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Abstract: Modulaser is a software tool which produces a Modularity Matrix, to analyse the design of a software 

system given by its executable code. However, besides the concrete practical purposes of Modulaser, it is 

important to understand its techniques in a deeper sense. It is immediately clear that it describes the system 

in a higher abstraction level than the executable code, as the Modularity Matrix follows an implicit class 

diagram. But behind classes there are concepts. Thus, the ultimate purpose of Modulaser is conceptual 

analysis. This paper explains the ideas, describe Modulaser in these terms, and illustrate it by a series of 

case studies. 

1 INTRODUCTION 

Modulaser is a software tool to support design 

analysis of software systems of any size. It is based 

upon Linear Software Models – see e.g. (Exman, 

2014a) – i.e. it generates a Modularity Matrix for a 

given software system to guide the software 

engineer along the software system design and 

development. 

From a different viewpoint, beyond the linear 

algebra techniques, one asks what can be the deeper 

meaning of Modulaser. In this paper we point out to 

conceptual analysis as a response to this issue. In 

particular, we mention conceptual integrity as a 

central idea of conceptual design analysis. 

In this Introduction section we next clarify the 

ideas of software conceptual analysis and concisely 

review the basics of the Modularity Matrix. 

1.1 Software Conceptual Analysis  

Informal conceptual analysis, with the central notion 

of conceptual integrity in the context of software, 

has been developed initially by Brooks in his book 

“The Mythical Man-Month” (Brooks, 1995). It 

appears again in (Brooks, 2010), where conceptual 

integrity is said to consist of three principles: 

orthogonality, propriety and generality of system 

functions. The idea has been proposed and praised, 

but not exactly defined. 

Our basic tenet is that since an ontology is easily 

related to an UML class diagram, one can assume 

that behind each class of a software system stands a 

concept of an implicit application ontology (Exman 

and Iskusnov, 2014b). 

We have recently suggested initial steps towards 

a more precise notion of conceptual analysis 

(Exman, 2016). Intuitively, integrity besides being a 

property of the whole hierarchical software system, 

it should be a recursive property of each of its 

subsystems down to basic blocks. It is plausible that 

if any subsystem does not have conceptual integrity, 

the whole system cannot display it either. 

Thus Modulaser enables analysis of a given level 

of abstraction – say its classes and methods – and 

the next level – say modules –  made up of the given 

classes and methods. 

1.2 Modularity Matrix  

The Modularity Matrix – see e.g. (Exman, 2012a, 

2012b, 2014a) is a representation of a hierarchical 

software system in its several abstraction levels, 

through sub-systems, down to indivisible basic 

modules. 

The matrix columns, the structors, stand for 

architectural structure units – a generalization of 

classes. The matrix rows, the functionals, stand for 

architectural behavioural units – a generalization of 

class methods. 

A standard Modularity Matrix is square and 

block diagonal, where the blocks along the diagonal 

are the modules of the current matrix level. 

In case there still are outliers, non-zero matrix 
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elements outside the block-diagonal modules, these 

elements highlight problematic couplings among the 

modules. These couplings should be resolved by 

moving/removing/adding structors and or 

functionals, in the columns/rows containing the 

outliers. 

1.3 Related Work 

Conceptual analysis of software – be it design, 

structure or other aspects – can be roughly divided 

into two camps. The first one, with a rather informal 

approach, exemplified by Brooks – see e.g. (Brooks, 

1995) – and authors that either accepted and 

developed his ideas or struggled to clarify them.  

In the first camp there are works that explicitly 

refer to Conceptual Analysis, in particular 

Conceptual Integrity. Most of them formulate some 

vague qualitative statement of its meaning. 

Kazman and Carriere in a Technical Report 

(Kazman, 1997) describe how to reconstruct a 

software system architecture. They are guided by 

Brooks’ conceptual integrity. The architecture 

should be built from a small number of components 

connected in regular ways, with consistent allocation 

of functionality to the architecture’s components.   

Clements et al. in (Clements, 2001) refer to 

conceptual integrity as the theme that unifies the 

design of a system at all levels. The architecture 

should do similar things in similar ways, having a 

small number of data and control mechanisms, and 

patterns throughout the system. Note the language 

similarities between Kazman (“connected in regular 

ways”, “small nmber of components”) and Clements 

(“do similar things in similar ways”, “small number 

of control mechanisms”), both somehow 

reproducing Brooks’ ideas of “propriety” and 

“generality”, which are principles behind conceptual 

integrity. 

