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Abstract: The paper considers a asymptotically stable linear system with real eigenvalues of state matrix. It was found 
that a peak in free movement trajectories arises. Geometric interpretation of peaks emergence was presented 
through eigenspace. Quantitative estimate of the peak was obtained by using the condition number of matrix 
of eigenvectors. 

1 INTRODUCTION 

The problem statement is to determine the 
eigenvectors influence on free movement of 
asymptotically stable continuous linear MIMO 
system with real spectrum. It will be shown that 
specific disposition of eigenvectors allows to peaking 
effect (peak) emergence. It means that the norm of 
state vector growths up and exceeds the norm of 
initial conditions during some time and then 
converges to zero. Necessary conditions of peak 
emergence are the goal of research of current article. 

2 GEOMETRIC 
INTERPRETATION OF PEAKS 
IN FREE MOVEMENT 
TRAJECTORIES THROUGH 
EIGENSPACE  

Consider the linear system that is described as 

( ) ( ) ( ) ( )
0

0;
=

==
t

txxtFxtx , (1)

where ( ) ( )txx ,0  are vectors of initial and current 

states of the system respectively; F  is the state 

matrix with eigenvalues nii ,1;0 =<λ , ji λλ ≠  for 

ji ≠  and eigenvectors { }niF iiii ,1;: == ξλξξ ;  

( ) ( ) nnn RFRkxx ×∈∈ ;,0 . 

The solution ((Andreev, 1976), (Gantmaher, 2004), 
(Moler at al., 2003)) of the system (1) is 

)0()( xetx Ft= . (2)

The vector ( )0x  can be decomposed into the sum of 

eigenvectors 
=

=
n

i
iix

1

)0( ξγ . Taking into account 

properties of matrix exponential the solution (2) can 
be write as follows  


=

=
n

i
i

t

i
ietx

1

)( ξγ λ ,. (3)

where nii ,1;1 ==ξ :  ∗  is the Euclidean norm on 
nR . 

Definition 1. The system (1) has the peak in the 
case if there is a vector ( ) ( ) 10:0 =xx  such that for 

some value 0>t  the solution of the system satisfies 
the condition ( ) 1>tx   (in general case ( ) ax =0 , 

where 0>a   - const). 
Let us formulate a statement and let us prove it by 

using geometric representations.  
Statement 1. Necessary conditions of peaks 

emergence in free movement trajectories of the 
system (1) are: 

1. There is at least one pair of eigenvectors 
( )jl ξξ ,  such that the angle between them is greater 

than 2π  in the subspace spanned by those 

eigenvectors; 
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2. There are eigenvalues jl λλ ,  associated with 

eigenvectors jl ξξ ,  such that jl λλ >> . 

Let us prove of the statement 1 by geometric way. 
Let consider the linear span (subspace) { }jlL ξξ ,  of 

the vectors ( )jl ξξ ,  which dispose at an obtuse angle 

(see Fig. 1). 

 

Figure 1. 

Suppose the initial condition vector ( )0x  of the 

system (1) belongs to the span ( ) { }jlLx ξξ ,0 ∈  and 

has the unit norm ( ) 10 =x . Then the vector ( )0x  can 

be represented in the form 

( ) lljjx ξγξγ +=0 . (4)

Now suppose the vector ( )0x  is a bisector of the 

angle between vectors jl ξξ , ; then following relations 

are true: 1,1, >>= ljlj γγγγ . 

Taking into account (3) we can write the 
movement of system (1) ( ) ( )( )txxtx ,0=  in following 

form 

( ) ( )( ) t

l

t

j
lj eetxxtx λλ γγ +== ,0 . (5)

If in (5) jl λλ >>  and the system (1) is stable, then 

from time 03 1 ≈== −
lПltt λ  following conditions 

become true: ( ) ( )( ) t

j

t

l
jl etxxtxe λλ γγ ≅=≅ ,0;0  and 

the norm of the vector ( )tx  is ( ) t

j
jetx λγ≅ . The 

statement 1 is proved. 
Note 1. It is obvious that there are no peaks in in 

free movement trajectories of the system (1) if any of 
following conditions holds: 

1. The angle between vectors jl ξξ ,  is equal to 

2π  for any combinations of jl λλ , . 

2. The vector ( )0x  is a bisector of the acute angle 

between vectors jl ξξ , . 

3. The vector ( )0x  is inside the obtuse angle 

between vectors jl ξξ ,  but not its bisector and one of 

two following cases is realized: { }0,1 →→ jl γγ  or 

{ }1,0 →→ jl γγ  for any combinations of eigenvalues 

jl λλ , . 

Let’s illustrate the validity of the statement 1 on 
the example 1. 

Example 1. Let the state matrix F  of the system 
(1) has eigenvectors 

[ ] [ ]ТТ 05.09987.0;01 21 −== ξξ  such that they 

have unit norm and condition 1 of statement 1 is 
fulfilled. Let the state matrix F  has the spectrum 

{ } ( )[ ]{ }50;1:0λarg 21 −=−==−== λλλσ FIdetF i  

such that the condition 2 of statement 1 is fulfilled. 
Using the eigenspace and the spectrum, we have 
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where M  - the matrix of eigenvectors. 
Let the initial condition vector 

( ) [ ]Tx 9997.00255.00 =  be a bisector of the angle 

between 21 ,ξξ  and has the unit norm ( ) 10 =x . 

