the whole system cannot display it either.

Thus Modulaser enables analysis of a given level

of abstraction – say its classes and methods – and

the next level – say modules – made up of the given

classes and methods.

1.2 Modularity Matrix

The Modularity Matrix – see e.g. (Exman, 2012a,

2012b, 2014a) is a representation of a hierarchical

software system in its several abstraction levels,

through sub-systems, down to indivisible basic

modules.

The matrix columns, the structors, stand for

architectural structure units – a generalization of

classes. The matrix rows, the functionals, stand for

architectural behavioural units – a generalization of

class methods.

A standard Modularity Matrix is square and

block diagonal, where the blocks along the diagonal

are the modules of the current matrix level.

In case there still are outliers, non-zero matrix

Exman, I. and Katz, P.
Modulaser: A Tool for Conceptual Analysis of Software Systems.
DOI: 10.5220/0006080700190026
In Proceedings of the 7th International Workshop on Software Knowledge (SKY 2016), pages 19-26
ISBN: 978-989-758-202-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

19

elements outside the block-diagonal modules, these

elements highlight problematic couplings among the

modules. These couplings should be resolved by

moving/removing/adding structors and or

functionals, in the columns/rows containing the

outliers.

1.3 Related Work

Conceptual analysis of software – be it design,

structure or other aspects – can be roughly divided

into two camps. The first one, with a rather informal

approach, exemplified by Brooks – see e.g. (Brooks,

1995) – and authors that either accepted and

developed his ideas or struggled to clarify them.

In the first camp there are works that explicitly

refer to Conceptual Analysis, in particular

Conceptual Integrity. Most of them formulate some

vague qualitative statement of its meaning.

Kazman and Carriere in a Technical Report

(Kazman, 1997) describe how to reconstruct a

software system architecture. They are guided by

Brooks’ conceptual integrity. The architecture

should be built from a small number of components

connected in regular ways, with consistent allocation

of functionality to the architecture’s components.

Clements et al. in (Clements, 2001) refer to

conceptual integrity as the theme that unifies the

design of a system at all levels. The architecture

should do similar things in similar ways, having a

small number of data and control mechanisms, and

patterns throughout the system. Note the language

similarities between Kazman (“connected in regular

ways”, “small nmber of components”) and Clements

(“do similar things in similar ways”, “small number

of control mechanisms”), both somehow

reproducing Brooks’ ideas of “propriety” and

“generality”, which are principles behind conceptual

integrity.

The second camp, much more formal, identified

the word “conceptual” with some rather developed

theory, such as FCA (Formal Concept Analysis)

which uses the Conceptual Lattice as its basic

algebraic structure. An example of this second camp

is Cole and Tilley (Cole, 2003) which analysed

software structure by means of Conceptual Lattices.

See also (Exman and Speicher, 2015) and references

therein.

Another group of works refers to software tools

to support software systems analysis and design. For

instance, (Kazman, 1996) describes a SAAMtool,

with a visualization capability, which is somewhat

different from that of Modulaser. SAAMtool

displays a sort of components diagram. In contrast,

Modulaser indeed has a dependency graph, but it is

mainly an intermediate stage for the central

representation by a Modularity Matrix.

One should also mention that besides the

Modularity Matrix, other matrices, e.g. the DSM

(Design Structure Matrix) have been used in the

context of software systems design. DSM is part of

the Design Rules approach (Baldwin and Clark,

2000). Despite the “Matrix” name, these matrices

are rather tables with presence/absence of marks,

mainly used without numerical values.

1.4 Paper Organization

In the remaining of the paper we introduce the

software architecture of the Modulaser tool (section

2), describe Modulaser’s functionality and user

interface (section 3), provide concise pseudo-codes

of the algorithms inside Modulaser, used to build

and analyse the Modularity Matrix (section 4),

discuss a series of case studies as a demonstration of

the Modulaser usage (section 5), shortly describe the

implementation approach (section 6) and conclude

with a discussion (section 7).

2 MODULASER’S SOFTWARE

ARCHITECTURE

Here we shortly describe the Modulaser software

architecture principles and the main Modulaser

modules.

2.1 Software Architecture Principles

The main principles behind the Modulaser software

architecture are:

1. Central Information Storage – the

separation of the information storage from

specific functionalities enables future

additions of different kinds of input: for

example system input files in various

programming languages and environments;

2. Central Program Manager and specific

functional modules – the separation of the

program manager from modules similarly

enables later additions/replacements of

more efficient algorithms.