The second camp, much more formal, identified 

the word “conceptual” with some rather developed 

theory, such as FCA (Formal Concept Analysis) 

which uses the Conceptual Lattice as its basic 

algebraic structure. An example of this second camp 

is Cole and Tilley (Cole, 2003) which analysed 

software structure by means of Conceptual Lattices. 

See also (Exman and Speicher, 2015) and references 

therein. 

Another group of works refers to software tools 

to support software systems analysis and design. For 

instance, (Kazman, 1996) describes a SAAMtool, 

with a visualization capability, which is somewhat 

different from that of Modulaser. SAAMtool 

displays a sort of components diagram. In contrast, 

Modulaser indeed has a dependency graph, but it is 

mainly an intermediate stage for the central 

representation by a Modularity Matrix. 

One should also mention that besides the 

Modularity Matrix, other matrices, e.g. the DSM 

(Design Structure Matrix) have been used in the 

context of software systems design. DSM is part of 

the Design Rules approach (Baldwin and Clark, 

2000). Despite the “Matrix” name, these matrices 

are rather tables with presence/absence of marks, 

mainly used without numerical values.  

1.4 Paper Organization 

In the remaining of the paper we introduce the 

software architecture of the Modulaser tool (section 

2), describe Modulaser’s functionality and user 

interface (section 3), provide concise pseudo-codes 

of the algorithms inside Modulaser, used to build 

and analyse the Modularity Matrix (section 4), 

discuss a series of case studies as a demonstration of 

the Modulaser usage (section 5), shortly describe the 

implementation approach (section 6) and conclude 

with a discussion (section 7). 

2 MODULASER’S SOFTWARE 

ARCHITECTURE 

Here we shortly describe the Modulaser software 

architecture principles and the main Modulaser 

modules. 

2.1 Software Architecture Principles 

The main principles behind the Modulaser software 

architecture are: 

1. Central Information Storage  – the 

separation of the information storage from 

specific functionalities enables future 

additions of different kinds of input: for 

example system input files in various 

programming languages and environments; 

 

2. Central Program Manager and specific 

functional modules – the separation of the 

program manager from modules similarly 

enables later additions/replacements of 

more efficient algorithms. 

2.2 Main Modulaser Modules 

Modulaser’s architecture is shown in Fig. 1. 
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Figure 1: Modulaser Schematic Software Architecture – 

Its modules are: a- GUI input/output in the right hand side; 

b- Program manager and central info storage in the 

middle; c- Software System Analysis and specific 

functionalities in the left hand side: Modularity Matrix 

modules (in yellow), graph modules (in light blue). 

Arrows point to receiver of data transmitted. 

The main Modulaser modules – schematically 

shown in Fig. 1 – are: 

1. Program Manager – serves as a master 

controller for the Modulaser; 
 

2. Info Storage – is the place where input and 

intermediate results are stored for 

processing; 
 

3. Software System Analysis – contains the 

algorithm and procedures to analyse the 

desired software system; 
 

4. GUI I/O Panes – contain panes to receive 

input and buttons to control processing and 

display; 
 

5. Modularity Matrix modules – generate and 

display the Modularity Matrix of the 

software system under analysis; 
 

6. Graph modules – generate and display, for 

each module of the software system under 

analysis, a dependency graph among 

classes and respective functions. 

Further details about these modules are provided 

in the next sections. 

3 MODULASER’S FUNCTIONS 

AND USER INTERFACE 

In this section we overview of the Modulaser main 

functionalities and its user interface. 

3.1 Functionality 

The two main functionalities of the Modulaser tool 

are related to the software “System under Analysis” 

(SUA) classes and respective methods: generation of 

the Dependency Graph and the corresponding 

Modularity Matrix. These two representations 

provide different information on a SUA. 

A dependency graph, for a given version of the 

“Game of Life”, is seen in a Modulaser screen-print 

in Fig. 2. A dependency graph is a directed graph 

linking classes within a package and methods within 

a class in “evaluation” order. 