Decompose the vector ( )0x  into eigenvectors of the 

matrix F  : ( ) 21 994.199935.190 ξξ +=x . Now, we 

can write the free movement (5) of the system (1) with 
the state matrix F  in the following form 

( ) ( )( ) ( ) ( )
.994.199935.19

0exp,0
50

21
21

tt

tt

ee

eexFttxxtx
−− +=

=+=== λλ γγ
 

It is obvious that the component ( ) tetx 50

2994.19
2

−= ξξ  

of the free movement is close to zero at the time 

( ) 0599.0ln
05.0

1

2 ==
=

−

ε
ελt . At the same time the 

component ( ) tetx −= 19935.19
1

ξξ  of the free 

movement is equal to 
( ) 1

0599.0

1 8311.189935.19
1

ξξξ == −etx . Clearly, there is 

a peak ( )tx
t

max  of the norm ( )tx  in the free 

movement of the constructed two-dimensional 

lX

jX

lξ

jξ

( )0X
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system of type (1). The peak takes on the value 
( ) 8324.17max =tx

t
. 

Let us confirm this result by observing the free 
movement norm ( )tx . It is computed using the 

following formula ( ) ( ) ( )0exp xFttx = . The 

obtained curve is shown on Fig. 2.a (curve 1). The 
curve confirms correctness of estimation of peak of 
free movement trajectories obtained through the 
geometrical interpretation. Fig.2.a and fig.2.b 
demonstrate norms ( )tx  of the system with same 

eigenvectors but with following spectra: 
{ } { }25;1 21 −=−== λλσ F  (curve 2), 

{ } { }10;1 21 −=−== λλσ F  (curve 3), 

{ } { }5;1 21 −=−== λλσ F  (curve 4).  

Moreover, fig. 2.a illustrates processes in norm, 
and fig. 2.b does the same in phase space spanned by 
eigenvectors. 

 

Figure 2: Example of peaks. 

3 ALGEBRAIC 
INTERPRETATION. 
CONDITION NUMBER AS А 
QUANTITATIVE ESTIMATION 
OF PEAKS  

Consider the solution (2) of system (1) in order to 
estimate the norm of possible peaks. If in (2) we turn 
to norms ((Andreev, 1976), (Gantmaher, 2004), 

(Moler at al., 2003), (Lancaster at al., 1985), (Golub 
at al., 1976)), we get  

( ) ( ) ( ) ( ) ( )0exp0exp xFtxFttx ⋅≤= . (6)

Recall that the system (1) satisfies conditions: 

{ } ( )( )
( ) 








≠≠=
<=−=

=
jiJm

FI
F

jii

ii

при;0

;0;0detarg

λλλ
λλλ

σ
 

(7)

The matrix F  can be represented in the form 

1−Λ= MMF , (8)

where { }nirowM i ,1; == ξ  is matrix composed of 

eigenvectors of matrix F  such that the following 

condition is true: iiiF ξλξ = ; { }nidiag i ,1; ==Λ λ  is 

diagonal matrix of eigenvalues. It is common 
knowledge ((Gantmaher, 2004), (Lancaster at al., 
1985)) that the representation (8) holds for a matrix 
function ( ){ }*f  of a matrix ( )* : ( ) ( ) 1−Λ= MMfFf . 

If the matrix function is the matrix exponential 
( ) ( )FtFf exp= ; then we can write  

( ) ( )
{ } .,1;

expexp
1

1

−

−

==

=Λ=

MnieMdiag

MMFt
tiλ

 (9)

Substituting (9) in (6), we get  

( ) ( ) ( ) ( ) ( )
{ } ( ) .0,1;

0exp0exp

1 xMnieMdiag

xFtxFttx

ti ⋅==

=⋅≤=
−λ

 (10) 

Let us form inequality using (10) to obtain upper 
estimate of ( )tx  

( ) { } ( )
{ } ( ) ,0,1;

0,1;

1

1

xMniediagM

xMnieMdiagtx

t

t

i

i

⋅⋅=⋅≤

≤⋅=≤

−

−

λ

λ

 (11) 

where 1−⋅ MM  is equal to condition number 

{ }MC  ((Golub, 1996), (Wilkinson, 1984, 1984), 

(Zhang at al., 2014)): { } 1−⋅= MMMC  

{ } tt Mi eniediag λλ == ,1; , where Mλ  is maximum 

eigenvalue of matrix F and it determines stability 
index η  (Andreev, 1976) of the system (1) in the 

form Mλη = . The condition number { }MC  takes 

minimal value if the matrix { }nirowM i ,1; == ξ  is 

composed of vectors with unit norm. Then we can 
write 
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( ) ( ) { } ( )0
~

xeMCtxrooftx tMλ=≤ , (12)

where M
~

 is modified matrix of eigenvectors of 
matrix F  such that it is composed of eigenvectors 

with unit norm: ( ){ }nidiagMM i ,1;
~ 1

2
=⋅= −ξ . 

Example 2. Consider the system from example (1) 

( ) ( ) ( ) ( )
0

0;
=

==
t

txxtFxtx , 

where the state matrix is 







−

−
=

500

726.9781
F ; the 

modified matrix of eigenvectors is 

[ ] 






 −
==

05.00

9987.01~~~
21 ξξM  with condition 

number { }MC
~

. Using (12) we get 

( ) ( )0973.39 xetx t−≤ . Fig. 3 illustrates curves from 

the fig. 2 (curves 1-4) and the estimate 

( ) { } ( )0
~

xeMСtx t−≤ . 

 

Figure 3: Quantitative estimation of peaks.  

4 CONCLUSIONS 

Linear asymptotically stable systems with a simple 
real spectrum of state matrix were studied. Necessary 
conditions for emergence of peaks in free movement 
trajectories of those systems were found. It has been 
established that peaks arise by certain initial 
conditions in the case that the structure of 
eigenvectors is close to collinear. Quantitative 
estimation of peaks such as upper estimate of the state 
vector norm was found through the condition number 
of the modified matrix of eigenvectors. 
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