2.2 Main Modulaser Modules

Modulaser’s architecture is shown in Fig. 1.

SKY 2016 - 7th International Workshop on Software Knowledge

20

Figure 1: Modulaser Schematic Software Architecture –

Its modules are: a- GUI input/output in the right hand side;

b- Program manager and central info storage in the

middle; c- Software System Analysis and specific

functionalities in the left hand side: Modularity Matrix

modules (in yellow), graph modules (in light blue).

Arrows point to receiver of data transmitted.

The main Modulaser modules – schematically

shown in Fig. 1 – are:

1. Program Manager – serves as a master

controller for the Modulaser;

2. Info Storage – is the place where input and

intermediate results are stored for

processing;

3. Software System Analysis – contains the

algorithm and procedures to analyse the

desired software system;

4. GUI I/O Panes – contain panes to receive

input and buttons to control processing and

display;

5. Modularity Matrix modules – generate and

display the Modularity Matrix of the

software system under analysis;

6. Graph modules – generate and display, for

each module of the software system under

analysis, a dependency graph among

classes and respective functions.

Further details about these modules are provided

in the next sections.

3 MODULASER’S FUNCTIONS

AND USER INTERFACE

In this section we overview of the Modulaser main

functionalities and its user interface.

3.1 Functionality

The two main functionalities of the Modulaser tool

are related to the software “System under Analysis”

(SUA) classes and respective methods: generation of

the Dependency Graph and the corresponding

Modularity Matrix. These two representations

provide different information on a SUA.

A dependency graph, for a given version of the

“Game of Life”, is seen in a Modulaser screen-print

in Fig. 2. A dependency graph is a directed graph

linking classes within a package and methods within

a class in “evaluation” order.

The Modulaser dependency graph enables

focussing on a chosen type of entities: packages,

classes or methods. In Fig. 2 the focus is on classes.

The corresponding Modularity Matrix, for the

same “Game of Life” is shown in Fig. 3. The Matrix

columns – the structors – stand for the classes and

the Matrix rows – the functionals – stand for the

methods. The Modularity Matrix has 1-valued

matrix elements when a given “structor” (class)

provides a certain “functional” (method). In Fig. 3

the 1-valued elements are shown in green color.

Figure 2: Game Of Life: Dependency Graph – The

dependency graph of a version of the Game of Life, in the

left-hand pane of this screen print, highlights 5 classes –

represented by filled circular nodes (purple color) – and

their respective methods – linear segments outgoing from

the classes. For instance, the upper-left class has 2

methods. The main class, is the dependency graph root.

Modulaser: A Tool for Conceptual Analysis of Software Systems

21

Figure 3: Game Of Life: Modularity Matrix – The

Modularity Matrix of the Game of Life in Fig. 2. The

matrix columns – the “structors” – are classes; the matrix

rows – the “functionals” – are methods. For 1-valued

matrix elements a “structor” provides the respective

“functional” (in darker green). The sub-matrix in rows

([2], [3], [4]) is the “Game of Life Panel” Module. It has

zero-valued elements (in lighter green). All other matrix

elements (white) have their zero-valued elements omitted.

3.2 User Interface

The Graphical User Interface (GUI) is composed of

floating windows and panes inside the windows. The

Modularity Matrix controls are seen in Fig. 4.

Figure 4: Modularity Matrix Controls – There are buttons

to perform automatic actions (as block diagonalization),

specific actions on the Matrix (as remove empty rows) and

post-processing actions (as save conclusions).

The commands in the Modularity Matrix controls

(in Fig. 4) can be classified into three types:

 Automatic – one can decide to let the

Modulaser perform a complete action without

user intervention, as block diagonalization of

the Matrix;

 Local – the user takes direct control and

decides about specific local actions, such as

“removing empty columns”;

 Post-Processing – one may save the Matrix or

the conclusions from the analysis.

We have seen in Figures 2 and 3 embedded

panes with commands relevant to other panes in the

same window. In Fig. 2 the right-hand pane has

buttons to control variables and appearance of the

dependency graph.