The Modulaser dependency graph enables 

focussing on a chosen type of entities: packages, 

classes or methods.  In Fig. 2 the focus is on classes. 

The corresponding Modularity Matrix, for the 

same “Game of Life” is shown in Fig. 3. The Matrix 

columns – the structors – stand for the classes and 

the Matrix rows – the functionals – stand for the 

methods. The Modularity Matrix has 1-valued 

matrix elements when a given “structor” (class) 

provides a certain “functional” (method). In Fig. 3 

the 1-valued elements are shown in green color. 

 

Figure 2: Game Of Life: Dependency Graph – The 

dependency graph of a version of the Game of Life, in the 

left-hand pane of this screen print,  highlights 5 classes – 

represented by filled circular nodes (purple color) – and 

their respective methods – linear segments outgoing from 

the classes. For instance, the upper-left class has 2 

methods. The main class, is the dependency graph root. 
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Figure 3: Game Of Life: Modularity Matrix – The 

Modularity Matrix of the Game of Life in Fig. 2. The 

matrix columns – the “structors” – are classes; the matrix 

rows – the “functionals” – are methods. For 1-valued 

matrix elements a “structor” provides the respective 

“functional” (in darker green). The sub-matrix in rows 

([2], [3], [4]) is the “Game of Life Panel” Module. It has 

zero-valued elements (in lighter green). All other matrix 

elements (white) have their zero-valued elements omitted. 

3.2 User Interface 

The Graphical User Interface (GUI) is composed of 

floating windows and panes inside the windows. The 

Modularity Matrix controls are seen in Fig. 4. 

 

Figure 4: Modularity Matrix Controls – There are buttons 

to perform automatic actions (as block diagonalization), 

specific actions on the Matrix (as remove empty rows) and 

post-processing actions (as save conclusions). 

The commands in the Modularity Matrix controls 

(in Fig. 4) can be classified into three types: 

 Automatic – one can decide to let the 

Modulaser perform a complete action without 

user intervention, as block diagonalization of 

the Matrix; 

 Local – the user takes direct control and 

decides about specific local actions, such as 

“removing empty columns”; 

 Post-Processing – one may save the Matrix or 

the conclusions from the analysis. 

We have seen in Figures 2 and 3 embedded 

panes with commands relevant to other panes in the 

same window. In Fig. 2 the right-hand pane has 

buttons to control variables and appearance of the 

dependency graph.  

In Fig. 3 the upper-left pane enables the user, in 

case the matrix is very large, to choose how many 

columns/rows to display, and from which 

columns/rows start the display. This can be done 

either by filling-in character slots, or by clicking 

arrow-head (triangular) buttons (in green). 

4 MODULASER ALGORITHMS 

The Modularity Matrix is the central algebraic 

structure of Modulaser. In this section we refer to 

the algorithms whose final purpose is 

“Modularization”, i.e. to find the Modules in the 

next hierarchy level of the given matrix.  

4.1 Modularity Matrix Algorithms’ 

Ideas 

Within Modulaser the modules of a given matrix are 

found in two phases: 

1. Dependency Clustering – to find which 

columns and respective rows belong in the 

same cluster of linear dependence; 

2. Clusters Sorting – once the clusters were 

found, we need to rearrange the matrix to 

display clusters (the final Modules) as sets 

of consecutive columns and respective 

rows, without intersections of clusters. 

The basic idea is to assign to every row and to 

every column a “sticky cluster”. The “sticky-cluster” 

is an object which maintains a pointer to a collection 

of sticky-clusters, where each collection member 

points back to the collection. 
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Rows/columns with the same “sticky cluster” can 

be merged into a larger cluster. Merging causes 

redirection of the new members to the newly-

enlarged collection. 

4.2 Dependency Clustering Algorithm 

A pseudo-code of the dependency clustering 

algorithm is shown in the next text-box. 

 
 

The complexity of the for loops is O(#rows) and 

O(#columns), while that of the merging operation is 

O(smaller-cluster size). The typical running time is 

not large relative to the matrix size, since Modularity 

Matrices are supposed to be sparse by fundamental 

reasons, i.e. Modularization success brings the 

design to Modules with no couplings among them. 

4.3 Cluster Sorting Algorithm 

A pseudo-code of the cluster sorting algorithm is 

shown in the next text-box. 

 
 

The complexity of the for loops is O(#rows) and 

O(#columns), while that of the move operation is 

O(1), as it involves only swapping places with 

relevant row/column. 

5 CASE STUDIES 

The case studies in this section go from the simplest 

case – a strictly diagonal matrix – to a few much 

larger and more complex software systems that have 

been analysed. 

5.1 A PDF-to-XML Converter 

The PDF-to-XML Converter is a simple tool whose 

Modularity Matrix (in Fig. 5) is strictly Diagonal, 

i.e. all the structors (and functionals) are mutually 

orthogonal (a characteristic of conceptual integrity!). 

Besides a trivial Constants class, the concepts 

(classes) in this tool are self-explanatory: 

 PDF Extract Handler – a main program; 

 Text Parser – to parse commands; 

 XML Writer – to write and end writing; 

 Text Extraction Error – to deal with 

eventual errors. 

 

Figure 5: PDF-to-XML Converter Modularity MATRIX – 

It displays the Smiley above a platform and below another 

one, a series of platforms, a menu button on top-right and 

a restart button on top-left. 

5.2 Xonix Game 

The Xonix Game is a much larger software system, 

with a Modularity Matrix of size 97*97 seen in Fig. 

6. This Modularity Matrix is so large that the class 

and function names are not readable. Nonetheless, 

even in this small scale, it enables appraisal of its 

general appearance, which is clearly block-diagonal. 

Cluster Sorting Algorithm 
 
//Initialize Matrix 
Matrix = clustered Modularity Matrix (the 

    outcome from the previous algorithm); 
Create “dummy” row/column in index 0; 
 
//Rearrange, while scanning Matrix 
For each sticky cluster{ 
      For all columns in the cluster{ 
 Move column to index_0;} 
      For all rows in the cluster{ 
 Move row to index_0;} 

} 
Delete “dummy” row/column in index 0; 

Dependency Clustering Algorithm 
 
//Initialize sticky groups 
Matrix = initial Modularity Matrix; 
For all rows and columns{ 

Assign “sticky group” to each row 
and column}; 

 
//Merge sticky groups, while scanning Matrix 
For all rows{ 
      For all columns{ 
 If (Matrix[row][column]  = 1-valued){ 
     mergeClusters(col cluster, row cluster) 

}}} 
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Figure 6: Xonix Game Modularity Matrix – This is a 

block-diagonal Matrix of size 97*97. It has 3 biggest 

Modules (in red and pink color) which are not standard, as 

their sparsity is bigger than expected for a Module. There 

are 12 Modules (in green and light green color) which are 

block diagonal and standard. The remaining blocks are 

strictly diagonal. 

In contrast to a whole Modularity Matrix, 

Modules should be non-sparse – see e.g. (Exman, 

2015). This is not true for all Xonix modules. 

The Xonix Game Modularity Matrix (in Fig. 6) 

has only 3 larger Modules which are non-standard, 

i.e. they are sparser than expected for a normal 

Module. Otherwise, the matrix modules, with sizes 

between 3*3 and 2*2, have normal sparsity. Finally 

there are many one-by-one strictly diagonal 

modules. 

Analysis of this Matrix identified duplicate code 

problems in: different game stages; input from the 

keyboard; panel definitions. 

5.3 An Apache Library 

Apache is a well-known set of open source programs 

with a variety of purposes, one of them being the 

well-known Apache HTTP server. Here we obtained 

the Modularity Matrix of an Apache Library. 

The Modularity Matrix, of size 143*143, seen in 

Fig. 7, has similar characteristics to the Xonix Game 

Matrix in Fig. 6. Overall, it is block-diagonal but the 

number of relatively large modules with greater than 

desired sparsity increased to 10 modules. 

It can be easily seen that each of the larger 

problematic modules essentially have a single row 

full of 1-valued matrix elements in an otherwise 

strictly diagonal submatrix. This is most probably 

easily solvable, by decoupling the problematic row. 

 

Figure 7: Apache Library Modularity Matrix – This is a 

block-diagonal Matrix of size 143*143. It has 10 bigger 

Modules (in red and pink color) with sparsity is bigger 

than expected for a Module. There are 3 Modules (in 

green and light green color) which are block diagonal and 

standard. The remaining blocks are strictly diagonal. One 

easily sees in the larger problematic submatrices, a single 

coupling row on top of a strictly diagonal structure. 