In Fig. 3 the upper-left pane enables the user, in

case the matrix is very large, to choose how many

columns/rows to display, and from which

columns/rows start the display. This can be done

either by filling-in character slots, or by clicking

arrow-head (triangular) buttons (in green).

4 MODULASER ALGORITHMS

The Modularity Matrix is the central algebraic

structure of Modulaser. In this section we refer to

the algorithms whose final purpose is

“Modularization”, i.e. to find the Modules in the

next hierarchy level of the given matrix.

4.1 Modularity Matrix Algorithms’

Ideas

Within Modulaser the modules of a given matrix are

found in two phases:

1. Dependency Clustering – to find which

columns and respective rows belong in the

same cluster of linear dependence;

2. Clusters Sorting – once the clusters were

found, we need to rearrange the matrix to

display clusters (the final Modules) as sets

of consecutive columns and respective

rows, without intersections of clusters.

The basic idea is to assign to every row and to

every column a “sticky cluster”. The “sticky-cluster”

is an object which maintains a pointer to a collection

of sticky-clusters, where each collection member

points back to the collection.

SKY 2016 - 7th International Workshop on Software Knowledge

22

Rows/columns with the same “sticky cluster” can

be merged into a larger cluster. Merging causes

redirection of the new members to the newly-

enlarged collection.

4.2 Dependency Clustering Algorithm

A pseudo-code of the dependency clustering

algorithm is shown in the next text-box.

The complexity of the for loops is O(#rows) and

O(#columns), while that of the merging operation is

O(smaller-cluster size). The typical running time is

not large relative to the matrix size, since Modularity

Matrices are supposed to be sparse by fundamental

reasons, i.e. Modularization success brings the

design to Modules with no couplings among them.

4.3 Cluster Sorting Algorithm

A pseudo-code of the cluster sorting algorithm is

shown in the next text-box.

The complexity of the for loops is O(#rows) and

O(#columns), while that of the move operation is

O(1), as it involves only swapping places with

relevant row/column.

5 CASE STUDIES

The case studies in this section go from the simplest

case – a strictly diagonal matrix – to a few much

larger and more complex software systems that have

been analysed.

5.1 A PDF-to-XML Converter

The PDF-to-XML Converter is a simple tool whose

Modularity Matrix (in Fig. 5) is strictly Diagonal,

i.e. all the structors (and functionals) are mutually

orthogonal (a characteristic of conceptual integrity!).

Besides a trivial Constants class, the concepts

(classes) in this tool are self-explanatory:

 PDF Extract Handler – a main program;

 Text Parser – to parse commands;

 XML Writer – to write and end writing;

 Text Extraction Error – to deal with

eventual errors.

Figure 5: PDF-to-XML Converter Modularity MATRIX –

It displays the Smiley above a platform and below another

one, a series of platforms, a menu button on top-right and

a restart button on top-left.

5.2 Xonix Game

The Xonix Game is a much larger software system,

with a Modularity Matrix of size 97*97 seen in Fig.

6. This Modularity Matrix is so large that the class

and function names are not readable. Nonetheless,

even in this small scale, it enables appraisal of its

general appearance, which is clearly block-diagonal.

Cluster Sorting Algorithm

//Initialize Matrix
Matrix = clustered Modularity Matrix (the

 outcome from the previous algorithm);
Create “dummy” row/column in index 0;

//Rearrange, while scanning Matrix
For each sticky cluster{
 For all columns in the cluster{
 Move column to index_0;}
 For all rows in the cluster{
 Move row to index_0;}

}
Delete “dummy” row/column in index 0;

Dependency Clustering Algorithm

//Initialize sticky groups
Matrix = initial Modularity Matrix;
For all rows and columns{

Assign “sticky group” to each row
and column};

//Merge sticky groups, while scanning Matrix
For all rows{
 For all columns{
 If (Matrix[row][column] = 1-valued){
 mergeClusters(col cluster, row cluster)

}}}

Modulaser: A Tool for Conceptual Analysis of Software Systems

23

Figure 6: Xonix Game Modularity Matrix – This is a

block-diagonal Matrix of size 97*97. It has 3 biggest

Modules (in red and pink color) which are not standard, as

their sparsity is bigger than expected for a Module. There

are 12 Modules (in green and light green color) which are

block diagonal and standard. The remaining blocks are

strictly diagonal.

In contrast to a whole Modularity Matrix,

Modules should be non-sparse – see e.g. (Exman,

2015). This is not true for all Xonix modules.

The Xonix Game Modularity Matrix (in Fig. 6)

has only 3 larger Modules which are non-standard,

i.e. they are sparser than expected for a normal

Module. Otherwise, the matrix modules, with sizes

between 3*3 and 2*2, have normal sparsity. Finally

there are many one-by-one strictly diagonal

modules.

Analysis of this Matrix identified duplicate code

problems in: different game stages; input from the

keyboard; panel definitions.

5.3 An Apache Library

Apache is a well-known set of open source programs

with a variety of purposes, one of them being the

well-known Apache HTTP server. Here we obtained

the Modularity Matrix of an Apache Library.

The Modularity Matrix, of size 143*143, seen in

Fig. 7, has similar characteristics to the Xonix Game

Matrix in Fig. 6. Overall, it is block-diagonal but the

number of relatively large modules with greater than

desired sparsity increased to 10 modules.

It can be easily seen that each of the larger

problematic modules essentially have a single row

full of 1-valued matrix elements in an otherwise

strictly diagonal submatrix. This is most probably

easily solvable, by decoupling the problematic row.

Figure 7: Apache Library Modularity Matrix – This is a

block-diagonal Matrix of size 143*143. It has 10 bigger

Modules (in red and pink color) with sparsity is bigger

than expected for a Module. There are 3 Modules (in

green and light green color) which are block diagonal and

standard. The remaining blocks are strictly diagonal. One

easily sees in the larger problematic submatrices, a single

coupling row on top of a strictly diagonal structure.

5.4 An Android Application

The Android Application has a Modularity Matrix of

size 185*185, in Fig. 8.

Figure 8: Android Application Modularity Matrix – This is

a Matrix of size 185*185. It has a single very sparse

problematic largest Module, covering more than half of

the matrix columns/rows. Otherwise, the matrix is similar

to the previous ones.

SKY 2016 - 7th International Workshop on Software Knowledge

24

The Android Application matrix is distinctively

different from the previous ones. It displays a single

very sparse problematic Module, covering more than

a half of the Modularity Matrix columns/rows.

This can be attributed either to the matrix

describing an intermediate development stage or to

the design requirements enforced by the Android

operating system. This has been observed in more

than one such application. Its conceptual analysis is

obviously incomplete deserving further

investigation.

6 MODULASER SOFTWARE

IMPLEMENTATION

In this section we provide some details of the

Modulaser system implementation.

Modulaser was implemented in the Java

language, totally anew, except for the use of the

Apache BCEL library (BCEL, 2016).

BCEL (Byte Code Engineering Library) enables

reading binary Java class files, obtaining the

information about each class, such as inheritances

and class methods.

Modulaser uses BCEL to read the Java class files

of the software System Under Analysis, and stores

the information read into the Info Storage.

7 DISCUSSION

This discussion encompasses foundational issues,

practical considerations and future work. It is

concluded with a short statement of the main

contribution.

7.1 Foundational Issues

The deeper motivation behind Modulaser is to

provide a tool for conceptual analysis of software

systems under development or already in a

maintenance phase.

The following issues deserve to be taken into

account:

a. Conceptual Analysis
It is based on the assumption that “structors”, i.e.

either classes or their generalization (say design

patterns) correspond to concepts in a higher

abstraction level. Thus, one implicitly assumes the

existence of an application ontology – see e.g.

(Exman and Iskusnov, 2014b) – with the specific

concepts of the software system. Such an ontology,

if well-constructed, is expected to guarantee

Conceptual Integrity, which is a complex

foundational issue per se. Since Integrity probably

cannot be assumed to be assured, its analysis should

follow from the Modularity Matrix characteristics.

b. Software Systems of any size
This is an important issue, with respect to

“structors”, the generalization of classes to any

hierarchical level. Modulaser only reflects the

entities directly defined in the programming

language syntax, such as classes, interfaces,

packages, methods, etc. Since to go upwards in the

hierarchical abstraction levels transcends the

language syntax, – e.g. by referring to design

patterns (Gamma, 1995) – this requires an

innovative approach.

7.2 Practical Considerations

The main question here is to which extent can be

Modulaser be actually used in practice, in particular

during development of a software system.