5.4 An Android Application 

The Android Application has a Modularity Matrix of 

size 185*185, in Fig. 8. 

 

Figure 8: Android Application Modularity Matrix – This is 

a Matrix of size 185*185. It has a single very sparse 

problematic largest Module, covering more than half of 

the matrix columns/rows. Otherwise, the matrix is similar 

to the previous ones. 
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The Android Application matrix is distinctively 

different from the previous ones. It displays a single 

very sparse problematic Module, covering more than 

a half of the Modularity Matrix columns/rows.  

This can be attributed either to the matrix 

describing an intermediate development stage or to 

the design requirements enforced by the Android 

operating system. This has been observed in more 

than one such application. Its conceptual analysis is 

obviously incomplete deserving further 

investigation. 

6 MODULASER SOFTWARE 

IMPLEMENTATION 

In this section we provide some details of the 

Modulaser system implementation. 

Modulaser was implemented in the Java 

language, totally anew, except for the use of the 

Apache BCEL library (BCEL, 2016).  

BCEL (Byte Code Engineering Library) enables 

reading binary Java class files, obtaining the 

information about each class, such as inheritances 

and class methods. 

Modulaser uses BCEL to read the Java class files 

of the software System Under Analysis, and stores 

the information read into the Info Storage.  

7 DISCUSSION 

This discussion encompasses foundational issues, 

practical considerations and future work. It is 

concluded with a short statement of the main 

contribution. 

7.1 Foundational Issues  

The deeper motivation behind Modulaser is to 

provide a tool for conceptual analysis of software 

systems under development or already in a 

maintenance phase. 

The following issues deserve to be taken into 

account: 

a. Conceptual Analysis  
It is based on the assumption that “structors”, i.e. 

either classes or their generalization (say design 

patterns) correspond to concepts in a higher 

abstraction level. Thus, one implicitly assumes the 

existence of an application ontology – see e.g. 

(Exman  and Iskusnov, 2014b) – with the specific 

concepts of the software system. Such an ontology, 

if well-constructed, is expected to guarantee 

Conceptual Integrity, which is a complex 

foundational issue per se. Since Integrity probably 

cannot be assumed to be assured, its analysis should 

follow from the Modularity Matrix characteristics. 

b. Software Systems of any size 
This is an important issue, with respect to 

“structors”, the generalization of classes to any 

hierarchical level. Modulaser only reflects the 

entities directly defined in the programming 

language syntax, such as classes, interfaces, 

packages, methods, etc. Since to go upwards in the 

hierarchical abstraction levels transcends the 

language syntax,  – e.g. by referring to design 

patterns (Gamma, 1995) – this requires an 

innovative approach. 

7.2 Practical Considerations  

The main question here is to which extent can be 

Modulaser be actually used in practice, in particular 

during development of a software system.  

The following issues deserve further attention: 

 System Size – we have successfully applied 

Modulaser to a variety of software systems 

with different and increasing sizes, as has 

been shown in the Case Studies of this 

paper. Success refers to efficiency 

parameters as running time and memory 

consumption. 

 

 Scalable Zooming Characteristics – an 

important characteristic of a tool applicable 

to software systems of very different sizes 

is the ability to rapidly obtain information 

in various zooming scales. Modulaser has 

been useful in this respect too. One can 

obtain an overall view of the system (say 

with unreadable class names), and then 

decide to zoom into particular classes to 

obtain detailed information needed for 

redesign. 

7.3 Future Work 

Some of the open issues deserving development and 

further investigation are described here. 

The input to Modulaser consisted up to now to 

software systems that are themselves originally 

written in Java. It is clearly desirable to enable input 

of programs in diverse languages, such as C++, C#, 

Ruby, etc. The current Modulaser architecture, 
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which is modular, should support these new 

additions. 

Transcending the limitations of programming 

language, operating system and running 

environment, to climb the hierarchy of abstraction 

levels is a challenge that was already mentioned 

among the foundational issues. 

7.4 Main Contribution  

The main contribution of this work is the description 

and proof of feasibility of Modulaser as a practical 

tool for software conceptual design analysis. 
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