The following issues deserve further attention:

 System Size – we have successfully applied

Modulaser to a variety of software systems

with different and increasing sizes, as has

been shown in the Case Studies of this

paper. Success refers to efficiency

parameters as running time and memory

consumption.

 Scalable Zooming Characteristics – an

important characteristic of a tool applicable

to software systems of very different sizes

is the ability to rapidly obtain information

in various zooming scales. Modulaser has

been useful in this respect too. One can

obtain an overall view of the system (say

with unreadable class names), and then

decide to zoom into particular classes to

obtain detailed information needed for

redesign.

7.3 Future Work

Some of the open issues deserving development and

further investigation are described here.

The input to Modulaser consisted up to now to

software systems that are themselves originally

written in Java. It is clearly desirable to enable input

of programs in diverse languages, such as C++, C#,

Ruby, etc. The current Modulaser architecture,

Modulaser: A Tool for Conceptual Analysis of Software Systems

25

which is modular, should support these new

additions.

Transcending the limitations of programming

language, operating system and running

environment, to climb the hierarchy of abstraction

levels is a challenge that was already mentioned

among the foundational issues.

7.4 Main Contribution

The main contribution of this work is the description

and proof of feasibility of Modulaser as a practical

tool for software conceptual design analysis.

REFERENCES

Baldwin, C.Y. and Clark, K.B., 2000. Design Rules, Vol.

I. The Power of Modularity, MIT Press, Cambridge,

MA, USA.

BCEL, 2016. Byte Code Engineering Library, version 6.0,

An Apache Commons Project. Web site:

https://commons.apache.org/proper/commons-bcel/

Brooks, F.P., 1995. The Mythical Man-Month – Essays in

Software Engineering – Anniversary Edition,

Addison-Wesley, Boston, MA, USA.

Brooks, F.P., 2010. The Design of Design: Essays from a

Computer Scientist, Addison-Wesley, Boston, MA,

USA.

Cole, R. and Tilley, T., 2003. “Conceptual Analysis of

Software Structure”, Proc. 15th Int. Conf. on Software

Engineering and Knowledge Engineering, pp. 726-

733.

Clements, P., Kazman, R, and Klein, M., 2001. Evaluating

Software Architecture: Methods and Case Studies.

Addison-Wesley, Boston, MA, USA.

Exman, I., 2012a. “Linear Software Models”, Proc. GTSE

1st SEMAT Workshop on a General Theory of Soft-

ware Engineering, KTH Royal Institute of Techno-

logy, Stockholm, Sweden.http://semat.org/wp-con-

tent/uploads/2012/10/GTSE_2012_Proceedings.pdf.

Exman, I., 2012b. “Linear Software Models”, video

presentation of paper (Exman, 2012a) at GTSE 2012,

KTH, Stockholm, Sweden, Web site: http://www.you

tube.com/watch?v=EJfzArH8-ls.

Exman, I. 2014a. “Linear Software Models: Standard

Modularity Highlights Residual Coupling”, Int.

Journal of Software Engineering and Knowledge

Engineering, Vol. 24, pp. 183-210, DOI: 10.1142/-

S0218194014500089.

Exman, I. and Iskusnov, D., 2014b. “Apogee: Application

Ontology Generation from Domain Ontologies”, in

Proc. SKY’2014 Int. Workshop on Software

Knowledge, pp. 31-42, ScitePress, Portugal.

Exman, I. and Speicher, D., 2015. “Linear Software

Models: Equivalence”, in Proc. ICSOFT’2015 Int.

Conference on Software Technology, pp. 109-116,

ScitePress, Portugal. DOI = 10.5220/0005557701090

116

Exman, I., 2016. “The Modularity Matrix as a Source of

Software Conceptual Integrity”, SKY’2016 7th Int.

Workshop on Software Knowledge, Porto, Portugal,

accepted for publication.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J., 1995.

Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, Boston, MA,

USA.

Kazman, R., 1996. “Tool Support for Architecture

Analysis and Design”, in ISAW’96 Proc. 2nd Int.

Software Architecture Workshop, pp. 94-97, ACM,

New York, NY, USA. DOI: 10.1145/243327.243618

Kazman, R. and Carriere, S.J., 1997. “Playing Detective:

Reconstructing Software Architecture from Available

Evidence.” Technical Report CMU/SEI-97-TR-010,

Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA, USA.

SKY 2016 - 7th International Workshop on Software Knowledge

26

